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Accumulation of Rhodopsin in Late Endosomes Triggers
Photoreceptor Cell Degeneration
Yashodhan Chinchore, Amitavo Mitra, Patrick J. Dolph*

Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America

Abstract

Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila
as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin
endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes,
and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is
not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late
endosome to lysosome trafficking, we were able to show that rhodopsin accumulates in endosomal compartments in these
mutants and leads to light-dependent retinal degeneration. Moreover, we also show that in dying photoreceptors the
internalized rhodopsin is not degraded but instead shows characteristics of insoluble proteins. Together these data implicate
buildup of rhodopsin in the late endosomal system as a novel trigger of death of photoreceptor neurons.
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Introduction

Inherited retinal degenerative disorders in humans exhibit

heterogeneity in their underlying causes and clinical outcomes [1].

Diverse causes have been attributed, including disruption of genes

that are involved in phototransduction, biosynthesis and folding of

the rhodopsin molecule, and the structural support of the retina.

However, a clear understanding of the mechanism of photore-

ceptor cell death has yet to be worked out. The Drosophila

phototransduction pathway, mediated by the major rhodopsin

(Rh1), has served as a model system for studying retinal

degeneration [2–4]. Light absorption by Rh1 triggers a signaling

pathway leading to the activation of an eye-specific phospholipase

C encoded by the no-receptor potential A (norpA) locus and this is

essential for the photoresponse, and eventually the opening of

cation-specific ion channels.

Like many other G protein-coupled receptors, Rh1 undergoes

endocytosis following activation [5,6]. Perturbation of endocytic

regulation of Rh1 has deleterious effects on photoreceptor cell

physiology. This has been well documented for Drosophila norpA

mutants. In norpA flies, persistent complexes between rhodopsin

and arrestin are formed due to a block in light-triggered Ca2+-

dependent phosphorylation of Arr2. Arr2 then recruits the

endocytic machinery triggering massive internalization of Rh1,

resulting in light-dependent retinal degeneration [7,8]. Pathogenic

endocytosis of Rh1 is also demonstrated in other phototransduc-

tion mutants of Drosophila such as retinal degeneration C (rdgC) [9] and

arrestin1 (arr1) [6]. Interestingly, formation of toxic Rhodopsin-

Arrestin complexes is also reported for mutants of human

rhodopsin associated with severe forms of Autosomal Dominant

Retinitis Pigmentosa (ADRP) [10,11]. For example, mutations at

Arg135 are associated with severe forms of retinitis pigmentosa

and exhibit a high affinity for arrestin, undergo endocytosis, and

display endosomal abnormalities. These instances underscore the

importance of studying Rh1 endocytosis and its relation to the

photoreceptor health.

Earlier work has indicated that Rh1 internalization plays a

crucial role in norpA and rdgC-mediated photoreceptor cell death

[9,12,13]. However the role that is played by downstream

endocytic trafficking, if any, has not been addressed. Here, we

investigate the effect of post-endocytic modulation of Rh1

trafficking in influencing retinal degeneration in Drosophila. We

show that the granule group mutants that have impaired lysosomal

delivery underwent light-dependent retinal degeneration in an

otherwise wild type background. In norpA as well as granule group

mutants, Rh1 accumulated in the Rab7-positive late endosomes as

persistent vesicles. Preventing Rh1 accumulation by vitamin A

deprivation (which reduces the total Rh1 amount) or by using

Rh1D356 (an Rh1-variant that cannot be endocytosed) rescued

photoreceptor cell death in granule group mutants. We also

observe that, in norpA, the internalized Rh1 is not degraded. Taken

together, our results indicate the vital role of lysosomal turnover of

Rh1 in maintaining photoreceptor viability.

Results

Functional Late Endosomal System Is Essential for
Photoreceptor Cell Viability after Rh1 Internalization

Previous work on Drosophila norpA and rdgC mutants has revealed

that massive endocytosis of Rh1 following light-exposure is the

underlying cause of photoreceptor cell death [9,12]. To better

understand the relationship between endocytosis and cell death we

examined previously characterized mutants believed to affect late

endosome trafficking/lysosome biogenesis in Drosophila. These

PLoS Genetics | www.plosgenetics.org 1 February 2009 | Volume 5 | Issue 2 | e1000377



genes which belong to the so called ‘‘granule group’’ play an

important role in lysosome biogenesis and function [14–17]. A

mutation in the carnation (car) gene, which is involved in late

endosome to lysosome trafficking [17], displays light-dependent

retinal degeneration in an otherwise wild type background

(Figure 1D). The car gene product is the Drosophila homolog of

yeast Vps33p, which is part of the Class C Vacuolar Protein

Sorting (VPS) protein complex. VPS-C complex is involved in

fusion of endosomes with vacuoles, which are equivalent to

metazoan lysosomes [18]. Since, dark-raised car flies have retinal

morphology similar to dark or light-raised wild type flies

(Figure 1A–C), we hypothesized that this degeneration was due

to defects in Rh1 degradation.

To test if the degeneration was a result of defective lysosome

function we used a mutation called carmine (cm). The cm flies are

defective in the medium chain subunit of the adaptor protein

complex AP-3, which is necessary for transport to the pigment

granules- the lysosome-related organelles [14,15,19]. AP-3 is

involved in the delivery of Golgi-derived vesicles to the vacuoles in

yeast [20]. Dark-raised cm flies resembled wild type in terms of

normal retinal morphology. We could not identify any visible

adverse effect on the retinal morphology and photoreceptor

development (Figure 1E). Continuous light exposure of cm flies

resulted in retinal degeneration (Figure 1F) indicating that

lysosomal function plays an important role in viability of

photoreceptor neurons in light.

To further explore the role of granule group genes in retinal

degeneration, we investigated the effect of mutation in the light

gene, which encodes a homolog of yeast Vps41p. Vps41p interacts

with class C VPS complex and with another protein Vps39p,

forms an active HOPS (Homotypic vacuole fusion and Protein

Sorting) complex that functions as an effector of Ypt7/Rab7

[21,22]. Furthermore, Vps41p has been shown to interact with the

AP-3 adaptor complex in yeast [23]. Like other granule-group

mutants, lt flies had normal eye morphology and did not show any

signs of degeneration in constant darkness (Figure 1G). Mutation

in the lt gene rendered flies susceptible to light-induced retinal

degeneration (Figure 1H). Thus, these three lines of evidence show

that interference with lysosomal function during light-exposure

results in photoreceptor cell death.

Rh1 Endocytosis and Its Buildup Is Required for Cell
Death

One model to explain the light-dependent nature of cell death

in the granule group mutants is the fatal accumulation of Rh1 in

the endosomal system. To confirm that Rh1 endocytosis following

light-stimulation is necessary for cell death in these mutants, we

examined the effect of Rh1 C-terminal deletion. Rh1 C-terminus

is phosphorylated at a series of serine and threonine residues by

the Rh1-kinase [24]. Elimination of these residues by C-terminal

deletion (Rh1D356) or replacement with alanine prevents Arr1 [6]

as well as Arr2-mediated endocytosis [12]. However, as deter-

mined in earlier studies, flies carrying this rhodopsin variant do not

undergo retinal degeneration [12,24]. We introduced a transgene

encoding Rh1D356 in car;;ninaEI17 and lt;ninaEI17 mutant back-

grounds. ninaEI17 is a null allele of the gene coding for Rh1 and

thus these flies did not express any full length Rh1. Expression of

Rh1D356 rescued the light-dependent retinal degeneration

observed in car and lt mutants (Figure 2A and 2B). These results

suggest that light-induced Rh1-endocytosis causes retinal degen-

eration in granule group mutants.

We hypothesized that Rh1 endocytosis leads to its buildup due

to lysosomal degradative defects in granule group mutants and

accumulation of Rh1 might be the cause of photoreceptor cell

death. To address this hypothesis, we investigated the effect of

reducing the amount of Rh1 in photoreceptor cells. Rh1 consists

of the protein moiety called opsin and a covalently attached

chromophore, 11-cis 3-hydroxyretinal, that is derived from vitamin

A. It has been demonstrated that raising flies on vitamin A

deficient media reduces Rh1 levels to ,3% of normal [25,26]. We

reasoned that, reducing the total amount of Rh1 by vitamin A

deprivation would result in internalized Rh1 levels that are more

manageable by the partially functional endo-lysosomal system and

would thus prevent Rh1 accumulation. As has been previously

reported for other backgrounds [12], Vitamin A deprived car and lt

flies had smaller rhabdomeres. However, exposure to constant

light for seven days did not result in any discernable change in

rhabdomere structure that is characteristic of retinal degeneration

(Figure 2C and 2D). Thus these two lines of evidence suggest that,

reducing endosomal buildup specifically of Rh1 by diminishing its

endocytosis or by reducing its protein levels rescues photoreceptor

cell death.

Light-Dependent Rh1 Endocytosis Leads to Its Presence
in the Late Endosomes

To study the dynamics of Rh1 trafficking following endocytosis, we

examined Rh1 distribution in the endocytic system. Because of the

evidence of involvement of the late endosomal system in retinal

degeneration, we focused on colocalization of Rh1 with Rab7, the

widely used late endosomal marker [17,27–30]. In dark-adapted wild

type flies Rh1 was observed in crescent-shaped staining at the base of

the rhabdomeres of the outer (R1-R6) photoreceptor cells (Figure S1).

The Rab7 staining was solely observed in the cell body and was

absent in the rhabdomeres. A few Rh1-positive vesicles were also

observed in the cell body (at a frequency of 4-6 vesicles per 100

ommatidia). Localization of Rh1 in dark-raised norpA, car, and lt flies

was similar to wild type, indicating that these mutations do not affect

trafficking of Rh1 to the rhabdomere after its biosynthesis (Figure S1).

As in wild type flies, Rh1-positive vesicles were also observed in these

backgrounds in the cell body with similar frequency.

Author Summary

Irreversible loss of photoreceptor cells has been attributed
as a cause of blindness in many retinal degenerative
disorders. One such group of disorders is retinitis
pigmentosa, which affects 1 in 3,000 individuals. Over
100 mutations in the light-sensing molecule rhodopsin
have been identified in patients with autosomal dominant
retinitis pigmentosa. These mutations affect rhodopsin
transport to the outer segments of rod photoreceptor
cells, rhodopsin folding, and rhodopsin endocytosis. In
Drosophila photoreceptors, endocytosis of a large amount
of rhodopsin at a rapid rate results in cell death. To further
understand the role of endocytosis in triggering cell death,
we used previously characterized mutants in which
lysosomal degradation is compromised. We show that
retinal degeneration can also be induced in these genetic
backgrounds after rhodopsin is endocytosed, suggesting
that failure to degrade internalized rhodopsin in a timely
manner triggers cell death of photoreceptor neurons. We
also present direct cellular biological evidence of rhodop-
sin accumulation in the cell bodies of photoreceptors, only
in mutant backgrounds that undergo retinal degeneration.
We could rescue the degeneration by preventing rhodop-
sin endocytosis and accumulation. Thus, our results
indicate the vital role of lysosomal turnover of rhodopsin
in maintaining photoreceptor viability.

Rh1 Buildup Mediates Photoreceptor Death

PLoS Genetics | www.plosgenetics.org 2 February 2009 | Volume 5 | Issue 2 | e1000377



We then examined Rh1-internalization in wild type flies

following one day of light treatment. After photoactivation,

endocytosed Rh1 was present in the cell body of the photoreceptors

as large endocytic vesicles (Figure 3A), with 69%, of these Rh1-

positive vesicles being Rab7-positive (Figure 3C). Colocalization of

internalized Rh1 with late endosomal markers has been previously

reported [31]. Thus, our results align with the previously published

data that endocytosed Rh1 localizes in the late endosomes.

In norpA, car, and lt photoreceptors a significant number of Rh1-

positive vesicles were formed after 1 day light-treatment (Figure 3A

Figure 1. Mutations affecting trafficking to the lysosomes result in light-dependent retinal degeneration. Cross sections (1 mm) of
retinas from white-eyed wild type, car, cm, and lt flies. Respective genotypes were dark-reared (A, C, E and G) or exposed to continuous room light for
7 days (B, D, F and H) prior to fixation. Retinal degeneration is only observed in light-exposed flies. Tissues were fixed and embedded as described in
Materials and Methods. Scale bar, 20 mm.
doi:10.1371/journal.pgen.1000377.g001

Rh1 Buildup Mediates Photoreceptor Death

PLoS Genetics | www.plosgenetics.org 3 February 2009 | Volume 5 | Issue 2 | e1000377



and 3B). More Rh1 positive vesicles are detected in norpA

photoreceptors possibly due to the faster rate of Rh1 endocytosis

observed in these flies. As in wild type flies, a majority of these

vesicles from all three mutant backgrounds were Rab7-positive

indicating their late endosomal nature (Figure 3C). Together, these

data indicate that Rh1 is effectively delivered to the late

endosomes in the granule group mutants as well as in norpA.

Persistent Presence of Rh1 in Late Endosomes Indicates
Defects in Its Degradation

Intracellular vesicle transport is a dynamic process that relies on

highly orchestrated membrane traffic between adjacent organelles

[32,33]. Though, co-localization experiments as above provide a

reasonable snapshot in time of the Rh1 vesicular traffic, they might

not be truly reflective of changes in the trafficking kinetics due to

perturbation in Rh1 influx or efflux. We therefore, explored the

fate of Rh1 after it is delivered to the late endosomes by carrying

out pulse-chase experiments. After internalization, Rh1 persists in

the endosomes for approximately 13 hours in wild type flies ([31]

and data not shown). We exposed flies for 2 days of continuous

light to ensure that rate of Rh1 internalization reaches a maximum

level. We then shifted the light-treated flies to complete darkness

for 13 hours to allow any internalized Rh1 to traffic through the

endosomal system while preventing any new endocytosis. This

procedure allows us to discern any changes in Rh1 trafficking past

the late endosomal stage.

In wild type flies that are subjected to the light/dark treatment

as described above Rh1 was found at the base of the rhabdomere

and the cytoplasm is mostly devoid of any Rh1-positive vesicles

(Figure 4). There were a few Rh1/Rab7-double positive vesicles

found as in dark-raised flies. Some Rh1-positive, Rab7-negative

vesicles were also observed (data not shown). Thus, in the absence

of any additional endocytosis, all the internalized Rh1 completely

exits Rab7-positive late endosomes in 13 hours in wild type flies.

Figure 2. The light-dependent retinal degeneration that is
observed in car and lt flies is rescued by the removal of
rhodopsin or by preventing its endocytosis. Cross sections (1 mm)
of retinas from (A) car;;Rh1D356 flies, (B) lt;Rh1D356 flies, (C) car flies
raised on vitamin A-deficient media and (D) lt flies raised on vitamin A-
deficient media. Flies were exposed to 7 days of constant room light.
Eyes were fixed and embedded as described in Materials and Methods.
Scale bar, 20 mm.
doi:10.1371/journal.pgen.1000377.g002

Figure 3. Light-induced endocytosis of rhodopsin and its presence in late endosomes. (A) Indirect immunofluorescence of whole-
mounted retinas stained for Actin, Rhodopsin (Rh1) and Rab7. Wild type control (w), norpA, car and lt flies subjected to 24 hours of continuous light
treatment and the retinas were stained as described in Materials and Methods. Light-exposure results in endocytosis of Rh1 from the rhabdomere
membrane into the cell body, where a majority of it co-localizes with Rab7. We hypothesize that the poor rab7 staining observed in the granule
group mutants is due to rab7GDP being sequestered in a complex with GDI due to the lack of GDP-exchange activity. Scale bar, 5 mm. (B)
Quantitation of Rh1-positive endocytic vesicles in white-eyed wild type control (WT), car, lt and norpA flies after treatment with constant light for
24 hours. Number of Rh1 puncta in the cell body were counted in a confocal section as described in Materials and Methods and divided by the total
number of corresponding ommatidia ascertained by Actin staining. Rh1-positive vesicles for WT control, 7.512060.326; for car flies, 7.499060.299; for
lt flies, 7.645060.311 and for norpA flies, 11.92060.77 (n = 140–160 ommatidia). Data are represented as Mean6SEM. (C) Quantitation of Rh1-positive
late endosomes in wild type (WT), car, lt, and norpA flies. Number of Rh1-Rab7 double positive puncta were counted in confocal sections as above
and divided by the total number of Rh1-positive puncta to calculate the percentage of Rh1-positive vesicles that are Rab7-positive. Percentage of
Rh1-positive vesicles that are Rab7-positive for WT controls, 68.5960.01; for car flies, 75.3960.02; for lt flies, 75.5060.01; for norpA flies, 72.5960.01
(n = 981–1606 Rh1-positive vesicles). Data are represented as Mean6SEM.
doi:10.1371/journal.pgen.1000377.g003

Rh1 Buildup Mediates Photoreceptor Death
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On the contrary in norpA flies subjected to similar light treatment,

Rh1-positive vesicles showed a very different behavior. In these

flies some Rh1 immunoreactivity reappeared in the rhabdomere

(Figure 4). However, Rh1-positive vesicles persisted in the

cytoplasm. These vesicles took an amorphous shape uncharacter-

istic of the Rh1 vesicles in light-treated flies. Moreover, the

persistent Rh1 vesicles stained positive for Rab7, indicating their

late endosomal nature. The observed Rh1 accumulation in norpA

flies is not due to global turning-off of cellular process as a result of

pro-death signaling. The photoreceptors of norpA mutants

subjected to continuous light treatment for 2 days followed by a

shift to complete darkness for 3 days do not display any retinal

degeneration and resemble the dark-raised norpA control flies

(Figure S2). Thus cell death is not elicited after 2 days of light-

exposure, a condition used in our experiments.

A similar defect in exit from the late endosomes was also

illustrated in car and lt mutants (Figure 4). In these mutants, like in

norpA, persistent Rh1-positive vesicles were formed that took an

amorphous shape. Since these persistent vesicles stained for Rab7

and formed in mutants that are defective in late endosome to

lysosome trafficking, we postulate that persistent vesicles represent

the accumulated Rh1 that fails to be degraded in the 13 hour time

period. These data indicate that the increased endocytosis of Rh1

(as in norpA) or decreased lysosomal delivery (as in car and lt) results

in the endocytosed Rh1 trapped in the late endosomal stage.

Internalized Rh1 Protein Is Not Completely Degraded in
norpA

We then examined the steady-state level of Rh1 in light-exposed

wild type and norpA flies. In wild type control flies the level of Rh1

remained constant as the function of light exposure (Figure 5A).

Western blot analysis of Rh1 in norpA flies demonstrate that in

dark-raised norpA flies Rh1 is expressed at wild type levels.

Exposure to room light for 1, 3 or 5 days causes Rh1 steady state

level to decrease rapidly. After one day of light exposure, the

amount of Rh1 reduced to ,20% of Rh1 level in dark-raised norpA

flies (Figure 5B). The level of Rh1 falls subsequently to ,5% of the

original with increased light exposure.

We repeated these experiments using slot blots rather than

westerns. Slot-blot analysis takes into account total protein content

rather than solubility whereas western blot analysis detects only

the soluble protein that can traverse the gel matrix. Interestingly,

slot-blot analysis of protein extracts, demonstrated that in light-

exposed norpA photoreceptors ,40% of the original Rh1 protein

was retained even after 5 days (5B). Rh1 in norpA flies remains

undetectable by western-blot analysis possibly indicates that rapid

endocytosis of large amount of Rh1 leads to its accumulation at

extremely high local concentration, resulting in insolubility. The

observation that total Rh1 level does not change appreciably even

after prolonged light-treatment, is consistent with our conclusion

that lack of protein degradation arises due to decreased late

endosome to lysosome trafficking in norpA.

Discussion

Proper regulation of rhodopsin endocytosis is essential for

photoreceptor cell viability. In wild type photoreceptors, transient

interaction of the major arrestin (Arr2) with Rh1 results in the

deactivation of photoresponse. Light-dependent phosphorylation

of Arr2 prompts its release from Rh1 [7]. However, in norpA

photoreceptors, stable Rh1-Arr2 complexes are formed because of

absence of Arr2 phosphorylation [12]. This causes endocytosis of

Rh1 due to Arr2’s ability to interact with the AP-2 adaptor protein

and engage the endocytic machinery [13]. Here we demonstrate

that rapid endocytosis of Rh1 in norpA leads to its accumulation in

the late endosomes. It has been previously reported that Rh1 is a

very abundant protein in the outer photoreceptor cells [34,35].

Based on our current data we hypothesize that sudden endocytosis

of a majority of Rh1 such that the lysosomal system is saturated,

results in its accumulation in the late endosomes. We can induce

Rh1 accumulation by causing slower lysosomal turnover, as in the

granule group mutants, and this simulates gradual, light-

dependent retinal degeneration in norpA. Reducing endocytosis

prevents Rh1 buildup and rescues retinal degeneration. Similarly,

preventing Rh1 accumulation in granule group mutants also

rescues photoreceptor cell death. These data are consistent with a

model that photoreceptor cell death is induced by the accumu-

lation of Rh1 in the endosomes (Figure 6). Our results also indicate

that Rh1 is not degraded in norpA; instead it becomes insoluble and

undetectable on western blots, most likely due to formation of

high-molecular weight aggregates.

The granule group mutants used in this study are mild loss-of-

function alleles [36] and are viable. Severe phenotypes, including

lethality, are observed in null alleles [37] or when two partial loss-

of-function alleles are combined [36,38] supporting the idea of an

essential role played by these genes in general endocytic

trafficking. Since null alleles of the granule group genes result in

lethality, our analysis was restricted only to the available viable

alleles of these genes. Our analysis of multiple genes affecting late

endosomal/lysosome trafficking rules out the light-dependent

degeneration as an artifact. Despite their impact on endocytosis,

we believe that the photoreceptor cell death observed in the

granule group mutants is specifically due to Rh1 accumulation and

not because of trafficking impairment of other cargo molecules.

These mutants do not display any retinal degeneration in

continuous darkness—a condition in which Rh1 endocytosis is

Figure 4. Rhodopsin accumulates in the late endosomes in
norpA and granule group mutants. Indirect immunofluorescence of
whole-mounted retinas stained for Actin, Rh1 and Rab7. Wild type
control (w), norpA, car and lt flies were subjected to 48 hours of
constant room light-treatment followed by 13 hours in complete
darkness. The retinas were dissected and stained as described in
Materials and Methods. Endocytosed Rhodopsin is cleared from the
cytoplasm of retinas in wild type flies. Rhodopsin persists in Rab7-
positive vesicles in norpA, car and lt flies. Scale bar, 5 mm.
doi:10.1371/journal.pgen.1000377.g004

Rh1 Buildup Mediates Photoreceptor Death
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minimal. Absence of any photoreceptor degeneration in darkness

discounts the idea that cell death is due to an effect on

‘‘housekeeping’’ endocytosis in these mutants. We also demon-

strate that the photoreceptor death is rescued when the C-terminal

region of Rh1 is deleted. This prevents endocytosis specifically of

Rh1 and should not affect any other cellular process. Our results of

vitamin A deprivation experiments also rule out the possibility of

any pleiotropic effects of these mutations as the cause of retinal

degeneration. Vitamin A is solely required for visual pigment

biosynthesis and does not play any role in cellular physiology in

Drosophila [25]. Rescue of light-dependent retinal degeneration of

granule group mutants by vitamin A deprivation suggests that

reduction of Rh1 protein level is sufficient to prevent retinal cell

death.

Figure 5. Rhodopsin is not degraded in light-treated norpA flies. (A) Head lysates were prepared from white-eyed control flies exposed to
light for indicated time period and subjected to Western and Slot-Blot analysis. For Western blots, head lysates were fractionated by SDS-PAGE and
probed with antibodies against Rh1 and Arr2. The slot-blot analysis was carried out as described in Materials and Methods and blots were probed
with antibodies directed against Rh1. The steady-state level of Arr2, another photoreceptor-specific protein, is used as a loading control. (B) Head
lysates from norpA flies exposed to light were subjected to Western and slot-blot analysis. Western analysis reveals that the Rh1 protein level
drastically decreases with increasing light exposure. Contrary to this observation, slot-blot analysis reveals that Rh1 persists in light-exposed norpA
flies. The densitometry data are represented as Mean6SEM. Results here show data from three independent experiments.
doi:10.1371/journal.pgen.1000377.g005

Rh1 Buildup Mediates Photoreceptor Death
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It is also possible that a second molecule capable of triggering a

pro-cell death pathway from endosomes is internalized with Rh1.

Thus preventing endocytosis of Rh1 or its accumulation may

prevent cell death signaling by this molecule. Arr2, a molecule

speculated to be involved in pro-death signaling [6,9,12] was

absent on persistent vesicles in norpA and car flies (data not shown).

Similarly, we have not been able to detect ubiquitylation of Rh1

(P.J. Dolph, unpublished data). Currently we cannot elucidate the

identity (Rh1 or other protein) of the molecule that triggers cell

death. Regardless of the identity of the pro-death molecule, based

on our data we conclude that timely degradation of Rh1 by fully

functional lysosomal machinery is essential for maintaining

photoreceptor viability.

Our finding, that failure to clear accumulated Rh1 causes cell

death, has relevance to human disease. Autosomal Dominant

Retinitis Pigmentosa (ADRP) is a retinal degenerative disorder and

is a common cause of blindness affecting one in 3000 people

(RetNet, http://www.sph.uth.tmc.edu/Retnet/). Mutations in the

human rhodopsin that affect its folding, trafficking and activity are

the most commonly encountered causes of retinal degeneration in

afflicted patients. Missense mutations in the opsin gene affecting

the R135 and K296 residues of the protein product cause ADRP

and result in accumulation of Rhodopsin-Arrestin complexes in

the photoreceptor cell [10,11]. The R135 mutant rhodopsin is

noted to form stable complex with arrestin and undergo

endocytosis resulting in aberrant endocytic vesicles in HEK cell

culture system [11]. Similarly, the K296E rhodopsin is observed to

bind the visual arrestin with high affinity. This abnormal

interaction is demonstrated to have pathological consequences in

the retina. Besides this, the stable rhodopsin and arrestin

complexes are shown to mislocalize and accumulate in the inner

segments of rod photoreceptors of the mouse model of ADRP.

Thus the accumulation of rhodopsin might trigger cell death by a

similar mechanism as in Drosophila norpA and granule group

mutants.

In this work, using the anti-Rh1 antibody, we observe that Rh1

staining at the base of the rhabdomeres in a crescent-shaped

pattern in adult flies. Similar results with adult flies have been

reported previously [6,39,40]. This is in contrast to earlier reports

where Rh1 staining was uniformly present in the entire

rhabdomere [5,8,13]. The different results could be attributed to

the differences in immunolocalization methods. Previous studies

have used cryosectioning followed by immunostaining, while this

study utilizes whole-mount immunostaining to localize Rh1. It is

possible that the crescent-shaped staining of Rh1 in whole-mount

samples is observed due to inaccessibility to rhabdomeric Rh1 as a

result of highly organized and densely packed microvillar structure

in adult fly eyes. The uniform distribution of GFP-tagged Rh1

throughout the rhabdomere in whole-mounted retinas supports

this explanation (Figure S3). Regardless of the observed differences

in the rhabdomeric Rh1 staining patterns, our ability to detect

persistent Rh1-positive vesicles in the photoreceptor cell body

leads us to propose that cytoplasmic accumulation of Rh1 in

certain genetic backgrounds results in their light-dependent retinal

degeneration. We also observe that Rh1 immunoreactivity is lost

as a function of light-exposure on the western-blots in norpA flies.

However, slot-blot analysis reveals that Rh1 persists in light-

exposed norpA flies. The observed differences in the results

obtained by two techniques can be attributed to the change in

protein solubility, most likely due to protein aggregation and

formation of high molecular weight protein complex. We

demonstrate that Rh1 in norpA accumulates in late endosomes.

Late endosomes are acidic compartments [41] and Rh1 aggregates

under acidic conditions (P. J. Dolph, unpublished). We speculate

that under extremely high concentration and acidic pH, such as

those presented in norpA, Rh1 can aggregate and form a high

molecular weight complex. This complex fails to traverse the gel

matrix in the SDS-PAGE and hence remains undetectable on the

western-blot while it can be easily detected by slot-blot analysis. A

single base-substitution at the codon position 23 in the human

opsin gene (P23H) is the most common cause of ADRP in

American patients [42]. P23H rhodopsin is extremely prone to

aggregation and forms high-molecular weight complexes [43,44].

Similarly, the aforementioned K296E mutation is also shown to

become insoluble and form aggregates in cell culture [44]. This

bears remarkable resemblance with some neurodegenerative

disorders such as Alzheimer’s disease, Huntington’s disease,

Spinocerebellar ataxias and Prion diseases, where protein

misfolding, aggregation and cytoplasmic accumulation are the

implicated causes of cell death [45]. It has also been demonstrated

that late endosomal accumulation of cholesterol [46], prion [47]

and amyloid b-protein [48] is associated with Niemann-Pick type

C disease, Scrapie and Alzheimer’s Disease respectively. Therefore

it is tempting to speculate that protein accumulation results in

neuronal death by utilizing similar pathways in norpA and

neurodegenerative diseases.

Our results raise one intriguing question. That is, how can

vesicular accumulation of Rh1 elicit pro-cell death signaling? The

importance of proper regulation of Rh1 endocytosis in maintain-

ing photoreceptor cell viability is increasingly appreciated [6,13].

But the precise mechanisms regulating the pro-cell death signaling

pathways and their interconnection with endocytosis is not well

understood. Conventional developmental apoptosis involving

caspase-activation plays a marginal role in norpA retinal degener-

ation [49]. Moreover, induction of non-apoptotic, cell death by

arrestin2 and the heptahelical neurokinin1 receptor is also

Figure 6. A model for light-dependent retinal degeneration. In
wild type flies, Rh1 is endocytosed upon light-activation. The
endocytosed Rh1 undergoes regular lysosomal turnover. In norpA flies,
a large number of stable Rhodopsin-Arrestin complexes are formed
which undergo rapid endocytosis. Massive endocytosis of Rhodopsin
overwhelms the endocytic machinery and this rhodopsin fails to
undergo degradation by the lysosomes and hence accumulates in the
late endosomes. Endosomal accumulation of Rhodopsin triggers cell
death by unknown mechanisms. This condition is simulated in granule
group mutants that are defective in lysosomal delivery of endocytosed
cargo. In these mutants, Rh1 internalization is similar to that in wild
type but Rh1 accumulates in late endosomes as a result of defective
trafficking. This accumulation of Rhodopsin also leads to photoreceptor
cell death.
doi:10.1371/journal.pgen.1000377.g006
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reported [50]. It is plausible that persistent cytoplasmic presence of

Rh1 activates photoreceptor cell death by a similar mechanism.

We speculate that a component innate to the endolysosomal

system plays a crucial role in regulating the cell death signals

emanating from the endosomes. Accumulation of Rh1 is sensed by

this component, which can then engage the cell death machinery

to execute cell death in the retina. Failure of proper protein

degradation and resultant subsequent accumulation of proteins is a

well-recognized cause of cell death in many neurodegenerative

disorders [51]. Proteins involved in late endosome-lysosome

trafficking also play a role in lysosomal degradation in autophagy

[52]. Interestingly lysosomal clearance of accumulated cytoplasmic

proteins by induction of autophagy is also reported to have

protective effect on cells [53,54]. We thus hypothesize that

increasing the lysosomal turnover of endocytosed Rh1 should

rescue the photoreceptor cell death in norpA and the granule group

mutants.

Our work shows that lysosomal turnover of Rh1 plays a vital

role in photoreceptor health and causing Rh1 buildup in late

endosomes initiates pro-death signaling. The novel nature of this

trigger and its relevance to human disease warrants further

analysis of the endolysosomal system and its connection to the cell

death machinery. Drosophila photoreceptor neurons have served as

an ideal genetic and cellular platform to model human retinal and

neurodegenerative disorders. Detailed analysis of the endolysoso-

mal system in these cells should lend valuable insights into the

mechanism of induction of cell death by protein accumulation and

lysosome dysfunction.

Materials and Methods

Drosophila Stocks
The Drosophila melanogaster stocks carnation (car1), carmine (cm1) and

light (lt1) were obtained from the Bloomington stock center,

Indiana. The norpAEE5 mutation is induced by EMS and has been

previously described [12,13]. All flies were crossed into a white

(w1118) background in order to completely eliminate screening

pigments in the compound eye. Thus w1118 served as a wild type

control in all our experiments. The Rhodopsin C-terminal

deletion mutant (Rh1D356) has been previously described [24].

The fly stock expressing GFP-tagged Rh1 was a kind gift from Dr.

Joseph O’Tousa. For light-exposure experiments, the flies were

exposed to room light that was 7.5 mmol/m2/sec of visually active

radiation (38–710 nm) as detected by a quantum sensor.

Histological Fixation and Sectioning
Flies were reared on cornmeal-molasses medium. Vitamin-A-

deficient medium was prepared and flies were deprived of vitamin

A as described previously [12]. Dark-adapted flies were exposed to

constant light at room temperature. Heads of the light-treated flies

were bisected and immersed in ice-cold 2% glutaraldehyde. An

equal volume of 2% osmium tetroxide was added and incubation

carried on ice for 30 minutes. The glutaraldehyde/osmium

tetroxide mixture was removed and the eyes were washed with

0.1 M phosphate buffer followed by treatment with 2% osmium

tetroxide for 1.5 hours on ice. The eyes were then dehydrated with

increasing concentration of ethanol (30%, 50%, 70%, 90%) for

10 minutes each on ice followed by treatment with 100% ethanol

at room temperature for 10 minutes twice. This was followed by

two propylene oxide (Electron Microscopy Sciences) washes for

10 minutes each and incubation in 50% propylene oxide/50%

Durcupan (Fluka) overnight at room temperature. This mixture

was then replaced with 100% durcupan and incubated for

4 hours. Eyes were then embedded in molds and cured at 75uC

overnight. Cross sections (1 mm) were cut using a Sorvall ultra

microtome MT-1 (Sorvall, CT). The sections were stained with

toluidine blue and borax and observed on a Zeiss Axioplan 2

microscope using a 63X/1.4 NA oil immersion objective. Digital

images were captured using a Optronics DEI-750 camera

(Optronics) and MetaVue (Universal Imaging) software.

Antibodies and Immunohistochemistry
Anti-rab7 antibody was generated in rabbits (Cocalico Biologi-

cals, PA) against the unique C-terminal 45 amino acids of Drosophila

Rab7 protein. This antibody recognized a single 27 kDa protein in

homogenates prepared from wild type fly heads. To further confirm

the specificity of this antibody, we expressed GFP-Rab7 and GFP-

Rab5 fusion proteins in separate fly lines using the GMR-Gal4/

UAS system. This antibody recognized the GFP-Rab7 fusion

protein but did not recognize the GFP-Rab5 protein in fly head

homogenates when assayed by western blot analysis. Other reported

antibodies for the late endosome-specific proteins of Drosophila,

namely Anti-Dor, Anti-Hook and Anti-LBPA yield inconsitent or

no signal in photoreceptors (Anti-Dor; this study) and (Anti-Hook

and Anti-LBPA; [31]). Retina from adult flies was dissected away

from the cornea and the underlying brain parts and was prepared

for whole-mount immunostaining essentially as described in [6]. For

dissections in darkness, eyes from dark-adapted flies were dissected

under safelight illumination using 1A and GBX-2 filters (Kodak).

Illumination with these lights did not elicit any ERG response.

Isolated retinas were incubated in diluted primary antiserum

overnight at 4uC. The antibodies were diluted in 1X PBS+0.3%

Triton X-100 (PBX)+10% Fetal Calf Serum (FCS). After 3 washes

with PBX for 5 minutes each, the tissue was incubated in secondary

antibodies diluted in PBX+FCS for 12–14 hours at 4uC. After two

brief washes with PBX at room temperature and a prolonged,

overnight wash at 4uC, the eyes were rinsed with 1X PBS for 3

times. The eyes were mounted in 50% Glycerol/1 X PBS/0.5% n-

Propyl Gallate and viewed over Leica TCS SP confocal laser-

scanning microscope (Leica Microsystems, Heidelberg, Germany).

The primary antibodies were anti-Rh1 (1:50) (Developmental

Studies Hybridoma Bank, Iowa city, IA), anti-Rab7 (1:100) (this

study). For visualizing rhabdomeres, F-actin was stained using

Rhodamine- or Alexa-568-conjugated phalloidin (Molecular

Probes) (5 U/mL) added to the diluted primary antibodies.

Secondary antibodies were anti-mouse or anti-rabbit labeled with

Alexa-488 or Alexa-647 (1:300) (Molecular Probes), Cy5-conjugat-

ed anti-mouse (1:200) and FITC-conjugated anti-rabbit (1:200)

(Jackson ImmunoResearch, PA).

The captured images were processed with NIH ImageJ and/or

Adobe Photoshop. Whenever possible, the images were made

colorblind-compatible. The image processing conformed to the

guidelines laid down by Rossner and Yamada [55]. For whole-

mount immunostaining, retinas from a minimum of five flies were

isolated and processed as above. For quantifying Rh1 vesicles,

cytoplasmic spherical structures staining positive for Rh1 were

counted in 140–150 ommatidia per experiment.

Biochemistry
Fly heads were homogenized in Laemmli 1X SDS loading

buffer (SDSLB). The lysate was subjected to SDS-PAGE followed

by western analysis as described in [12] using antibodies against

Rhodopsin (4C5, 1:5000) and Arrestin-2 [5] (1:2000). The steady-

state level of Arr2, a photoreceptor-specific protein, is used as a

loading control.

For slot blot analysis, head lysate made in 1X SDSLB was

adjusted to a final concentration of 1M Urea and applied to Bio

Dot apparatus (BioRad, CA) and transferred to OptiTran BA-S 85
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supported nitrocellulose membrane (Whatman, Germany) as per

apparatus manufacturer’s instructions. The membrane was

incubated in 0.2 N sodium hydroxide for 30 minutes and washed

three times with 1X PBS+0.1 % Tween-20. Blocking and antibody

incubations were carried out as in western analysis. The blots were

subjected to densitometry analysis using the LabWorks Imaging

and Analysis software (UVP, Inc., Upland, CA). The intensity of

Rh1 band for a particular time period (t) was divided by the

intensity of Rh1 band corresponding to lysates prepared from

dark-adapted (Rh10) flies to arrive at the Rh1t/Rh10 value. The

Rh1t/Rh10 values from three independent experiments were used

for analysis.

Supporting Information

Figure S1 Rhodopsin immunostaining is detected at the base of

the rhabdomere. Indirect immunofluorescence of whole-mounted

retinas stained for Actin, Rh1 and Rab7. Wild type control (w),

norpA, car and lt flies were raised in complete darkness and the

retinas were isolated as described in Materials and Methods. Rh1

localizes to the base of the rhabdomeres in all the genotypes

observed. Scale bar, 5 mm.

Found at: doi:10.1371/journal.pgen.1000377.s001 (4.49 MB TIF)

Figure S2 Cell death is not induced in norpA mutants after

2 days of light exposure. Confocal sections from the retinas

isolated from 5 day old, dark-raised norpA flies (A) and norpA flies

subjected to 2 days of constant room light exposure followed by a

shift to complete darkness for 3 days (B). Retinas were prepared

for whole-mount immunohistochemistry and stained for Actin as

described in Materials and Methods. Scale bar, 5 mm.

Found at: doi:10.1371/journal.pgen.1000377.s002 (1.51 MB TIF)

Figure S3 Rhodopsin is localized throughout the rhabdomere.

Confocal micrograph of whole mount retina isolated from the fly

expressing GFP-tagged Rh1 driven by rh1 promoter. The retinas

were isolated and fixed as described in Materials and Methods and

stained for Actin to visualize rhabdomeres. Rh1 was detected using

fluorescence in the GFP channel of the microscope.

Found at: doi:10.1371/journal.pgen.1000377.s003 (4.36 MB TIF)
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