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Statistical Hypothesis Testing for Postreconstructed and
Postregistered Medical Images*

Eugene Demidenko†
Eugene Demidenko: eugened@dartmouth.edu
† Section of Biostatistics and Epidemiology, Dartmouth Medical School and Departments of
Mathematics and Computer Science, Dartmouth College, Hanover, NH 03755

Abstract
Postreconstructed and postregistered medical images are typically treated as the raw data, implicitly
assuming that those operations are error free. We question this assumption and explore how the
precision of reconstruction and affine registration can be assessed by the image covariance matrix
and confidence interval, called the confidence eigenimage, using a statistical model-based approach.
Various hypotheses may be tested after image reconstruction and registration using classical
statistical hypothesis testing vehicles: Is there a statistically significant difference between images?
Does the intensity at a specific location or area of interest belong to the “normal” range? Is there a
tumor? Does the image require rigid registration? We illustrate statistical hypothesis testing with
three examples: breast computed tomography, breast near infrared linear reconstruction, and brain
magnetic resonance imaging.

Keywords
breast cancer detection; computed tomography; magnetic resonance imaging; near infrared;
confidence eigenimage; image covariance matrix; image comparison; tumor detection

1. Introduction
The use of postreconstructed and postregistered medical images has become routine for clinical
diagnostics, treatment, and evaluation. Typically, those images are treated as the raw data,
implicitly assuming that those postprocessing techniques are error free and therefore do not
affect further image evaluation [2]. The goal of the present work is to explore the impact of
image reconstruction and registration on image comparisons and testing through computation
of the image covariance matrix and confidence eigenimage. The main assumption of the
statistical approach is that the image we look at is random and should be considered as one of
many possible images. The image may be random because its acquisition is subject to noise
(within-subject image variation), images of the same organ may vary between subjects, etc.
Therefore, the image should be accompanied by its standard error or other characteristic which
reflects how precisely the image at hand has been derived. The statistical approach is widely
used for such image reconstruction as positron emission tomograpy (PET) imaging [37,3], but
less for other modalities such as computed tomography (CT) and magnetic resonance imaging
(MRI). Perhaps functional MRI is the most advanced in terms of statistical hypothesis testing,
especially when it comes to identifying and comparing zones of brain activation [30]. An
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advantage of a statistical approach is that it allows the assessment of the uncertainty introduced
by reconstruction and registration through computation of the image covariance matrix [16].
Although a statistical model-based image registration has been used in several papers including
[8,9,38], it has not been fully exploited in terms of statistical hypothesis testing, such as
statistical image comparison after registration, consequence of image registration on
abnormality detection, etc.

The goal of this paper is to fully exploit the statistical model for image reconstruction and
registration by showing how relevant medical hypotheses may be tested statistically. The
culmination of our approach is the computation of the p-value as an indication of statistical
significance. This work is a continuation of our development of the statistical approach to
image analysis [11], image comparison [12], and inverse problem for electrical impedance
tomography [6,13].

As a motivating example, we offer Figure 1 with phantom images, where the image at left is
the CT image reconstruction of the breast obtained before treatment with a diagnosed tumor
located in the upper left quadrant. The image in the center is taken after chemotherapy
treatment. Did treatment help, did the tumor disappear, should the patient undergo surgery?
More precisely, is the difference in images statistically significant in the region of interest
(ROI) outlined by a white circle? These are typical questions of clinical oncology. Without
denying medical doctors’ expertise, can image science contribute to those vital decisions?
Statistical hypothesis testing may become a very useful tool for objectively comparing medical
images in clinical settings. We describe in section 2.1 how to test the difference for statistical
significance.

Another example is shown in Figure 6: in the top row, two brain MRI images of the same
person are compared. A barely visible condensed mass in the top right corner of the brain seems
suspicious. Is that a tumor? In statistical language, is a higher intensity at this location
statistically significantly different, or does it belong to the normal range?

We will use these image examples to illustrate various medical hypothesis tests such as Are
images before and after treatment the same? and Is there a tumor?

We have deliberately made simplifying assumptions, such as a Gaussian distribution,
independence of the noise, and an affine registration. A generalization of the hypothesis testing
under more realistic assumptions including a non-Gaussian distribution, Markov random field,
and soft registration is needed. The goal of the present paper is mostly methodological, but we
intend to continue this work with applications to medical images under more realistic
assumptions.

It is routine in statistical applications to present an estimate with its standard error and the p-
value. It is impossible to publish a paper on a new treatment in a medical journal without
presenting the p-value. I hope that someday this will become a routine in imaging science.

The paper is organized as follows. In the next section, we underscore the advantage of a
statistical model for image analysis, namely, the ability to assess the precision of the image
reconstruction and registration. In particular, we demonstrate how this precision, expressed
through a covariance matrix, can be employed to test various hypotheses and compute the p-
value. In section 3, we introduce the concept of the confidence eigenimage and apply statistical
testing to image reconstruction from projections. We illustrate statistical hypothesis testing
with a breast cancer detection and localization example. A real-life example using linearized
near infrared image reconstruction for studying optical properties of the breast is discussed in
section 3.4. Hypothesis testing for postregistered images with an example of tumor detection
using brain MRI is discussed in section 4.
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2. Why a statistical model?
In this introductory section, we advocate a statistical modeling approach rather than a criterion
or cost-function approach for medical image reconstruction. In particular, we illustrate how to
exploit statistical hypothesis testing for postreconstructed images. This type of analysis is
underused in applied inverse problems. Hypothesis testing should be an integral part of medical
diagnostics.

To simplify, we deal with a linear system with n observations and m unknowns. In the case of
a P × Q image reconstruction, the unknowns are the gray intensities at voxel locations p = 1,
…, P and q = 1, …, Q. Combining the m = PQ intensities in an m × 1 vector, θ = (θ1, …, θm)

′, we assume that for the ith observation the system output is a linear function  with
known coefficients {xij, i = 1, …, n, j = 1, …, m} that define the hardware configuration.
Usually, we use i to denote the observation and j to denote the component of the vector image
θ. To make image reconstruction solvable (identifiable), the number of observations should be
greater than the number of unknowns, n > m. For more detail, we refer the reader to a rich
literature on image reconstruction including [24,19,15]. More details on CT reconstruction are
given in section 3.

A few comments regarding the notation: We use the boldface font to denote vectors and
matrices; we use lowercase for vectors and uppercase for matrices. The Greek letters are used
to denote unknown parameters to be estimated from the data. Prime (′) means vector or matrix

transposition. If a and b are m × 1 vector columns,  is the dot (scalar) product
and ab′ is an m × m matrix.

Usually, when an approximation is sought, the squared Euclidean norm is used as the
discrepancy criterion. For example, to solve the overspecified linear image reconstruction
system, one derives the solution from the least squares (LS),

(2.1)

where {yi} are the outcome measurements, {xij} are the elements of the projection matrix, and
{θj} are the image intensities. Assuming that the system of vectors xi = (xi1, …, xim)′ has full
rank, we obtain the LS solution for the reconstructed image,

(2.2)

In many publications on numerical mathematics and engineering, criterion (2.1) is treated as
just a convenient and familiar way of approximating the observations with a theoretical model.
But why LS? Why the Euclidean distance? To answer these questions, we need to appeal to
statistics. Following the statistical approach, we assume that our observations, yi, are random
variables with mean θ′xi. Also, we assume that {yi, i = 1, …, n} are independent and have the
same variance, σ2. These assumptions lead to a statistical model,
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(2.3)

where εi is the random error term. This model is a well-established classic linear regression
model [31]. It is customary to assume that {εi} are independent and identically distributed (iid)
with the Gaussian distribution, (0, σ2). Under this assumption, the maximum likelihood is
equivalent to LS (2.1). Moreover, it is a textbook result that the LS solution, θ ̂(estimator, in
statistical language), has minimum variance among all unbiased estimators of the true θ [28].
Hence, the difference between the numerical criterion (2.1) and the statistical model (2.3) is
that the former treats observations {yi} as fixed numbers, while the latter implicitly assumes
that {yi} is just one set of possible realizations. Since observations may vary, it is important to
determine how the solution (2.2) is sensitive to different observation realizations; see
subsection 2.1 for details.

The statistical model-based approach to image reconstruction implies the following. First, use
of criterion (2.1) implicitly assumes that observations are continuous, do not correlate, have
the same accuracy of measurement (σ), and have a Gaussian distribution. If the distribution is
not Gaussian, other criteria would be more efficient. For example, if the distribution is double
exponential, one should minimize the sum of absolute residuals, not squared residuals. Second,
under the iid assumption, criterion (2.1) is optimal. Specifically, as follows from the Gauss–
Markov theorem, the LS solution under model (2.3) is unbiased and has minimal variance
among all linear estimators. Moreover, if the distribution of εi is Gaussian, the LS estimator is
efficient among all unbiased estimators [29]. Third, and perhaps most important, one can take
full advantage of a statistical model, such as (2.3), by computing the sensitivity of our image
reconstruction—more precisely, the variance-covariance matrix of θ ̂—and subsequent
significance and hypothesis testing, including the p-value for the images.

2.1. Statistical model and hypothesis testing
Since, under the statistical model, the set of observations {yi} is just one of a myriad of possible
realizations, the reconstructed image, θ ̂, should be treated as random. Therefore, in addition to
the LS estimate itself, one may ask how sensitive θ ̂ is to the observation data. An adequate
measure of the sensitivity is the derivative, ∂θ ̂/∂yi. The cumulative sensitivity can be defined
as an m × m matrix:

(2.4)

Using the LS formula (2.2), we obtain that the cumulative sensitivity (2.4) can be expressed
as

In fact, this matrix is proportional to the covariance matrix of the LS solution (2.2), namely,
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(2.5)

where σ2 is the variance of the system noise. The jth diagonal element of matrix (2.5) is the
variance of the jth component of the reconstructed image. Clearly a smaller sensitivity
(variance) yields a more reliable (statistically significant) estimate. We have to admit that
computation of the covariance matrix (2.5) and the respective image variance (sensitivity) is
a rare encounter in the literature on image reconstruction. As a result, a powerful hypothesis
testing technique is wasted.

Before illustrating how the statistical approach can be used for inverse problems, we briefly
discuss how to test a general hypothesis in the framework of linear model (2.3), as described
in classical statistical texts such as [7] and [28].

The null hypothesis is formulated as a system of k independent linear equations,

(2.6)

where H is a fixed k × m matrix of full rank (k < m) and q is a fixed k × 1 vector. To test H0,
we need to compute two sums of squares. The first sum of squares, SLS = minθΣ(yi − θ′xi)2, is
simply the residual sum of squares from the LS solution (2.2). The second sum of squares,
S0 = minHθ=qΣ(yi − θ′xi)2, is the minimum sum of squares under the linear restriction Hθ= q.
If the null hypothesis is true, the random variable

(2.7)

has an F-distribution with k and n − m degrees of freedom [14,29]. This means that if α is the
significance level (say 5%) and F1−α is the (1 − α)th quantile of the F-distribution with k and
n−m degrees of freedom, we reject H0 if F > F1−α. This test has a clear interpretation: If the
null is not true, then the restricted sum of squares, S0, takes a large value and consequently
(2.7) would be large so that we reject H0.

Now we describe how to use the F-test to answer different questions in the framework of the
linear image-reconstruction problem described by statistical model (2.3). When two images
are involved, we assume that they are coregistered, so that a pixel-by-pixel difference is valid.

1. Is the reconstructed image nothing but background? This question translates into
hypothesis (2.6) with θj = const or, in matrix form (assuming m = 5),
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Here k = m − 1, and S0 is the minimum sum of squares of the background,

, where

is the LS estimate under the null hypothesis.

2. Assume two medical images are taken, before and after treatment. See Figure 1 for
an illustration (details are given in section 3.2). Is there any difference between the
images? This question translates into the null hypothesis H0: θ(1) = θ(2). To test this

hypothesis, we denote { } and { } as the pre- and posttreatment observations,

so that each image is , s = 1, 2. Here, two types of
hypothesis testing are available, the Wald test [28,5] and the F-test defined by test
statistic (2.7). The former is convenient when only a part of the parameter vector/
image from the ROI is tested. To test whether images in the ROI are the same up to
some random noise, namely, , we compute the quadratic form

where  is the covariance matrix of  as a submatrix of (2.5) and χ2(k) is the chi-
distribution with k degrees of freedom, the number of pixels in the ROI. If the statistic
on the left is smaller than the critical value of the chi-distribution, we accept the
hypothesis: The tumor was killed by the chemotherapy. To obtain statistical
significance using the F-test, we find the total sum of squares as . To
compute the residual sum of squares under the null, we combine the data with the
resulting image,

and S0 =Σ(yi − Σxijθ ̂j)2. We can test that the images are the same up to illumination.
Then the hypothesis involves m − 1 independent linear equations,

.

3. Is the intensity of the reconstructed image at a specific location normal? This question
translates into hypothesis H0: θj = θj0, where θj0 is known (the intensity level of a
normal patient at voxel j). This hypothesis is called simple and can be reduced to a
statistical significance test: If θ ̂j is the reconstructed value, we compute the ratio t =
(θ ̂j − θj0)/sj, where sj is the standard error (SE), the (j, j)th element of the covariance
matrix (2.5) with σ2 substituted by σ ̂2 = S0/(n − m). Then, under the null hypothesis,
t has a Student distribution with n−m degrees of freedom: If |t| > t1−α, we reject the
null hypothesis with the error probability α, where t1−α is the critical value. Note that
if testing is done at several locations, some sort of Bonferroni adjustment should be
applied as is routinely required in functional MRI (fMRI) applications [26].

We shall illustrate these hypotheses in the next section.
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3. LS reconstruction from projections
In this section, we consider the LS reconstruction in more detail. In particular, we illustrate
postreconstructed image inference by statistical hypothesis testing for breast cancer
diagnostics.

Reconstruction from projections constitutes the basis of CT. We refer the reader to numerous
books on CT including [18,24,33]. A recent book by [15] provides a comprehensive account
of the mathematical aspects of image reconstruction with medical applications. In this section,
we deal with discrete, sometimes called algebraic, reconstruction [19].

A generic CT device consists of several sources and detectors located on the perimeter of a
square or circle. Beams of X-rays or light come out of the sources at a given angle, penetrate
the body, and are received at detectors on the opposite side. Following Beer’s law of optics, if
I0 is the initial intensity of the beam, which comes in at one end of a homogeneous bar of length
x, and I1 is the intensity at the exit, with a certain degree of approximation we have I1 =
I0e−θx, where θ is called the attenuation coefficient [3]. If a nonhomogeneous bar is composed
of m homogeneous bars of lengths xj with the respective attenuation coefficients θj, the intensity
at the end is I1 = I0e−θ′x or, on the log scale, y = θ′x, where y = ln(I0/I1). This simple formula
gives rise to CT image reconstruction. Imagine that the body is divided into m small boxes and
within each box the attenuation coefficient θj is constant, j = 1, …, m. If the beam comes out
of the source at a given angle, we can compute the length of the ray within each box, so that
we come to a linear statistical model (2.3). Since the beam angles are known, {xij, i = 1, …, n,
j = 1, …, m} are fixed numbers and can be derived from the CT hardware specification. Having
n measurements, {yi}, we reconstruct (estimate in statistical terminology) m attenuation
coefficients, {θj}. Plotting {θj} at appropriate locations yields a CT image, so the set of
attenuation coefficients, {θj}, is the image. The larger θj, the denser the tissue at that location.

3.1. Confidence eigenimage
It is customary to show the error bars or confidence intervals when displaying the data. We
argue that besides the reconstructed image itself one needs to show the precision of the
reconstruction. The confidence eigenimage is a generalization of the confidence interval and
serves the same purpose, namely, as a visualization tool for quick statistical significance
assessment. However, the generalization of the confidence interval to images is not obvious
and admits multiple solutions. Here, we further develop the method of displaying entire images
on the confidence ellipsoid started in [35]. In particular, we demonstrate how to visually
represent the accuracy of the reconstructed image based on the idea of the eigenimage [34],
although we use eigenimage in a different setting.

We rewrite linear model (2.3) in a compact form as

(3.1)

where y = (y1, …, yn)′ is the vector of observations, X is the n × m matrix with the ith row

, and ε is the error vector. Then the LS solution is θ ̂ = (X′X)−1X′y. Recall that the (1 − α)th
confidence region for θ in a multivariate linear regression model (3.1) is an ellipsoid defined
as
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(3.2)

where σ ̂2 is an estimate of the variance of the error term,

and F1−α (m, n − m) is the (1 − α)th quantile of the F-distribution with m and n − m degrees of
freedom [31]. The confidence ellipsoid covers the unknown parameter vector, θ, with the
probability 1 − α. Typically, α is set to 5%, so we are talking about the 95% confidence ellipsoid.
We refer the reader to Figure 2 for a geometrical illustration.

When θ is an image, each point in the confidence ellipsoid is an image as well. We want to
show a few “bracket” images from (3.2). Below, we describe these images in terms of principal
components. Let λ1 ≤ λ2 ≤ ··· ≤ λm be eigenvalues and p1, p2, …, pm the corresponding
eigenvectors of matrix X′X, so that λ1 is the minimal and λm the maximal eigenvalue. As follows
from eigenvalue decomposition, the m principal components of the confidence ellipsoid are
defined as

(3.3)

There are 2m eigenimages on the boundary of the ellipsoid. The first upper and lower eigen-
images correspond to k = 1, the second to k = 2, etc. One could show only the first few
eigenimages, but theoretically other eigenimages may be informative as well.

Typically, Monte Carlo simulations are carried out to get the range of reconstructed images.
The difference with our approach is that Monte Carlo simulations give a sample of images but
the eigenimages give the bracket images with the specified confidence probability.

3.2. Breast cancer detection and eigenimage
In this section, we use a breast cancer imaging example to illustrate statistical hypothesis testing
and eigenimages. A large body of literature exists on breast computer-aided diagnostics (CAD)
using image processing methods for both mammographic and ultrasound images [27]. These
techniques rely on either the analysis of the grayscale distribution of the entire breast or a region
of interest (ROI) and are based on the observation that tumors and other abnormalities are more
dense and look lighter on a mammogram; see [20,17,23] to name a few. In addition, since
tumors typically have less regular (rounded) contours, shape analysis can be employed to
discriminate benign from cancerous abnormalities. Several CAD breast cancer detection
software packages are available on the market, such as Second Look (Montreal, Canada) [25,
10]. In our example, we deliberately make simplifying assumptions to illustrate how statistical
hypothesis testing can be used for significance testing and p-value computation.

In Figure 1, we show three reconstructed breast images. The breast density is generated on the
square (shown within the circle) x = 0, …, 50, and y = 0, …, 50, proportional to the Gaussian
circular density, namely,
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(3.4)

where the standard deviation is 18.3, which defines the width of the dark spot around the nipple.
The tumor is also generated as a Gaussian circular density with the standard deviation 1.4 at
10:30 o’clock with the center approximately one half-radius from the center. We assume that
2 × 512 = 5202 projections are made and that the observations are generated from model (2.3),
where θ is composed of 512 true image intensities with variance noise var(εi) = (0.4)2. Since
the difference between maximum and minimum image intensity is approximately 2, the signal-
to-noise ratio is 2/0.4 = 5. The breast image reconstructed by LS (2.2) (at left, Before
treatment) reveals a tumor. After the first session of chemotherapy treatment (After
treatment), we want to know whether the treatment has helped—vital information in the
decision to continue the treatment or undergo surgery. Visual comparison of the images at left
and in the center is inconclusive. We want to test whether the two images are the same using
test 2 from section 2.1. In our case n = 5202 and m = 2601, k = 2600. We compute three sums
of squares; the first two are the residual sums of squares from the first two images,

 and . The third, under the alternative, is the total sum of squares SLS =
412.3 + 423.9 = 836.2. Under the null, we need to combine observations to obtain the
Combined image with the sum S0 = 1765.5. These values give F = 1.11 with the p-value 0.0009.
This means that, with error 9/10,000, the images before and after treatment are different:
Treatment was successful.

Now we discuss the confidence eigenimage for the Before treatment image; see Figure 3. As
the reader can see, the blob is seen on all four images—therefore it is statistically significant.
In summary, eigenimages play the same role as error bars: If an object of interest is seen in all
eigenimages, its presence is statistically significant.

3.3. Breast cancer localization
In this section, we illustrate a statistical hypothesis test for comparing left and right breast
images using a nonlinear tumor model. We refer the reader to Figure 4. The first two images
are coregistered CT images of the left and right breasts. (This could equally well be CT images
of the same breast taken at different times, say a year apart.) There is a suspicious mass in the
lower right quadrant, and the pixel-by-pixel difference reveals it. Is this spot statistically
significant? To answer this question, we fit the difference image with a function similar to
(3.4):

(3.5)

where D(x, y) is the difference image and

(3.6)

is the Gaussian-type function with θ = (θ1, θ2, θ3, θ4)′, the vector parameter to estimate by
nonlinear LS. Noise ε(x, y) is assumed spatially uncorrelated and homogeneous with Gaussian
distribution N(0, σ2). Several papers, including [21,40], consider a robust model-based
approach for abnormality detection; we simplify the problem by focusing on the image
postprocessing hypothesis testing.
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As follows from nonlinear regression analysis [32,4], the covariance matrix of the vector is
estimated by

(3.7)

Recall that the SEs for the parameters are the square roots of this matrix.

After five iterations of the Gauss–Newton algorithm, we obtain parameter estimates; see Table
1. There is no tumor in D if and only if θ1 = 0; that is our null hypothesis. This hypothesis may
be tested by computing the Z-statistic and respective p-value. Since the p-value is less than
0.05, we assert that the presence of a tumor is statistically proven.

One can even estimate the volume of the tumor based on the Gaussian model (3.6) as

Assuming that the breast has a 10 cm diameter, the tumor volume is 195.4/(50/10)3 = 1.563
cm3.

3.4. Near infrared breast imaging
Near infrared (NIR) breast imaging is an emerging alternative to established imaging
technologies such as CT and MRI [36]. The beam of light penetrates the tissue and, by
measuring the attenuation of the light intensity and change in the phase at the interior of the
breast, the spatial optical properties of the breast are reconstructed. The complete forward
model involves the solution of the elliptic partial differential equation which governs the light
propagation and scattering. Several linearizations have been proposed; perhaps the simplest is
based on Beer’s law, previously mentioned in section 3. This implies that after taking the
logarithm of the intensity value, recorded at the detectors, one can apply a linear reconstruction.
In Figure 5 we show an example of the linearized NIR breast reconstruction on the 8 × 8 square.
The normal breast is squeezed between two plates; each plate contains 8 equidistant sources
and detectors at locations shown in the left plot. For example, when source 3 emits the NIR
light, detector 14 receives the attenuated light intensity (arrow). The beam of light is sent at
each of 16 locations and received at 15 other detectors (the location of sources and detectors
are the same; overall there are n = 15 × 16 = 240 data points). Following Beer’s law, we assume
that the log drop of the intensity is equal to the sum of elements of the 8 × 8 image matrix that
are intersected by the arrow from source to detector. This assumption leads us to the linear
model (3.1), where θ is the 64 × 1 vector of attenuated coefficients and X is the 240 × 64 design
matrix with each entry either 0 or 1.

We ask a basic question: Is the spatial distribution of the light attenuation uniform across the
breast or is there an artifact? This question translates into whether the reconstructed image is
nothing but background or, in statistical terms, H0: θj = θ0, j = 1, 2, …, 64 (k = 63), as in section
2.1. As follows from the F-test (2.7), we need to compute the residual sum of squares of the
unrestricted and restricted models:
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where 1 is the 64 × 1 vector filled with 1. We have SLS = 29.19 and S0 = 311.76, which yields
the F-statistic:

This value is larger than the 95% quantile of the F-distribution with degrees of freedom 63 and
176, meaning that we reject the null hypothesis that the optical properties of the breast are
homogeneous. We notice that the breast tissue has lesser attenuation coefficients in the center
than at the sides. We attribute this to the fact that the breast was squeezed; since breast is a soft
tissue, the maximum density is at the sides. This phenomenon should be taken into account
when NIR is used to detect breast abnormalities [36]. Other statistical testing may be of interest:
Are the attenuation coefficients the same for 1 and 8; 1, 2, 3; 6, 7, 8; etc.?

4. Postregistered image analysis
In the previous discussion, we assumed that images are perfectly registered, so that the pixel-
by-pixel comparison and image difference are valid. Usually, medical images should be
registered before comparison. When comparing the post-registered images, the fact that the
images were registered is usually ignored. We, however, argue that image registration brings
in errors and those errors should be taken into account when images are compared afterwards.
Following the line of our approach, we make a statistical model for image registration that
allows the computation of the respective errors and rigorously carry out hypothesis testing.
The aim of this section is to develop a sound statistical methodology. To simplify, two-
dimensional images of the same size with affine/rigid registration are considered.

Let M[p, q] and N[p, q] be two P × Q images (or more precisely, matrices of image intensities).
A comment regarding the notation: We use the brackets to indicate that the image is a function
of indices treated as continuous arguments (for example, after linear interpolation). Assuming
affine image transformation, we want to find six parameters, θ= (θ1, …, θ6), from minimization
of the sum of squares:

(4.1)

This criterion can be derived from nonlinear regression model (3.5), which in the case of the
image registration problem is written as

(4.2)

where n = PQ. In (4.1) it is implicitly assumed that images differ by random noise with zero
mean and constant variance. One can use the simpler assumption that the original image M and
the registered image N differ by random noise up to illumination and contrast:

(4.3)
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Here α and β are called the illumination and contrast parameters. It is elementary to prove that
after parameters α and β are eliminated with linear LS formulas, the criterion (4.1) reduces to
maximization of the correlation coefficient between M[p, q] and N[θ1 + θ2p + θ3q, θ4 + θ5p +
θ6q]. The latter criterion is called the similarity criterion in the literature on image registration
[22]. In other words, the similarity criterion is equivalent to the LS criterion allowing images
to have different illumination and contrast.

To estimate the unknown registration parameter vector, θ ̂, we apply a minimization algorithm
for (4.1) or (4.3), such as Gauss–Newton or Levenberg–Marquardt. As a word of caution, these
algorithms require a continuous and differentiable regression function which is not available
in this case because N is defined on discrete values. Although continuity may be achieved by
a linear interpolation and differentiability may be achieved by a nonlinear interpolation, the
computational burden increases. A derivative-free algorithm for image registration was
developed in [11]. We, however, pretend that matrix N is a continuous and differentiable
function and therefore standard results on nonlinear regression apply. Similarly to the CT
reconstruction problem of section 3, the statistical approach based on model (4.2) implies that
the LS estimate, θ ̂, is a random variable with a covariance matrix similar to (3.7):

(4.4)

where σ ̂2 is the estimate of the variance noise computed as the residual sum of squares divided
by the degrees of freedom, PQ – 6. With no interpolation, one needs to approximate the
derivative by finite difference using a generic formula (N(x + h) − N(x))/h, where h is the step.

The statistical model for image registration, (4.2) or (4.3), may be used for various hypothesis
tests as in section 2.1. Two types of general tests may be used to test (2.6): the Wald test, which
is based on the covariance matrix (4.4), or the likelihood ratio test, which does not involve
derivative computation [28,7]. Letting C = cov(θ ̂) in the Wald test, we compute

(4.5)

meaning that under the null hypothesis the left-hand side is distributed approximately as the
chi-squared distribution with k degrees of freedom. For a special case when k = 1, H = 1, and
q = θ0, the distribution  is approximately normal with zero mean and unit
variance. In the likelihood ratio test, we do not compute the derivatives but do an additional
registration under hypothesis (2.6). Then, if S is the residual sum of squares (4.1) and S0 is the
residual sum of squares under the restriction Hθ= q, we have

(4.6)

For the linear statistical model, the F-test (2.7) and the χ2-test (4.6) are asymptotically
equivalent. Since we deal with a nondifferentiable function, the likelihood ratio may be more
attractive. Also, this test is convenient when testing a nonlinear hypothesis.

The following hypothesis tests may be of interest in the framework of image registration.
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1. Do we need a registration at all? Let some registration software give a set of theta-
parameters with fairly small values. Maybe they are, in fact, all zeros. So is no
registration required? This question translates into the statistical hypothesis H0: θ1 =
θ2 = θ3 = θ4 = θ5 = θ6 = 0.

2. Is only translation involved? The null hypothesis can be expressed as H0: θ2 = θ3 =
θ5 = θ6 = 0. Two methods for testing this hypothesis may be suggested. By the Wald

test, we evaluate the covariance matrix (4.4) at θ= θ ̂ and compute , where
τ is the 4 × 1 vector with components θ ̂2, θ ̂3, θ ̂5, θ ̂6 and Cτ is a 4 × 4 symmetric
submatrix of matrix (4.4) with rows and columns 2, 3, 5, and 6. Under the null, η has
a chi-squared distribution with four degrees of freedom. Thus, a large value for η
would indicate that more than just translation is involved. This hypothesis can be
tested via the likelihood ratio test. The same approach can be applied to model (4.3)
to allow for different image illumination and contrast.

3. Does the image registration involve only translation, rotation, and resizing? This
question translates into H0: θ3 = − θ5, θ2 = θ6.

4. Is registration rigid? To answer this question we introduce squared terms and test
whether the respective coefficients are zero.

We illustrate some of these tests with brain MRI images in the following example.

4.1. Example: Brain MRI imaging registration
We illustrate statistical hypothesis testing for postregistered medical images with clinical brain
MRI images; see Figure 6. Two brain images of the same person are taken approximately three
years apart. The pixel-by-pixel image difference reveals that the images should be aligned
before comparison. After affine registration a dense mass is seen. Is this a brain tumor?

In Table 2, we show image registration statistics. Also, we show the step we used to compute
the derivative. The SE for each coefficient is computed as the square root of the diagonal matrix
(4.4), where the residual variance is σ ̂2 = 138.3. Column q (=θ0) shows the appropriate
hypothesis testing. For example, the first hypothesis tests whether there is no horizontal
translation or, in statistical terms, whether θ ̂1 is statistically significant. Since the Z-statistic
value is larger than 3, we conclude that the horizontal translation is statistically significant.
Indeed, all registration coefficients are statistically significant.

Now we answer question 3 from the previous section. For this hypothesis k = 2,

Since the left-hand side of (4.5) is greater than 5.99, the critical value for the chi-squared
distribution with two degrees of freedom, we infer that the registration involves more than just
translation, rotation, and resizing.

Now we come to the question posed at the beginning of this section, Is there a tumor? We test
this hypothesis by taking the intensity of the difference after registration in the middle of the
suspicious region: 39. Since the difference between the images in the top row after registration
is approximately a white noise with mean 0 and variance 138.3, we compute Z = 39/11.8 = 3.3.
Under the null hypothesis that there is no tumor, we have Z ~ (0, 11.82) and therefore we
reject the hypothesis that the suspicious spot looks normal with error
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the false positive rate of tumor detection.

We should mention that the one-point image comparison should have a stringent p-value when
searching for a localized difference. There is plenty of literature on this topic in the framework
of multiple comparison going back to [1]; a recent reference in the context of brain imaging is
[39]. Typically, the threshold is about 4–5, much higher than the commonly used 1.96, which
corresponds to a 5% type I error. To test whether the image differs from the background with
a higher Z-value, we could take a number of points within a circle and test whether the mean
is statistically different from 0.

5. Summary points and discussion
We advocate a statistical model-based approach to image reconstruction and registration. The
main advantage of a statistical model is that the accuracy of the solution, the postprocessed
image, can be assessed via a covariance matrix and confidence eigenimages. Although many
authors in the field of image reconstruction use a model-based approach, they do not exploit
the full potential this approach brings, namely, assessing how the solution is sensitive to the
noise.

In this paper, the statistical theory of linear and nonlinear regression analysis was used to
compute the image covariance matrix, which is pivotal to image comparison. Various
hypotheses may be tested using the classic vehicle of statistical hypothesis testing: Are images
the same? Does a suspicious spot belong to the “normal” range of the intensity values? This
paper touches on the basics of statistical image analysis. More work should be done to make
image comparison a valuable computer-assisted tool in the clinical setting when a longitudinal
ensemble of images is available, to account for patient age, or when images are compared
across different modalities. Our examples are purely illustrative; more serious image
hypothesis testing is a topic for the future.
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Figure 1.
Three CT breast phantom images reconstructed from projections by least squares. In the Before
treatment image, a dark spot indicating the presence of a tumor is visible in the upper left
quadrant. In the After treatment image, the same breast is reconstructed after the chemotherapy
treatment. A dark spot appears to be seen in the Difference image. Is the difference statistically
significant in the region of interest (white circle)? To answer this question one needs to know
the precision with which the images are obtained.
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Figure 2.
Four confidence eigenimages correspond to the boundary points of the confidence ellipsoid.
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Figure 3.
Four confidence eigenimages for the Before treatment breast images. The blob is seen on all
images; therefore it is statistically significant.
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Figure 4.
Breast tumor localization using a nonlinear regression model.
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Figure 5.
Linearized NIR 8 × 8 breast image reconstruction with two arrays of sources and detectors.
The darker the image cell, the lower the attenuation coefficient. These values are depicted in
the right plot as the curve for horizontal cross-section attenuation coefficient; the number
indicates the source index in the left image.
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Figure 6.
Brain tumor diagnostic comparing the MRI images of the same person taken three years apart.
The difference does not reveal any suspicious regions. After affine registration, a suspicious
blob is seen in the upper right brain. Is this a tumor?
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Table 2

Affine brain MRI image registration results.

Estimate Step, h SE q Z

θ ̂1 = 3.45 2 0.014 0 239

θ ̂2 = 1.015 0.01 6.1×10−5 1 242

θ ̂3 =−0.008 0.01 7.2×10−5 0 −110

θ ̂4= −6.78 2 0.014 0 −486

θ ̂5= 0.980 0.01 7.8×10−5 1 −257

θ ̂6= 0.010 0.01 8.0×10−5 0 129
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