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Abstract: Combining anatomical information from high resolution imaging 
modalities to guide near-infrared spectral tomography (NIRST) is an 
efficient strategy for improving the quality of the reconstructed spectral 
images. A new approach for incorporating image information directly into 
the inversion matrix regularization was examined using Direct 
Regularization from Images (DRI), which encodes the gray-scale data into 
the NIRST image reconstruction problem. This process has the benefit of 
eliminating user intervention such as image segmentation of distinct 
regions. Specifically, the Dynamic Contrast Enhanced Magnetic Resonance 
(DCE-MR) image intensity value differences within the anatomical image 
were used to implement an exponentially-weighted regularization function 
between the image pixels. The algorithm was validated using simulated 
reconstructions with noise, and the results showed that spatial resolution 
and robustness of the reconstructed images were significantly improved by 
appropriate choice of the regularization weight parameters. The proposed 
approach was also tested on in vivo breast data acquired in a recent clinical 
trial combining NIRST / MRI for cancer tumor characterization. Relative to 
the standard “no priors” diffuse recovery, the contrast of the tumor to the 
normal surrounding tissue increased from 2.4 to 3.6, and the difference 
between the tumor size segmented from DCE-MR images and reconstructed 
optical images decreased from 18% to 6%, while there was an overall 
decrease in surface artifacts. 

©2015 Optical Society of America 

OCIS codes: (170.3880) Medical and biological imaging; (100.3010) Image reconstruction 
techniques; (170.6960) Tomography. 
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1. Introduction 

Near-infrared spectral tomography (NIRST) is a non-invasive biomedical imaging modality 
that can be utilized to measure physiologically relevant optical properties of tissue and has 
been of considerable research interest for applications in brain imaging and breast cancer 
characterization [1, 2]. As a functional imaging tool, NIRST has the advantage of directly 
measuring hemoglobin and its oxygenation state as well as water, lipids, collagen and 
scattering features [3]. Yet, the technique suffers from low spatial resolution due to the 
strongly scattering nature of NIR light propagation in tissue, leading to an ill-posed inverse 
problem [4, 5]. The modest spatial resolution is well recognized and studied in NIRST in vivo 
breast imaging, where light sampling on the surface is used to recover images of 
heterogeneous tissue at depth. At present, significant effort has been devoted to improving the 
resolution of the NIRST through image-guided spectroscopy [6–10] – an efficient strategy 
which combines segmented anatomical information obtained from high resolution imaging 
modalities to directly guide and improve the recovery of optical properties, through pre-
definition of homogenous regions to estimate NIR parameters [11–16]. An alternative 
approach implements a spatially encoded regularization, where co-registered image 
information is applied in a pre-defined way, such as through a Laplacian filter or a depth 
dependent function [17, 18]. In this study, gray scale levels from a co-registered DCE-MR 
image were incorporated into NIRST of the breast. 

In MRI-guided NIRST applications, previous work investigated image reconstruction in 
an indirect two-step procedure [19]. First, high resolution anatomical images provided by 
MRI were segmented into a small number of sub-domains with assumed homogeneous or 
constant optical properties representing the major tissues types. For breast imaging, tissues 
can be readily segmented into adipose, fibroglandular and suspicious regions. Then, the prior 
structural information from MRI imposed either a hard or a soft constraint on the image 
reconstruction process [20, 21]. If the optical properties within an identified region were 
forced to be uniform, the constraint was often called a “hard prior”. The notable advantage of 
using a hard-prior scheme is the dramatic reduction in the total number of unknowns 
alleviating the ill-posedness of the inversion by reducing the number of unknowns to the few 
identified homogenous volumes. This process has the peripheral benefit of significantly 
enhancing NIRST accuracy within the localized regions. However, its stability is critically 
dependent on the accuracy of the structural priors derived from the co-registered image, and 
performance is degraded when incomplete or distorted structural priors are employed. 
Schemes based on “soft priors” do not require optical-property boundaries to coincide with 
the MR-defined boundaries; therefore, they allow changes across boundaries, and reduce the 
likelihood that spatial biases will be introduced during the inversion process. Other methods 
that encode some uniformity into the inversion are also possible such as total variation 
minimization or Laplacian smoothing. However, the hard and soft prior approaches that have 
been tested require user input to guide the image segmentation involved. Unfortunately, 
segmentation can be time consuming for the user, especially when the tissues of interest are 
large, and is prone to errors, for example, when identifying tumor boundaries if the 
radiological or anatomical training of the user is not sufficient. Thus, a direct reconstruction 
method, which implicitly incorporates the anatomical information into the inversion problem 
without user intervention, would dramatically reduce processing time and expand the 
potential of multimodal imaging such as MRI-NIRST by fully automating the image 
reconstruction process. In reference [6], a novel soft prior approach was introduced which 
combines the segmentation of specific tissue types with their encoding into a regularization 
matrix that has similar approximate form to the scheme presented here. However, a key 
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difference here is the realization of a regularization functional which does not require any 
human intervention (e.g., no segmentation or other prior decisions about tissue composition). 

In this paper, we demonstrate a Direct Regularization Imaging (DRI) method for MRI-
guided Near-Infrared Spectroscopy Tomography. The approach was previously demonstrated 
for fluorescence recovery of probe concentrations in tumors [22], but has not been considered 
in the setting of endogenous absorption and scatter imaging. In this method, the gray scale 
values of the MRI images directly regularize the inverse problem avoiding the need for 
segmenting image structure and making undue assumptions about the imaging domain. The 
approach is particularly relevant for MRI-coupled imaging, since multiple types of weighted 
images are available for the regularization and mesh creation processes. We evaluate the 
performance of our algorithm in numerical simulations, and compare the results with the 
standard “no priors” diffuse recovery scheme. The numerical studies show that the proposed 
method obtains significantly better image resolution and quality compared with the no prior 
method. Reconstructed optical property images acquired from a patient with breast cancer are 
shown using DCE-MR images as the source of the prior information. 

2. Methods 

2.1 Theory 

The goal of NIRST is to reconstruct spatial maps of optical properties from fluence 
measurements on tissue surfaces using a forward model of the photon propagation in the 
scattering medium. For the forward problem, the solution usually relies on numerical 
techniques such as the finite element method (FEM) to solve a model of the diffusion 
approximation to the radiative transfer equation. The inverse problem can be posed as a least-
squares multi-parametric optimization which recovers the optical properties at each node of 
the FEM mesh representing the tissue, by minimizing the difference between measured and 
computed data. Since the inverse problem is ill-posed, and in general, is often 
underdetermined, regularization is necessary to stabilize the reconstruction procedure. 
Regularization techniques are generally based on the Tikhonov framework given by the 
formulation 

 
2 2

2 2
( ) ( )S x f x d Lxλ= − +  (1) 

where x is an array of free parameters, f is the simulated data from the forward model 
governing the behavior of a system, d is the measured data, λ is known as Tikhonov 
regularization parameter or weighting coefficient which serves to determine the relative 
weight accorded to each of the two terms in Eq. (1), and L is some regularization matrix. The 
first term in Eq. (1), defined as model error, represents the deviation of the observed image 
from the model observation. The second term, defined as the prior error, is the deviation of 
the solution image from the prior knowledge. For the standard “no priors” diffuse method, the 
regularization matrix L is set to the identity matrix, which applies the same weight to the 
values at all nodes within the imaging domain. For the soft prior method, a Laplacian or 
Helmholtz operator can also be used [23]. 

Here, a regularization scheme is applied which directly encodes information about the 
structural images, rather than enforcing uniformity within manually-segmented regions. It is 
referred to as the DRI method and constrains FEM nodes according to their corresponding 
grayscale value differences within the coregistered companion image volume. In this case, the 
regularization matrix operator can be written as: 
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where γ is the anatomical image grayscale value which corresponds to a particular FEM node 
(in this work, grayscale values were normalized to the maximum within the image), σg is the 
characteristic grayscale difference over which to apply regularization, and Mi is a 
normalization factor chosen for each row. 

By performing an iterative Gauss-Newton reconstruction method through Eq. (1), the 
general update equation for the underdetermined form can be expressed as 

 1
1( ) ( ( ))T T T

k k k kx J J L L J d f xλ −
−Δ = + −  (3) 

where kxΔ  is the update to the parameters; kJ  is the Jacobian matrix which is the derivative 

of the measurements, f (x), with respect to the optical property parameters of interest at the k-
th iteration, and has the dimension of M N× , M is the number of measurements, and N is the 
number of parameters, x; the superscript T denotes the transpose, 1( )kf x −  is the forward 

solution using the estimated parameters form the 1k −  iteration. 
In order to quantitatively compare the images reconstructed from different approaches, the 

absolute bias error was calculated as [24] 

 

N
o

i i
iBias Error

N

μ μ−
=


   (4) 

where iμ  is the recovered optical coefficient at pixel i for the image reconstruction, 
0
iμ is the 

true value of the optical coefficient at the same location, and N is the number of pixels. 

1.2 Numerical simulation 

Figure 1 show a 2D circular simulation phantom generated from a finite-element model. The 
diameters and the center coordinates of the phantom and inclusion were 80 & 10 mm, and 
(50, 50) and (65, 35), respectively. The absorption coefficient (µa) inside of the inclusion was 
0.02mm−1, which was twice the value outside of the inclusion, 0.01mm−1, while the reduced 
scattering coefficient (µs

’) of the entire phantom was 1.0mm−1 (Fig. 1(a)). As shown in Fig. 
1(b), the contrast of the gray values of the inclusion to the remaining area of the phantom was 
1.6 to simulate the type of DCE-MRI contrast commonly observed. For this simulation, 16 
co-located source detector positions were placed with regular angular distribution around the 
phantom. For each source illumination, data was collected at 16 detector locations which lead 
to a total of 256 measurements. Fig. 1(c) depicts a fine mesh consisting of 7909 nodes that 
correspond to 155503 triangular elements. By using a diffusion model and adding 5% noise, 
the simulated data was generated using NIRFAST [25]. Image reconstruction was performed 
on a much coarser mesh having a total of 2001 nodes corresponding to 3867 triangular 
elements. (Fig. 1(d)). Images were reconstructed based on a reconstruction pixel basis of 30 × 
30, and the algorithm was iterated until the difference between the forward data and the 
reconstructed data did not decrease by more than 2% relative to the previous iteration 
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Fig. 1. (a) The true optical absorption distribution with µa = 0.02mm−1 in target region and µa = 
0.01mm−1 in the background, (b) the gray value distribution with 80 in target region and 50 in 
the background (c) fine mesh for the forward problem, (d) coarse mesh for the inverse 
problem, with 16 co-located source detector positions placed at regular angles around the 
object. Red dots indicate the source-detector locations. 

1.3 Patient imaging 

Data was collected through an imaging protocol for human subject examination approved by 
the Committee for the Protection of Human Subjects at Dartmouth College and at Xijing 
Hospital. Written consent was obtained after the protocol was explained to a subject. The 
subject was positioned into an adjustable triangular breast interface (that couples to a standard 
MR breast coil) while prone on the MR examination table. Sixteen fiber bundles were held on 
the breast interface and used to deliver and detect the lights signals [24]. MR fiducial markers 
were placed in the plane of each set of fibers and were used to co-register the optical and MR 
images. The details of the MRI guided NIRST system have been reported previously [26–28]. 
In this system, six frequency domain (FD) and three continuous-wavelength (CW) laser 
diodes operating in the wavelength range of 660-950nm, were used as the light sources. 
Through a custom-made optical switch, the breast was illuminated sequentially at sixteen 
source positions. During each source illumination, the other 15 fibers detected the transmitted 
and diffused light with photomultiplier tubes and photodiodes. Optical and MR data were 
acquired concurrently with data acquisition times of 15 and 30 minutes, respectively. 

The open source software Nirview and Nirfast (http://www.dartmouth.edu/~nir/nirfast/) 
were used to generate the 3D mesh. To perform image reconstruction, the mesh was created 
from the T1-weighted MRI volume, while the gray value information was obtained from the 
DCE-MRI volume. The MR images for the patient are shown in Section 3. A pixel basis of 25 
× 25 × 25 was used in the inversion with a maximum iteration number of 5. 
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3. Results 

3.1 Numerical simulation 

Figure 2 shows the absorption coefficient recovered from simulated data using no prior and 

 

Fig. 2. The reconstructed absorption coefficient images from simulated data are shown, using 
no prior (left column) and DRI methods with a series of parameters λ=0.01(a), 0.1(b), 1(c), 
10(d) and σg=0.001, 0.01, 0.1, 1, 10 (in each column to the right). The unit of x and y axes is 
mm. 

DRI reconstruction approaches. To demonstrate the effect of varying regularization 
parameter, λ, for the no prior method, a series of values - 0.01, 0.1, 1, and 10 - were selected 
to recover the images of the absorption coefficient. The same series of regularization 
parameters were also used in the DRI approach, but were combined with the other parameter, 
σg - 0.001, 0.01, 0.1, 1 and 10. The reconstructed contrast decreased while the noise was 
efficiently suppressed when λ increased from 0.01 to 10. However, high reconstruction 
contrast occurred no matter which regularization parameter was selected for DRI with small 
σg (0.001, 0.01). Figure 3 shows cross-section profiles through the center of the inclusion and 
along the X-axis as a function of σg for different λ values. When small σg and λ were chosen, 
the peak value of the reconstruction overestimated the true absorption coefficient in the 
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inclusion, (see red and light blue lines in Fig. 3(a) and 3(b)). Interestingly, when the value of 
σg was large (see dark blue and black lines), the results were almost identical for both the DRI 
and no prior methods. This outcome suggests that choosing an optimum σg is crucial for the 
DRI method. In addition, the reconstructed images with DRI were notably superior when λ 
was large and σg was small. In this case, they are quantitatively accurate and the recovery was 
a robust representation of the true image. 

To further investigate the effectiveness of the DRI approach, a negative control was also 
evaluated. In this test, the absorption coefficient inside of the inclusion was set to be the same 
as that of the background (µa = 0.01mm−1), while the gray-scale contrast inside and outside of 
the inclusion remained unchanged. Since for λ = 10, the DRI method results were optimal 
with appropriate σg, the negative control was evaluated with λ = 10 and σg = 0.001, 0.01, 0.1, 
1, 10. Figure 3(e) presents the cross sectional profiles from these reconstructed results. Small 
error within the original optical properties was observed independently of the σg selection, 
indicating that the optical properties can be faithfully estimated with the DRI approach. 

In order to investigate the spatial resolution attained with the algorithm, we calculated the 
full-width-at-half-maximum (FWHM) of the inclusion from the cross sectional image profiles 
and the results are shown in Fig. 4(a). For the no priors case, the measured FWHM increased 
as the value of λ increased, indicating that the spatial resolution of reconstructed images 
decreased, whereas, the DRI approach resulted in substantially increased spatial resolution 
when the value of σg was decreased. Specifically, when the value of σg was smaller than 0.01 
and λ>0.01, the FWHM values were almost the same as the size of the true target. For larger 
σg, the measured FWHM values were the same as the no prior results. 

Figure 4(b) illustrates the absolute bias error for the entire image. The larger regularization 
parameters resulted in small absolute bias error in all cases. In addition, the bias error 
decreased as the value of σg decreased. This finding suggests that the image noise can be 
efficiently dampened when small σg is chosen. Indeed, the error of the DRI approach was 
approximately the same as that with no priors when σg > 0.1. 

In addition, to test the DRI approach under multi-inclusion conditions, a phantom with 
two different sizes inclusions and the same optical properties and gray values as the previous 
case were reconstructed. The results show that the DRI approach can successfully recover 
images with two inclusions, and the selection of parameters is consistent with the single 
inclusion case. 
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Fig. 3. (a)-(d) Profiles of the reconstructed absorption coefficient along the X-axis; (e) the 
reconstructed results of a negative control (no inclusion contrast) with λ = 10 and σg = 0.001, 
0.01, 0.1, 1, 10. 
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Fig. 4. (a) The full width at half maximum (FWHM) from the cross sectional profiles of the 
reconstructed inclusions; (b) the bias errors calculated for the reconstructed absorption 
coefficient images using no prior and DRI methods are shown. 

3.2 Patient experiments 

Based on the simulation results shown in Figs. 2–4, MRI guided NIRST images of a breast 
cancer patient were reconstructed with the DRI approach for λ = 1 and σg = 0.001. The patient 
was 61 years old, presented with a 20mm27mm33mm lump in the lower outer portion of 
the right breast. A modified radical mastectomy was subsequently carried out 1 day after the 
imaging session, and surgical pathology confirmed the lump was a low grade invasive ductal 
carcinoma. 

Figure 5 shows MR images of this subject. The left image (a) displays the Nirview, 3D 
surface rendering from the T1 image volume where the fiber locations are evident from the 
tissue depressions of the breast surface and the fiducial markers. The middle image (b) shows 
a representative MR image slice from the standard T1 sequence. The tumor was not localized 
in this view but the fibroglandular (center, dark part) and adipose (bright) tissue 
compartments are readily visible. The right image (c) is a DCE-MR image. The lesion 
displayed wash in/wash out contrast enhancement kinetics and was bright in this image data. 
The contrast of the grey scale value of the tumor to surrounding normal tissues was 
approximately 1.4. 

 

Fig. 5. MR images from a patient with a malignant lesion (20mm27mm33mm) seen on 
DCE MRI. (a): Screenshot of the Nirview 3D surface rendering of the T1 MRI. Fiducial 
markers and fiber bundle positions are shown; (b): Standard T1 image; and (c): Dynamic 
contrast-enhanced MRI. 

Figure 6 shows reconstructed HbT images overlaid on T1 images in three planes of x = 
−100.0, y = −19.8 and z = −26.6, respectively. The HbT images were reconstructed with λ = 1 
for both no priors and DRI methods (σg = 0.001 was used for DRI). Though the segmentation 
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is not required for our proposed approach, to validate the accuracy of the reconstructed tumor 
site, we compared its results to segmented images as references which are shown in Fig. 6(a) 
where the tumor was segmented from the T1 and DCE images in these planes [29]. 
Visualization thresholds were chosen to suppress the optical backgrounds. The optical images 
reconstructed with both no priors (b) and DRI (c) exhibited good agreement on tumor location 
relative to the segmented images. The estimated HbT in the tumor region was higher than the 
surrounding normal tissue, and suggested that the tumor was malignant. The recovered HbT 
contrast of the tumor to the normal surrounding tissue reconstructed by no priors and DRI was 
2.4 and 3.6, respectively. Relative to no priors, tumor size reconstructed by DRI was much 
closer to the segmented size from DCE-MR in all three planes. The average optical image size 
differences relative to the segmented tumor from DCE-MRI were 18% and 6%, for the no-
prior and DRI approaches, respectively. 

 

Fig. 6. The reconstructed HbT images overlaid in three planes with x = −100.0, y = −19.8 and z 
= −26.6 respectively. (a) Segmented images from corresponding T1 and DCE images. Optical 
images reconstructed by no priors; (b) and DRI with λ = 1 and σg = 0.001 (c), respectively. 

4. Discussion 

In this work, a direct regularization approach was implemented and evaluated and the 
omparisons with no-prior results demonstrated the notable advantages. Previous studies have 
shown that regularization based on high resolution structural information can provide a more 
stable and accurate NIRST solution [6–10]. For example, in Ref.6, grayscale values from the 
anatomical image were used to manually segment specific tissue types, and separate 
regularization parameters were implemented into the image reconstraction for each region 
using these values. Relative to this methold, DRI does not require image segmentation or ROI 

#239691 Received 5 May 2015; revised 16 Jul 2015; accepted 17 Aug 2015; published 27 Aug 2015 
(C) 2015 OSA 1 Sep 2015 | Vol. 6, No. 9 | DOI:10.1364/BOE.6.003618 | BIOMEDICAL OPTICS EXPRESS 3628 



selection, and implementation of its regularization matrix is implicitly encoded by a weight 
function which has an exponential distribution similar to a diffusion kernel, which matches 
the light diffusion process. While the formulations may be similar, the underlying rationale 
for the weight functional in DRI is different than the method in Ref. 6. 

In order to obtain optimal image reconstruction, two parameters in the DRI method must 
be carefully selected. One is the well-known regularization parameter or weight coefficient, λ, 
and the other is the parameter, σg, introduced through the DRI regularization matrix. For the 
no prior method, noise can be efficiently suppressed by increasing the value of λ, but at the 
cost of sacrificing quantitative accuracy of the reconstructed image (higher bias error). In the 
DRI approach, when σg is large, as λ increases more weight is given to the prior information, 
accordingly, and the discrepancy between the prior information and the solution becomes 
smaller at the cost of larger differences between the model predictions and observations, 
whereas, when σg is small and λ is large, a balanced trade-off between model error and prior 
error is found; thus, the reconstructed image yields high spatial resolution and quantitatively 
accurate optical property values, simultaneously. These results indicate that λ needs to be in 
the range of 1 to 10, whereas the value of the σg is ideally much smaller, below 0.01, to attain 
proper balance between stability and accuracy. The negative control further proved that the 
DRI approach achieves image reconstructions compatible with model error reduction and 
prior information. In addition, the DRI method required fewer iterations to achieve 
convergent solutions compared to the no prior cases. 

One important advantage of DRI is that the gray value is normalized (to the normal 
tissue), and the choice of σg is related to the contrast of the target (tumor) to the background 
(normal tissue). The reconstructed tumor to normal tissue contrast does not change 
significantly if the absolute gray-scale values shift up/down. In the numerical simulations 
presented above, the contrast in gray values within the inclusion relative to the background 
was selected to be 1.6, but the reconstructed results with other gray value contrasts exhibited 
the same trends (not shown in this paper), and the source and detector geometry did not affect 
the behavior of the reconstructed results. 

The method in Ref.6 requires the reconstructed tissue to be composed of at least two 
compositions and the segmentation of these compositions into N components. In the DRI 
methodology introduced here, tissue is treated as a “continuum” in which the intensities in the 
input image are used as parameters to encode the regularization matrix implicitly. 
Fundamentally, this strategy creates a very different approach because the influences of 
segmentation errors and biased human input are eliminated, and no prior classification of 
tissues is necessary. 

Although this work is focused on DCE-MRI as the source of the coregistered anatomical 
images for NIRST, the DRI approach is general and could be adapted to other high resolution 
anatomical images for guiding functional imaging modalities which require inversion similar 
to NIRST. For example, the anatomical images from CT could be combined with functional 
imaging modalities such as florescence optical tomography or bioluminescence tomography, 
through DRI. 

The implicit assumption in DRI is that the gray scale anatomical image contains structural 
information which should influence the NIRST parameters, which is plausible for blood-
based contrast such as hemoglobin. However, recovery of water, lipid and scattering values 
may not directly correlate with the types of gray scale structures evident on DCE-MRI. 
Utilizing a range of MRI scans selected to better map these parameters may be possible. For 
example, diffusion MRI could potentially best match with water images from NIRST, and T1 
MRI might best match with lipids and scattering parameters. Thus, multiple DRI 
regularizations could be associated with multiple NIRST parameters and is an approach that 
requires further study to determine its advantages. 
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5. Conclusions 

A direct inversion matrix regularization approach from coregistered anatomical images has 
been proposed and studied for MRI-guided NIRST. In this new methodology, the gray-scale 
image information from coregistered DCE-MRI is encoded directly into the inversion matrix 
regularization during NIRST image reconstruction without any requirements for user 
intervention such as image segmentation. Simulation results produced NIRST images that 
were significantly improved in terms of their qualitative and quantitative accuracy, as well as 
their robustness, when the associated regularization parameters were chosen appropriately. 
The method was also tested on in vivo breast data acquired by our combined NIRST/MRI 
imaging system. Compared to the standard “no priors” diffuse recovery, the contrast of the 
tumor to the normal surrounding tissue increased from 2.4 to 3.6, and the difference between 
the tumor size segmented from DCE-MRI and the reconstructed optical images decreased 
from 18% to 6%. 
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