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Nuclear genes encoding mitochondrial proteins are regulated by carbon source with significant heterogeneity
among four Saccharomyces cerevisiae strains. This strain-dependent variation is seen both in respiratory
capacity of the cells and in the expression of 3-galactosidase reporter fusions to the promoters of CYB2, CYCI,

CYC3, MnSOD, and RPO41.

Mitochondrial biogenesis is largely controlled at the tran-
scriptional level by carbon source in the yeast Saccharomyces
cerevisiae. When grown on fermentable carbons, S. cerevisiae
undergoes glucose or catabolite repression, in which the
steady-state mRNA levels of hundreds of genes are lowered,
primarily by decreasing transcriptional initiation rates (17, 22).

Genetic approaches to the question of how carbon sources
regulate gene expression have revealed numerous regulatory
genes which are involved in repression and derepression, some
of which control mitochondrial biogenesis. Mutations in the
HXK2, CYCS (SSN6), REG1, CAT4, and CYC9 (TUP1/FLKI/
AER2/SFL2/AER2/UMR7/AMMI) genes have identified these
as regulators of at least some mitochondrial enzymes (1, 4, 14,
15, 20, 21). It is clear from the diversity of mutants, the genes
they affect, and their epistatic relationships with known posi-
tive effectors that this transcriptional regulation is not a linear
event resulting from a single signal transduction pathway to a
common effector. Rather, it appears to be a highly branched
regulatory network that involves the interaction of both posi-
tive and negative regulators (3).

We have examined the respiratory capacity and expression
of five nucleus-encoded mitochondrial proteins in four labora-
tory strains of S. cerevisiae (Table 1). Respiratory rates were
obtained from cells grown in 8% dextrose or 4% ethanol-3%
glycerol and are shown in Table 2. By using ethanol as a
respiration-dependent substrate and 6 wM carbonyl cyanide
m-chlorophenylhydrazone to uncouple oxidative phosphoryla-
tion, strain differences in catabolite repression of respiration
are apparent, as reflected in the ratios of repressed and non-
repressed respiration rates. By this criterion, YPH500 is the
most responsive, having a repressed respiration rate which is
only 19% that of the nonrepressed rate. PSY142 follows with a
repressed rate of 34% that of maximum, and then BWG1-7A
follows at 45%. W303-1A, which has a repressed rate which is
61% that of the nonrepressed expression level, is the least
responsive.

Since the respiratory measurements indicated that not all
strains respond equally to external carbon sources, we were
interested in determining if the strain difference is from a

* Corresponding author. Phone: (603) 650-1621. Fax: (603) 650-
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single rate-limiting enzymatic step in one of the respiratory
complexes, or if the difference is apparent at the transcrip-
tional level. The B-galactosidase reporter plasmids which we
used to assay transcriptional repression of five different pro-
moters are shown in Fig. 1. Plasmid copy number was quanti-
fied in each of the four strains during growth in each carbon
source. All four yeast strains maintain four plasmid copies,
regardless of the carbon source (results not shown). Therefore,
the B-galactosidase activities reflect transcriptional differences
and not plasmid copy number differences. Five glucose-re-
pressible nuclear genes were chosen as diverse reporters rep-
resenting several mitochondrial systems. These include CYC1I,
encoding iso-1-cytochrome ¢ (6, 16, 22); CYB2, encoding the
L-(+)-lactate cytochrome ¢ oxidoreductase (7, 8); CYC3, en-
coding cytochrome ¢ heme lyase (2); RPO41, encoding the
large subunit of the mitochondrial RNA polymerase (10, 19);
and MnSOD, encoding the manganese superoxide dismutase
(9, 18). PCRs were performed with the GeneAmp system (Per-
kin-Elmer) with W303-1A genomic DNA as the template.
PCR primers were synthesized on a Biosearch Cyclone DNA
synthesizer: CYCI, 5'-CCCGGATCCATGTTTTCTTTCGAT
CAAAA-3’ and 5'-CCCGGATCCATTATTAATTTAGTGT
GTGT-3'; CYB2, 5'-CCCGAATTCACGCATACATCGGAA
GGATC-3" and 5'-CCCGGATCCATTGACTACTTTTGTTT
GCT-3’; CYC3, 5'-CCCGAATTCTGCGACAAAAGTGTG
ACCGA-3' and 5'-CCCGGATCCATTTTTTGTAGTTTCT
GTTG-3'; RPO41, 5'-CCCGAATTCCAAAGAAAGAAGAT
TACAAC-3' and 5'-CCCGGATCCATATTGAGTGAATAT

TABLE 1. Yeast strains used in this study

Source and/or

Name Genotype reference

YPHS500 o ade2-101 his3A200 leu2Al

lys2-801 trpl A63 ura3-52

P. Hieter (15a)

YPH499 a ade2-101 his3A200 leu2A P. Hieter (15a)
lys2-801 trp1A63 ura3-52

PSY142 o lys2-801 leu2-112 ura3-52 M. Rosencrantz (7a)

BWGI1-7A o his4-519 leu2-3,112 adel-100 M. Rosencrantz (7a)
ura3-52

W303-1A a ade2-1 his3-11,15 ura3-1 R. Rothstein

leu2-3,112 trpl-1 canl-100
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TABLE 2. Repression and derepression of oxygen consumption and nucleus-encoded mitochondrial gene expression in four yeast strains

B-Gal expression”

Strain Oxyger;
uptake CYB2 cycl RPO41 CYes3 MnSOD
Repressed®
YPHS500 120 200 7,600 1,700 900 500
BWGI1-7A 265 225 8,300 2,800 3,100 3,000
PSY142 360 50 3,000 1,900 2,200 1,200
W303-1A 330 300 8,300 2,200 3,900 1,800
Nonrepressed?
YPHS500 630 73,500 67,600 12,600 48,700 13,300
BWGI1-7A 590 10,400 15,500 4,100 5,600 5,200
PSY142 1,045 22,100 23,900 1,300 14,900 7,600
W303-1A 540 10,000 22,900 No growth 6,500 4,500

“ Oxygen consumption is in nanomoles of oxygen per 100 mg of cells per minute. Values are the average of three separate assays.
b B-Galactosidase expression from each of the five reporter plasmids shown in Fig. 1 was measured for the four yeast strains listed. B-Galactosidase activities were
calculated as (optical density at 420 nm X 1,000)/(milliliters per minute per milligrams of protein). The values are means of four independent transformants. Standard

errors were 10 to 15% of the mean value.
¢ Repressed expression indicates after growth in 10% glucose.

4 Nonrepressed expression indicates after growth on 4% ethanol-3% glycerol for the oxygen uptake rates and after growth on 4% lactate for the B-galactosidase

assays.

CAAAG-3'; and MnSOD, 5'-CCCGAATTCCAAAGCCAT
ATTTCGACGCC-3' and 5'-CCCGGATCCATCCTGGTAC
GTTTTTAGGA-3'. The resulting amplicons were ligated into
EcoRI-BamHI-linearized YEp358 and YEp368 provided to us
by Carol Lusty (12). The fusions placed the 5’ noncoding
region adjacent to the initial ATG codon and placed an aspar-

NAp

IIIIIIIIII) |{

Iy iy,
URA3

YEp358
8.00 Kb

E BXSaPSpH

/N

E CYc3 &

Plasmid Name
B

pTBCYC3.358 cytochrome ¢ heme lyase

CYCt 5

E
pTBCYC1.358 l

iso-1-cytochrome ¢

CcYB2 5' cytochrome b2

E
pTBCYB2.358 |

B
]

E
pTBSOD.358 | MnSOoD 5' Mn superoxide dismutase

E , B mitochondrial RNA
pTBRPO41.358 | RPO41 & poly

100 bp

FIG. 1. Reporter plasmids for measuring transcription of nucleus-encoded
mitochondrial proteins through expression of B-galactosidase. YEp358 and the
five PCR amplicons were digested with EcoRI and BamHI and ligated to form
this set of B-galactosidase fusion plasmids. An additional set was also made with
the LEU2-carrying plasmid YEp368, which is not shown. The BamHI site at the
3" end of each amplicon was used in regenerating the initiation codon of the lacZ
gene. E, EcoRI; B, BamHI; X, Xbal; Sa, Sall; P, PstI; Sp, Sphl; H, HindIlI; Py,
Pyull; Sc, Sacl; Bx, BstXI; Ap, Apal; N, Ncol; Aa, Aatll.

tate codon between this initial methionine and the proline at
codon 8 of the bacterial lacZ gene.

Repressed and nonrepressed expression from the CYCI,
CYC3, CYB2, RPO41, and MnSOD promoters in each of these
four strains are summarized in Table 2. YPHS00 displays a
slightly enhanced ability to repress expression in 10% glucose,
and the other three strains have similar repressed expression
from each of the promoters tested. The differences among the
strains, however, become more apparent in the nonrepressing
carbon, lactate. Expression from the CYB2, RPO41, CYC3, and
MnSOD promoters was the highest in YPH500. PSY142 and
BWGI-7A are less able in this regard. Of the four strains,
W303-1A always yields the lowest expression of the five genes
tested. Similar results were obtained after growth in galactose
(data not shown).

A plausible explanation for the strain-dependent variations
in regulation by carbon source is that a component of the
mitochondrial genome is involved. We assayed expression of
CYB2, CYCI, and RPO41 in diploids which maintained the
mitochondrial genome of only one parent. In all three cases,
the mitochondrial genotype did not influence gene expression.
This experiment does not rule out the possibility that the mi-
tochondrial genome might contribute to carbon regulation of
these genes but does indicate that the differences among these
strains are not due solely to the mitochondrial genome. Exam-
ination of CYB2 expression in the meiotic progeny of a cross
between the carbon-responsive strain YPHS00 and the rela-
tively unresponsive strain W303-1A also revealed that the dif-
ference in regulation of derepression is a result of multiple
genetic loci (data not shown).

Perlman and Mahler (13) first documented a strain variabil-
ity in the carbon regulation of several mitochondrial enzyme
activities. Later, a direct measurement of steady-state mRNA
levels of the B-subunit of the mitochondrial F,-F, ATP syn-
thase established that there is a strain-dependent difference at
the transcriptional level (17). Our findings extend these results
and emphasize the importance of this variation for the design
and interpretation of experiments involving carbon source reg-
ulatory effects on the expression of nucleus-encoded mitochon-
drial proteins in S. cerevisiae.

We thank Carol Lusty for plasmids and Robert Sikorski, Mark
Rosencrantz, and Rodney Rothstein for yeast strains. We also thank
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