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Communicated by P. Roy Vagelos, Bedminster, NJ, December 9, 2009 (received for review September 30, 2009)

Cholesterol metabolism has been implicated in the pathogenesis of
several neurodegenerative diseases, including the abnormal accumu-
lation of amyloid-β, one of the pathological hallmarks of Alzheimer
disease(AD).Acyl-CoA:cholesterolacyltransferases (ACAT1andACAT2)
are two enzymes that convert free cholesterol to cholesteryl esters.
ACAT inhibitors have recently emerged as promising drug candidates
for AD therapy. However, how ACAT inhibitors act in the brain has so
far remainedunclear.HereweshowthatACAT1 is themajor functional
isoenzyme in the mouse brain. ACAT1 gene ablation (A1−) in triple
transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in
full-length human APPswe as well as its proteolytic fragments, and
ameliorates cognitive deficits. At 4 months of age, A1− causes a 32%
content increase in24-hydroxycholesterol (24SOH), themajoroxysterol
in the brain. It also causes a 65%protein content decrease inHMG-CoA
reductase (HMGR) and a 28% decrease in sterol synthesis rate in AD
mouse brains. In hippocampal neurons, A1− causes an increase in the
24SOH synthesis rate; treating hippocampal neuronal cellswith 24SOH
causes rapid declines in hAPP and in HMGR protein levels. A model is
provided to explain our findings: in neurons, A1− causes increases in
cholesterol and 24SOH contents in the endoplasmic reticulum, which
cause reductions inhAPPandHMGRprotein contents and lead toamel-
ioration of amyloid pathology. Our study supports the potential of
ACAT1 as a therapeutic target for treating certain forms of AD.

Alzheimer disease | cholesterol esterification | lipid metabolism | oxysterols

Alzheimer disease (AD) is characterized by extracellular
accumulation of plaques, which are aggregates of amyloid-β

(Aβ) peptides derived from proteolytic cleavages of amyloid pre-
cursor protein (APP), and intracellular accumulation of hyper-
phosphorylated tau (1). APP can be cleaved via the α- or the
β-secretase pathways (2). The β-secretase pathway, but not the
α-secretase pathway, generates Aβ fromAPP. Cholesterol content
in cells can affect the production of Aβ, in part by its ability to
modulate the enzyme activities of various secretases in cell
membranes (3). Cholesterol has also been implicated in the
pathogenesis of AD via other mechanisms (4–6).
In the brain, cholesterol is almost exclusively derived from en-

dogenous biosynthesis (7). The transcription factor SREBP2 controls
the expression of enzymes involved in cholesterol biosynthesis,
including the rate-limiting enzyme HMG-CoA reductase (HMGR)
(8). In addition, the nuclear receptors LXRs control the gene ex-
pression of proteins involved in cholesterol transport (9, 10), including
apoE, ABCA1, ABCG1, and ABCG4 (11, 12). Cholesterol can be
enzymatically converted by a brain-specific enzyme, 24-hydroxylase
(CYP46A1) (13), to the oxysterol 24(S)-hydroxycholesterol (24SOH);
the concentration of 24SOH far exceeds those of other oxysterols in
the brain (14). In intact cells and in vitro, 24SOH can down-regulate
sterol synthesis (15, 16).Whenprovided toneurons, 24SOHdecreases
the secretion of Aβ (17). 24SOH levels were decreased in brain sam-
ples from patients with AD (18).

Acyl-CoA:cholesterol acyltransferase (ACAT) converts free
cholesterol to cholesteryl esters (CEs). There are two ACAT
genes, Acat1 and Acat2 (also known as Soat1 and Soat2), with
different tissue expression patterns (19). Both are considered drug
targets for treating cardiovascular diseases. Hutter-Paier et al.
reported that treating a mouse model for AD with isotype-non-
selective ACAT inhibitors substantially diminished amyloid pla-
que density (20, 21), suggesting that ACAT inhibitors may serve as
therapeutic agents for AD; however, it was not clear whether the
effects of the ACAT inhibitors observed were caused by inhibition
of ACAT activity and/or effects on other biological process(es) in
the mouse brain. In the current work, we undertake a combined
mouse genetic and biochemical approach to evaluate the potential
role of ACAT in AD.

Results
ACAT Expression in Mouse Brains. Whether the brain has active
ACAT enzyme was previously unknown. To examine this issue,
we prepared brain homogenates from WT, Acat1−/− (A1−) and
Acat2−/− (A2−) mice and found that WT and A2− mouse brains
contained comparable ACAT enzyme activity, whereas A1−
mouse brains contained negligible activity (Fig. 1A). Various
regions prepared from WT mouse brains, but not A1− mouse
brains, all contained active ACAT (Fig. 1B). Mouse ACAT1 is a
46-kDa protein (22). Immunoblot analysis showed that, in
homogenates prepared from mouse brain (but not from other
mouse tissues), a non-ACAT1 protein band appeared in the 46-
kDa region; the presence of this nonspecific band precluded us
from using immunoblotting or histochemical staining to identify
ACAT1 in the mouse brain. To unambiguously identify the
ACAT1 protein, we first performed immunoprecipitation (IP)
experiments with detergent-solubilized WT mouse brain extracts.
The results showed that ACAT activity could be efficiently
immunodepleted by ACAT1-specific antibodies (i.e., A1), but not
by control antibodies (Fig. 1C). We then performed immuno-
blotting on the immunoprecipitates; the result showed that, in
homogenates from WT mouse brain regions, the ACAT1 anti-
bodies specifically identified a 46-kDa protein band; this band is
absent in homogenates prepared from the adrenals and brains of
A1− mice (Fig. 1D). These results indicate that mouse brains do
express ACAT1 as the major ACAT isoenzyme.
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To determine the ACAT1 mRNA distribution in mouse brains,
we performed in situ hybridization experiments. Both hippo-
campus and cortex contain ACAT1 mRNA; hippocampus
expresses a stronger signal (Fig. 1E Middle ). Other ACAT1-pos-
itive regions included choroids plexus, medial habenular nucleus,
amygdala, and rostral extension of the olfactory peduncle.Wenext
isolated hippocampus-rich regions and cortex-rich regions from
WT mice and compared their ACAT1 mRNA levels by real-time
PCR (primer sequences are listed in Table S1). The result showed
that ACAT1 mRNA is approximately twofold higher in hippo-
campus than in cortex (Fig. 1F). A separate RT-PCR experiment
using ACAT2-specific primers showed that only the thalamus-rich
region, and no other brain regions, expresses low but detectable
ACAT2 mRNA levels (Fig. S1A), confirming an early report by
Anderson et al. (23), who showed in monkey brains that the
ACAT2 mRNA level was nearly undetectable.

Effect of A1− on Aβ Deposition/hAPPswe Processing and on hTau. To
investigate the effect of inactivating ACAT1 on amyloid and tau
pathologies in the triple transgenic (3XTg)-AD mice (24), we
produced Acat1−/−/AD (A1−/AD) mice by crossing the Acat1−/−

mice with the 3XTg-AD mice. The breeding scheme is described

in Fig. S2. To examine the effect of A1− on amyloid pathology, we
first used the human specific anti-Aβ antibody 6E10 to perform
intraneuronal immunostaining in the CA1 region of hippocampi
of 4-month-old mice. Results showed that the staining was sig-
nificantly diminished (by approximately 78%) in the A1−/AD
mice (Fig. 2A Bottom). We next used ELISA to measure the total
Aβ40 and Aβ42 levels in mouse brain homogenates at 17 months
of age. Results showed that the Aβ42 levels were significantly
decreased (by approximately 78%) in A1−/AD mice; the Aβ40
levels were also decreased, but the difference observed was not
statistically significant. The brains of nontransgenic (NTG) mice
did not containmeasurableAβ (Fig. 2B).Wenext used thioflavin S
to stain amyloid plaques in ADmouse brains at 17 months of age.
The results showed that, in A1−/AD mice, the amyloid plaque
load in the hippocampi was significantly reduced (by approx-
imately 77%; Fig. 2C); in the cortex, the amyloid plaque load in
thesemice showed a trend toward decreasing (P=0.17; Fig. S1B).
We next studied the effect of A1− on human APP processing in

4-month-old AD mice. We used the antibody 6E10 to detect full-
length APP [human APP harboring the Swedish mutation
(hAPPswe)] and its proteolytic fragments sAPPα [soluble APP
fragment produced by α-secretase cleavage (hsAPPα)] and CTFβ
[C-terminal APP fragment produced by β-secretase cleavage
(hCTFβ)]. The results showed that, in A1−/ADmice, hsAPPα and
hCTFβ levels were decreased (by approximately 67% and 37%,
respectively; Fig. 3 A, C, and D). To our surprise, the hAPP level
was also significantly reduced (by approximately 62%; Fig. 3 A and
B). In contrast to thehAPPprotein levels, therewas nodifference in
hAPP mRNA levels between the A1+/AD mice and the A1−/AD
mice (Fig. 3E) (primer sequences are listed in Table S1). hAPP is
synthesized in theER in its immature form (with amolecular weight
of approximately 105 kDa); the immature formmoves from the ER
to the Golgi via the secretory pathway (25) and becomes highly
glycosylated (mature form has a molecular weight of approximately
115 kDa) (26, 27). We examined the effects of A1− on the levels of
immature and mature forms of hAPP in young ADmice (at 25 d of
age). The results showed that A1− led to decrease in both forms to
approximately the same extent (by approximately 52%–54%; Fig. 3
F–I), suggesting that the effect(s) of A1− act on newly synthesized
hAPP. The ADmice express both hAPP and endogenous (mouse)
APP (mAPP). To test the possibility that A1−may affect both the

Fig. 1. ACAT protein, enzyme activity, and RNA expression in mouse brains.
(A) ACAT activity in 53-d-old mouse brain homogenates and (B) ACAT
activities in various regions. Cereb, cerebellum; BrStm, brainstem; Cx, cortex;
Th, thalamus; Hp, hippocampus. (C) Immunodepletion of ACAT activity in
the WT mouse brain homogenates. IP with nonspecific rabbit IgG or with
ACAT1-specific (A1) IgG. The ACAT activities in the supernatants were
measured. (D) Identification of A1 protein. After IP, pellets were resolved by
SDS/PAGE; A1 protein (46 kDa) was detected with polyclonal A1 antibodies.
Lysates from WT and A1− mouse adrenals were used as controls. (E) A1
mRNA distribution. Upper: Nissl staining from a 2-month-old WT mouse. Cx,
cortex; Hp, hippocampus; Am, amygdale. (Middle and Bottom) In situ
hybridizations using [32P]-ACAT1 antisense riboprobe or sense riboprobe (as
negative control). For bottom panel, brain periphery was outlined artifi-
cially. (Scale bar: 250 mm.) (F) A1 mRNA levels in WT mouse hippocampus
and cortex as measured by real-time PCR and normalized against neuro-
filament polypeptide chain (NF120) mRNA. Data in A–D and F represent
mean ± SEM; n = 2.

Fig. 2. Effect of A1− on Aβ pathology in AD mice. (A) Intraneuronal Aβ
(using human Aβ-specific antibody 6E10) in the hippocampal CA1 region of
male mice at 4 months (P = 0.0059; n = 4 or 5). (B) Aβ42 and Aβ40 levels
analyzed by ELISA in the forebrains of mice at 17 months. For Aβ42, P =
0.035; for Aβ40, P = 0.084; n = 5. (C) Amyloid plaque load (using thioflavin S
staining) in the hippocampus of 17-month-old mice; P = 0.031; n = 5. (Scale
bars: 100 μm in A and C.) Data represent mean ± SEM. *P < 0.05; **P < 0.01.

3082 | www.pnas.org/cgi/doi/10.1073/pnas.0913828107 Bryleva et al.

http://www.pnas.org/cgi/data/0913828107/DCSupplemental/Supplemental_PDF#nameddest=st01
http://www.pnas.org/cgi/data/0913828107/DCSupplemental/Supplemental_PDF#nameddest=sfig01
http://www.pnas.org/cgi/data/0913828107/DCSupplemental/Supplemental_PDF#nameddest=sfig02
http://www.pnas.org/cgi/data/0913828107/DCSupplemental/Supplemental_PDF#nameddest=sfig01
http://www.pnas.org/cgi/data/0913828107/DCSupplemental/Supplemental_PDF#nameddest=st01
www.pnas.org/cgi/doi/10.1073/pnas.0913828107


hAPPand themAPP levels, weuseda different antibody (antiserum
369), which recognizes the C-terminal fragments of both hAPP and
mAPP (28) to investigate the total APP levels in AD mice. The
results showed that there was no detectable difference in the total
APP levels among NTG, A1+/AD, and A1−/AD mice (Fig. 3J),
indicating that, in our AD mouse strain, the hAPP is not overex-
pressed compared with the endogenous mouse APP protein level.
We also examined the mAPP processing in mice that do not contain
the hAPP gene. In these mice, A1− also did not affect the levels of
mAPP and its homologue APLP2 (29), or any of the proteolytic
fragments derived from mAPP (Fig. 3K). These results led us to
conclude that A1− leads to reduction in only the hAPP level, not the
mAPP level. Subtle sequence differences exist between hAPP and
mAPP, and these differences may play important roles in causing
differential fates of hAPP and mAPP (30, 31). We investigated the
effect of A1− on mutant human tau (htau) in 3XTg-AD mice. The
results showed that, at 17 months of age, no significant change was
observed in the number of hippocampal neurofibrillary tangles
between the A1+/AD and the A1−/AD mice, suggesting that A1−
may not lead to tau pathology attenuation in AD mice.

A1− Ameliorates Cognitive Deficits of AD Mice. (SI Results, Fig. S3).
Effects of A1− on sterol metabolism in AD mouse brains. ACAT1 is
involved in cellular cholesterol homeostasis.Wehypothesized that
A1− may cause a decrease in hAPP content by affecting sterol
metabolism in AD mouse brains. To test this possibility, we iso-
lated the sterol fractions from A1+/AD and A1−/AD mouse
brains and analyzed them byGC/MS. The results showed that, at 4
months of age, lack of A1 caused an approximate 13% decrease in
cholesterol content (Fig. 4A; P = 0.04) and an approximate 32%
increase in 24SOH content per wet weight tissue (Fig. 4B; P =
0.007). The decrease in cholesterol content of theA1−/ADmouse
brains was confirmed when a colorimetric enzyme assay kit
(Wako) was employed to determine free cholesterol. The lano-
sterol or desmosterol contents permilligram tissue in theA1+/AD
and A1−/AD mouse brains did not change significantly (Fig. 4B).
Additional results showed that a lack of A1 caused an approx-
imately 10% decrease in cholesterol content and an approximate
23% increase in 24SOH content in the 2-month-old AD mouse
brains. We next compared the relative sterol synthesis and fatty
acid synthesis rates in the brains of these mice in vivo. The results
showed that A1− caused an approximate 28% decrease in the

sterol synthesis rate (Fig. 4C; P = 0.04) without significantly
changing the fatty acid synthesis rate (Fig. 4D). In mouse brains,
CE contents are reported to be very low (32). We attempted to
measure CE in A1+ mouse brains by separating the CE fraction
from the free cholesterol fraction using column chromatography

Fig. 3. Effect of A1− on human and mouse APPs (mAPP) and their cleavage products in AD and NTG mouse brains. (A) Immunoblot analysis and (B–D)
quantification. For hAPP, P = 0.042; for hCTFβ, P = 0.017; for hsAPPα, P = 0.004. Forebrains of 4-month-old mice were used; n = 7. (E) mRNA analysis of hAPP
gene by real-time PCR; n = 6. (F) Immunoblot analysis and (G and H) quantification of mature and immature forms of hAPP from 25-d-old AD mouse
forebrains; P = 0.019 (G) and P = 0.046 (H); n = 9. (I) For the ratio of mature to immature hAPP, P = 0.368; n = 9. (J) Immunoblot analysis and quantitation of
mouse and human APP (m+hAPP) from 4-month-old NTG and A1/AD mouse forebrains. Full-length m+hAPP is detected by using antiserum 369, which
recognizes both mouse and human APP (n = 7). (K) Immunoblot analysis and quantitation of mouse endogenous APP (mAPP) and its cleavage fragments from
2-month-old C57BL/6 mouse forebrains. Antiserum 369 was used to detect mAPP and the CTF fragments (mCTFβ and mCTFα). P = 0.168 for mAPP, P = 0.605 for
mCTFβ, and P = 0.504 for mCTFα; n = 3. Data represent mean ± SEM. *P < 0.05; **P < 0.01.

Fig. 4. Sterol metabolism in A1+/AD and A1−/AD mouse forebrains; 4-
month-oldmalemicewere used. (A) GC-MS analysis of cholesterol (CHOL); P =
0.04; n = 5. (B) GC-MS analysis of lanosterol (LAN), desmosterol (DES), and
24SOH. For 24SOH, P = 0.007; n = 5. (C) Sterol synthesis in vivo (P = 0.04); n = 9.
(D) Fatty acid synthesis in vivo; n = 9. (E) Esterification of [3H]cholesterol in
mouse brains; P = 0.0009;n = 6. (F) Immunoblot analysis and (G) quantification
of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR); P = 0.001; n = 6. (H)
Relative expression of HMGRmRNA analyzed by real-time PCR; P = 0.71; n = 6.
(I) Relative expressions of mRNAs of SRE response genes or LXR response
genes analyzed by real-time PCR. HMGR, P = 0.71; 3-hydroxy-3-methylglutaryl
CoA synthase (HMGS), P = 0.24; squalene synthase (SQS), P = 0.48; lipoprotein
receptor-related protein-1 (LRP), P = 0.35; LDL receptor (LDLR), P = 0.91; sterol
regulatory element–binding protein 2 (SREBP2), P = 0.35; sterol regulatory
element–binding protein 1 (SREBP1), P = 0.54; apolipoprotein E (APOE ), P =
0.07 (i.e., the difference approached but did not reach statistical significance);
ATP-binding cassette transporter subfamily A member 1 (ABCA1), P = 0.27;
ABCG1, P = 0.058; ABCG4, P = 0.63; cytochrome P450 46A1 (CYP46A1), P = 0.3;
n = 6. Data represent mean ± SEM. *P < 0.05; **P < 0.01; and ***P < 0.001.
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and determining the cholesterol content inCEbyGC/MS after CE
is saponified. The result suggested that CE might be present at no
more than 1% of the total cholesterol mass in mouse brains. The
low level of CE prevented us from reliably measuring a value. We
used a similar procedure to determine the 24SOH ester content,
and estimated that nomore than 1%of total 24SOH is esterified in
the brain. These results are consistent with the finding that ACAT
prefers to use cholesterol to various oxysterols as its enzymatic
substrate (33).
To test the functionality of ACAT1 in the intact mouse brain, we

developed a procedure to measure CE synthesis in vivo by injecting
[3H]-labeled cholesterol (as a cyclodextrin complex) into intact
mouse brains.Wemonitored the 3H-CEproduced inA1+andA1−
mice 3 h after injection. The result showed that, inA1+/ADmice, a
small percentage of [3H] cholesterol was converted to [3H] CE
(0.56%in3h); in contrast, such conversionwas not detectable in the
A1−/AD mouse brains (Fig. 4E). This result demonstrates that
ACAT1 in intactmouse brains does biosynthesizeCE, although at a
low rate.
The data in Fig. 4 A–C suggest that, in AD mouse brains, A1−

leads to an increased 24SOH level, which in turn leads to a down-
regulation of the sterol synthesis rate. Studies in cell culture have
suggested that 24SOH may down-regulate sterol synthesis by two
mechanisms: by (i) blocking transcriptional activations of
SREBP2 target genes and/or (ii) increasing the degradation rate of
HMGR protein (8). To test the first possibility, we compared the
mRNA levels of various SREBP2 target genes in theA1+/ADand
A1−/AD mouse brains, but we failed to detect statistically sig-
nificant alterations in the expression levels of these genes (Fig. 4I)
(primer sequences are listed in Table S2). Additional results
showed that no statistically significant alterations in the mRNA
levels of various LXR target genes occurred in the brains of mice
with or without A1 (Fig. 4I) (primer sequences are listed in Table
S2). To test the second possibility, we performed immunoblot
analysis in brain homogenates prepared from the ADmice with or
without A1. The result showed that the HMGR protein content is
decreased by approximately 65% in A1−/ADmouse brains (Fig. 4
F andG; P= 0.0009), whereas the HMGRmRNA in A1−mouse
brains was not changed (Fig. 4H). Additional results showed that,
in AD mice at 25 d of age, A1− caused an approximate 62%
decrease inHMGRprotein content, demonstrating that the effect
of A1− on HMGR content occurs in mice at a young age.

Biosynthesis of 24SOH in Hippocampal Neuronal Cell Cultures. The
results described here show that A1−/AD mouse brains exhibit
elevated 24SOH levels, suggesting that, in mouse neurons, A1−
may cause an increase in the biosynthesis of 24SOH. Cultured
neurons isolated from human and mouse brains synthesize and
secrete 24SOH (13, 34). Based on these reports, we established a
hippocampal-rich neuronal cell culture system fromA1+/AD and
A1−/AD mice to test this possibility. We first monitored CE bio-
synthesis in these neurons by incubating them with labeled [3H]
oleic acid. Upon entering cells, [3H]oleic acid is rapidly converted
to [3H]CE by ACAT. Both the A1+ cells and the A1− cells bio-
synthesize CE; however, A1− cells synthesize [3H]CE at much
reduced capacity than A1+ cells (Fig. 5A). We next examined the
effect of A1− on 24SOH biosynthesis by feeding neurons with the
sterol precursor [3H]acetate for 3 h, then isolated and analyzed the
labeled sterols present in the cells and in the media. The results
showed that A1− cells exhibited a reduced trend in cholesterol
synthesis rate; the difference observed between A1+ cells and
A1− cells approached but did not reach statistical significance
(P = 0.05; Fig. 5B Right). The 24SOH synthesis rate in A1− cells
was significantly increased (by approximately 27%; Fig. 5C Right).
We also analyzed the [3H]sterols in the media of A1+ and A1−
cells. The result showed that the [3H]cholesterol contents were not
significantly different (Fig. 5B Left); in contrast, the [3H]24SOH
content in the media of A1− cells was significantly (approximately

56%) higher than in A1+ cells (Fig. 5C Left). We calculated the
percentage of total [3H]sterols secreted into the media, and found
that neurons secreted only approximately 2% of total [3H]cho-
lesterol (Fig. 5D Left), but secreted 13% to 15% of total [3H]
24SOH into the media (Fig. 5D Right).
The results described earlier (Fig. 5C) demonstrate that A1−

causes an increased 24SOH biosynthesis rate in cultured neurons.
Mouse neurons maintained in culture express CYP46A1 as a single
53-kDa protein, which can be identified by immunoblotting (13). It
is possible that the increased synthesis of 24SOH observed in A1−
neuronsmay be a result of an increase inCYP46A1 protein content
in these neurons. To test this possibility, we examined CYP46A1
protein content in A1+ and A1− neurons by immunoblotting. The
results showed that the intensities of the single 53-kDa protein band
were comparable between these two cell types (Fig. 5E). This result
suggests that, in hippocampal neurons, the mechanism(s) involved
in A1−dependent increase in 24SOH synthesis may not require an
increase in CYP46A1 protein content.

24SOHProvided toADMouseNeuronsDecreaseshAPPProteinContent.
The observations made in intact A1−/AD mouse brains [i.e., an
increase in 24SOH content (Fig. 4B) and a decrease in hAPP con-
tent (Fig. 3A, B, and F–I)] suggest that 24SOHmay decrease hAPP
content in neurons. To test this possibility, we treated hippocampal
neuronal culture from A1+/AD mice with 24SOH, and monitored
the hAPP protein content and the HMGR protein content in par-
allel. We found that 1 μM 24SOH rapidly decreased the protein
contents of both hAPPandHMGR(within 3 h; Fig. 5F). A separate
experiment showed that 1 to 5μM24SOHcauses a rapiddecrease in
hAPP protein content (Fig. 5G) without affecting its mRNA level
(Fig. 5H) (primer sequences are listed in Table S1). This result

Fig. 5. Biosynthesis and regulatory activities of 24SOH in primary hippo-
campal neurons. For A–E, hippocampal neurons from A1+/AD and A1−/AD
mice were employed. (A) Cholesterol esterification in intact cells. Cells were
cultured for 7 d; lipids in cells were extracted and analyzed by TLC; P = 0.037.
(B and C) Biosynthesis of [3H]sterols from [3H]acetate. Cells were cultured for
14 d. The lipids were analyzed by TLC. (B) [3H]Cholesterol (CHOL), P = 0.4 for
media and P = 0.05 for cells and media. (C) [3H]24(S)-hydroxycholesterol
(24SOH), P = 0.04 for media and P = 0.01 for cells and media. (D) Secretion of
newly synthesized CHOL (P = 0.38) and 24SOH (P = 0.19); n = 2. (E) Immu-
noblot analysis of CYP46A1. Cells were cultured for 20 d; n = 2. (F) Immu-
noblot analysis of hAPP and HMGR in A1+/AD hippocampal neurons
incubated with 1 μM 24SOH [delivered in ethanol (EtOH) at 0.1%] for 0.5 to
3 h. Cells were cultured for 35 d; (G) Effects of treating A1+/AD hippocampal
neurons with 1 μM or 5 μM of 24SOH for 3 h on hAPP and HMGR levels. For
5 μM 24SOH, P = 0.0003 for hAPP and P = 0.03 for HMGR. Cells were cultured
for 4 or 8 weeks; n = 3. For E–G, values were normalized against the β-actin
signal in each lane. (H) Relative expression of hAPP mRNA by real-time PCR;
n = 3. Data represent mean ± SEM. *P < 0.05; **P < 0.01.
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supports the interpretation that accumulation of 24SOH in neurons
may down-regulate hAPP protein content in vivo.

Discussion
Earlier work showed that when the ACAT inhibitor CP113818 or
CI-1011 was administered to mice with AD, it significantly reduced
amyloid plaques and rescued cognitive deficits, suggesting that
inhibiting ACAT may prevent and/or slow the progression of AD
(20, 35). The present work supports this hypothesis. However, close
comparison revealed that several important differences exist
between the effects of the ACAT inhibitors and the effects of A1−.
CP113818 inhibited the processing of both human APP and mouse
APP; CI-1011 decreased the mature/immature ratio of hAPP. In
contrast, A1− causes a decrease in only the full-length human APP
protein content; it does not affect themouseAPP at any level, and it
does not alter the mature/immature ratio of hAPP. In addition,
unlike the effect of A1−, CP113818 did not cause a reduction in the
full-length hAPP content (20). The differences in results raise
questions about the specificity of the ACAT inhibitors employed.
ACAT is a member of the membrane bound O-acyltransferase
enzyme family (36), which comprises 16 enzymes with similar
substrate specificity and catalytic mechanisms, but with diverse
biological functions. In addition, many ACAT inhibitors are
hydrophobic, membrane-active molecules (37). When adminis-
trated to cells, they may partition into membranes at high con-
centration and perturb membrane properties nonspecifically.
Although CP113818 and CI-1011 are designated as ACAT inhib-
itors, they may also inhibit other enzymes in the membrane bound
O-acyltransferase enzyme family and/or interfere with other bio-
logical processes. Our present work shows that inactivating the
ACAT1 gene alone is sufficient to ameliorate amyloid pathology,
at least in the 3XTg-ADmouse model. In this mouse model, A1−
acts to reduce Aβ load mainly by reducing the hAPP protein con-
tent. The action of A1− is similar to that of cerebrolysin, which
reducesAβ in anADmousemodel mainly by decreasing the hAPP
protein content (38, 39). To explain how A1− leads to hAPP
content reduction, we show that the brains of A1−/AD mice con-
tain a significantly greater amount of 24SOH. We then demon-
strate that, in neuron-rich cultures, 24SOH added to the medium
leads to rapid decrease in hAPP protein content. How 24SOHacts
on hAPP is currently unknown. APP may be a sterol-sensing pro-
tein (40); APP contains three CRAC motifs, a consensus motif
known tobindcholesterol (41). It is possible that cholesterol and/or
oxysterol may directly interact with the hAPP protein to accelerate
its rate of degradation. Other possibilities cannot be excluded. The
ADmice used in our current study express amutant form of hAPP.
Further investigations are required to determinewhetherA1− also
leads to decreases in nonmutated hAPP. We also show that, in
mouse brains, A1− causes a decrease in HMGR protein and a
decrease in cholesterol biosynthesis. Earlier, Tabas et al. (42) and
Scheek et al. (43), showed that inhibitingACAT inmacrophages or
in CHO cells increases the ER “regulatory sterol pool” that
mediates down-regulation of HMGR levels and SREBP process-
ing. The “regulatory sterol” could be cholesterol itself and/or an
oxysterol derived from cholesterol; however, whether oxysterol(s)
play(s) important roles in regulating sterol biosynthesis in the brain
in vivo is currently debated, as reviewed by Björkhem et al. (44).
This issue can be addressed in the context of recent results from
three different research groups: Russell and coworkers (45–47)
showed that knocking out the 24-hydroxylase geneCyp46a1 caused
a near elimination in the 24SOH content and a decrease in cho-
lesterol turnover in themousebrains;Cyp46a1−/−didnot affect the
amyloid pathology in anADmousemodel. In contrast,Hudry et al.

(48) showed that over-expressing Cyp46a1 in mouse brains caused
a twofold increase in 24SOH content and significantly ameliorated
amyloid pathology in their AD mice. Hudry et al. (48) did not
observe a reduction in the hAPP protein content; instead, they
demonstrated a decrease in hAPP processing, an increase in
SREBP2 mRNA, and no change in brain cholesterol content. Our
present results show that, in A1−/AD mice, a 32% increase in
24SOH content and significant reductions in hAPP content and
amyloid pathology occurred. The Cyp46a1 gene knockout or
Cyp46a1 overexpression in mice might have produced compensa-
tory effects that did not occur in theA1−mice, and vice versa; thus
it is difficult to directly compare the results. Conversely, these
(apparently conflicting) results together suggest that 24SOH may
play an auxiliary but not an obligatory role in affecting cholesterol
metabolism and amyloid biology. Based on other evidence, Brown
and Jessup (49) have independently proposed that a given oxy-
sterol may play auxiliary but not obligatory roles in regulating
cellular cholesterol homeostasis.
We propose a mechanistic model that links cellular cholesterol

trafficking with ACAT1, CYP46A1, 24SOH synthesis, hAPP, and
HMGR at the ER (Fig. S4): in neurons, cholesterol trafficking in
and out of the ER occurs. The unnecessary buildup of unesterified
cholesterol at the ER (and other membranes) is toxic (50, 51). To
minimize cholesterol accumulation, A1 located at theER removes
a portion of ER cholesterol by converting it to CE.A1− leads to an
increase in the ER cholesterol pool and raises the substrate level
for CYP46A1 at the ER (13), and leads to an increase in 24SOH
biosynthesis in neurons. A similar scenario had previously been
suggested by Sun et al. (52). The increased 24SOH and/or cho-
lesterol concentration in the ER leads to rapid down-regulation of
hAPP protein content, perhaps by accelerating its rate of degra-
dation at the ER, thereby limiting its capacity to produce Aβ.
24SOH secreted by neurons can enter astrocytes and other cell
types and lead to efficient down-regulation of HMGR and cho-
lesterol biosynthesis in these cells. In summary, we attribute the
beneficial effects of A1− on amyloid pathology in AD mouse
brains to increase(s) in ER cholesterol and/or 24SOH level in the
neurons. Barring the possible side effects caused by altering cho-
lesterol metabolism in the brain, our work suggests agents that
inhibit ACAT1 enzyme activity or decrease ACAT1 gene expres-
sion may have therapeutic value for treating AD in humans.

Materials and Methods
Generation ofAcat1−/−/AD (A1−/AD) andAcat2−/− /AD (A2−/AD)Mice. TheAcat1−/
− and Acat2−/− mice (53, 54) in C57BL/6 background were received from Sergio
Fazio (Nashville, TN) and Shailesh Patel (Charleston, SC), respectively. The 3XTg-
ADmice (ADmice) inhybrid129/C57BL/6backgroundcontain twomutanthuman
transgenes, hAPP harboring Swedish mutation (hAPPswe), and mutant htau
(htauP301L), and contain the knock-in mutant presenilin 1 (PS1M146V) (55). Breed-
ing strategy is described in Fig. S2. Detailed methods are described in SI Text.

Statistical Analysis. Statistical comparisons were made by using a two-tailed,
unpaired Student t test. The difference was considered significant when the P
value was less than 0.05.
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