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Selective Involvement of the Checkpoint Regulator VISTA in
Suppression of B-Cell, but Not T-Cell, Responsiveness by Monocytic
Myeloid-Derived Suppressor Cells from Mice Infected with an
Immunodeficiency-Causing Retrovirus

Kathy A. Green, a Li Wang,a,b Randolph J. Noelle,a,c William R. Greena

Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Lebanon, New Hampshire, USAa; Medical
College of Wisconsin, Department of Microbiology and Molecular Genetics, Milwaukee, Wisconsin, USAb; Department of Nephrology and Transplantation, Medical
Research Council Centre for Transplantation, King’s College London Guy’s Hospital, London, United Kingdomc

Inhibition of T-cell responses in tumor microenvironments by myeloid-derived suppressor cells (MDSCs) is widely accepted.
We demonstrated augmentation of monocytic MDSCs whose suppression of not only T-cell, but also B-cell, responsiveness par-
alleled the immunodeficiency during LP-BM5 retrovirus infection. MDSCs inhibited T cells by inducible nitric oxide synthase
(iNOS)/nitric oxide (NO), but uniquely, inhibition of B cells was �50% dependent each on iNOS/NO and the MDSC-expressed
negative-checkpoint regulator VISTA. Blockade with a combination of iNOS/NO and VISTA caused additive or synergistic abro-
gation of MDSC-mediated suppression of B-cell responsiveness.

Myeloid-derived suppressor cells (MDSCs) inhibit the gener-
ation and/or effector activities of antitumor T-cell responses

(1, 2). Limited reports indicate MDSC regulation of autoimmu-
nity (3) and selected viral infections (4–7), including only re-
cently, retroviral infections and murine and human AIDS (8–11).
Murine MDSCs are relatively immature and heterogeneous, but
all express Gr-1 and CD11b. Two subsets, monocytic Ly6G�/�/lo

Ly6C�/hi and granulocytic/polymorphonuclear-leukocyte-like
Ly6G�/hi Ly6C�/�/lo, use differential suppressive mechanisms to
inhibit T cells (12, 13). MDSC inhibition of B-cell responses is
studied rarely, if at all.

Retroviruses are adept at co-opting immunoregulatory mech-
anisms. Human immunodeficiency virus type 1/simian immuno-
deficiency virus induction of PD-1 downregulates T effector cells
(14, 15), and murine Friend retrovirus infection-induced PD-1
and Tim-3 affect pathogenesis and retroviral loads (16, 17), some-
times with “functionless” T cells occurring (14, 15). Viral infec-
tions can also induce CD4� FoxP3� regulatory T (Treg) cells (18),
including in LP-BM5 murine retroviral pathogenesis (19–21). By
5 weeks postinfection (wpi), LP-BM5 causes profound immuno-
deficiency, with increased susceptibility to “opportunistic” infec-
tions and B-cell lymphomas (22, 23). Immunodeficiency requires
“pathogenic” CD4� T-effector cell expression of CD154 and liga-
tion of CD40 (22, 24, 25), and PD-1/PD-L1 and IL-10 downregu-
late effector T-cell activity (21, 26).

A CD11b� FcR�III/II� myeloid cell subset expands during
LP-BM5 pathogenesis (26, 27). We recently defined these mono-
cytic MDSCs as Gr-1� Ly6C�/hi Ly6G�/�/low CD11b� with strong
ex vivo inhibition of T- and B-cell responses used to measure LP-
BM5-induced immunodeficiency (10). This robust direct MDSC-
induced inhibition of B-cell responsiveness is novel for murine
retrovirus-induced immunosuppression, if not generally. Also, a
new negative-checkpoint regulatory ligand, VISTA (V-domain Ig
suppressor of T-cell activation) (28–30), also designated PD-1H
(31), with homology to PD-L1 has been defined. VISTA can be
highly upregulated on myeloid-derived cells and can inhibit T-cell

responses in autoimmunity and antitumor immunity in a nonre-
dundant manner with PD-L1 (28).

At 5 wpi with LP-BM5, regarding cell surface VISTA expres-
sion, the percentage of VISTA� spleen cells had not expanded
but VISTA mean fluorescence intensity (MFI) increased and
the shape of the positive peak changed, consistent with the
dominance of CD4 T-cell-expressed VISTA in uninfected B6
mice (28) and with CD11b� VISTA� cell expansion. Compar-
ison of cells from wild-type (WT), iNOS�/�, and VISTA�/� B6
mice (32) at 5 wpi confirmed VISTA and CD11b coexpression
by the highly enriched monocytic Ly6C� MDSC population we
have previously described (10), as depicted in the representa-
tive experiment in Fig. 1 (consistent with the average MFI and
percent positivity over three experiments [legend to Fig. 1]). Of
note, there was minimal contamination with other cells, par-
ticularly CD4� Treg cells (legend to Fig. 1). Interestingly, sim-
ilar monocytic MDSCs could be isolated from the spleens of
uninfected mice. These MDSCs expressed levels of VISTA ap-
proaching (and, over three repeat experiments, not signifi-
cantly statistically significantly different from) that of their
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counterparts from infected mice—with respect to both the per-
cent positive and the MFI (legend to Fig. 1). However, such
MDSCs from uninfected mice were much less frequent in total
cell numbers per spleen and, even compared on a per-cell basis,
displayed substantially less suppressive activity—resulting in
about 12-fold less MDSC suppressive function than MDSCs
from infected mice (legend to Fig. 1).

The possible mechanistic involvement of VISTA was
compared to the known differential role of inducible nitric
oxide synthase (iNOS)/nitric oxide (NO) in MDSC-mediated
suppression (Fig. 2A and B). However, MDSC-mediated sup-
pression of uninfected WT T cells was essentially completely
dependent on iNOS/NO, as shown with the iNOS inhibitor
NG-monomethyl L-arginine (L-NMMA). For B-cell respon-
siveness, L-NMMA blocked MDSC-mediated suppression by
�50% (range, 40 to 65%), as previously shown (10), but an

anti-VISTA monoclonal antibody (MAb) blocked WT MDSC-
mediated suppression of only B-cell (by �50%), and not T-
cell, responsiveness (Fig. 2A and B). We found the range of
anti-VISTA MAb blocking centered around 65%, but a delta of
�55%, by subtracting control hamster immunoglobulin ef-
fects (Fig. 2C), a level consistent with the reduced suppression
observed with VISTA�/� MDSCs (see Fig. 4). Thus, VISTA
appeared to serve differentially, relative to iNOS/NO, for
MDSC-mediated suppression of T-cell versus B-cell responses.
With VISTA�/� responder cells (Fig. 2D), the anti-VISTA
MAb also showed highly significant (P � 0.003) but partial
specific blocking, confirming that VISTA blocking was directed
to the MDSCs; for clarity, follow-up experiments employed
VISTA�/� responders. In experiments not shown (three of
three), the anti-VISTA MAb also blocked the suppression of
B-cell responses by iNOS�/� MDSCs—and, as expected, the

FIG 1 Surface expression of VISTA on unfractionated and Ly6C� CD11b� enriched spleen cells from B6 background strains of mice uninfected or
infected for 5 weeks with LP-BM5 virus (5 � 104 ecotropic PFU) (33). Contamination with residual CD4� FoxP3� Treg cells is �1.1% of the enriched
infected WT and INOS�/� MDSC preparations, with only �0.2% of the Ly6C�/hi CD11b� MDSCs which provide the majority of the suppressive activity
(not shown). The percentages shown are the proportions of monocytic MDSCs singly or doubly positive for VISTA (13F3) and CD11b (M1/70)
expression. The MFI values for VISTA expression on the cells shown here in the upper right quadrants were as follows: WT uninfected/unfractionated,
33; WT uninfected/enriched, 36; WT infected/unfractionated, 30; WT infected/enriched, 56; INOS�/� infected/unfractionated, 32; INOS�/� infected/
enriched, 56. The mean percentages for enriched MDSCs (MFIs) for VISTA expression, based on three independent experiments for each mouse strain
or condition, were as follows: WT uninfected, 39% � 8% (41 � 9); WT infected, 42% � 4% (60 � 3); INOS�/� infected, 45% � 8% (63 � 6). In four
independent experiments, an average of 2.75-fold fewer enriched, monocytic MDSCs were obtained from the spleens of uninfected (versus infected) mice,
and on a per-cell basis, the MDSCs from uninfected mice were sufficiently less suppressive (4.3-fold) than those from LP-BM5-infected mice, so that there
was approximately 12-fold less total suppressive activity.
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blockade was greater than that obtained with WT MDSCs (see
below).

To directly compare the iNOS/NO and VISTA-dependent
mechanisms, carboxyfluorescein succinimidyl ester (CFSE)-
preloaded responder cells were stimulated in coculture with
LP-BM5-augmented monocytic MDSCs (WT versus various
knockout origin cells, Fig. 3). By flow cytometry focusing on
CD19� CFSE� responder B cells, WT MDSC-mediated sup-
pression of stimulated B cells was clear, as revealed by both
increased percentages of undivided cells and CFSE geometric
means (panels a and b versus panel c). By inclusion of the iNOS
inhibitor L-NMMA, the proliferation curve was partially re-
stored toward B cells stimulated in the absence of MDSCs
(panel e versus panel b). Alternative use of iNOS�/� MDSCs
led to a very similar CFSE profile, as shown by the overlaid
proliferation curves of iNOS�/� MDSCs and WT MDSCs
treated with L-NMMA (panel f). Full control B-cell responsive-
ness was not achieved by either inclusion of L-NMMA with WT
MDSCs (panel e) or the use of iNOS�/� MDSCs (panel g),
consistent with a second, VISTA-dependent suppressive path-
way. Indeed, by using the MFI values and defining suppression
as the difference between increased MFI for the WT MDSCs
(panel c) and the control B-cell responsiveness in the absence
of MDSCs (panel b), the proportion of the MDSC suppression
due to iNOS/NO could be calculated as �45% (legend to Fig.
3). When VISTA�/� MDSCs were employed, (i) there was still
strong, if not enhanced, MDSC-mediated suppression com-
pared to that obtained with WT MDSCs (panel h versus panel
b) and (ii) the blocking profiles of the proliferation curves

resulting from genetic removal of MDSC VISTA versus inhib-
itor or knockout blockade of iNOS/NO were very different
(panel h versus panels e to g). These findings confirmed the
distinguishable nature of the VISTA versus the iNOS/NO-de-
pendent components of MDSC-mediated suppression, with
the results from the VISTA�/� MDSCs also compatible with a
possible additional minor mechanism(s).

Combined treatment experiments were conducted. We first
employed MDSCs of WT versus VISTA�/� origin in the pres-
ence of the iNOS/NO inhibitor L-NMMA. As expected, sup-
pression of B-cell responsiveness by WT MDSCs was partially
blocked by either the anti-VISTA MAb or L-NMMA (Fig. 4A,
top). But in the same experiment, MDSCs of VISTA�/� origin
suppressed B-cell responsiveness in a manner that was blocked
only by L-NMMA (Fig. 4A, bottom). And the extent of blocking
was then essentially 100%, suggesting that the retained
iNOS/NO pathway was the sole major suppressive mechanism.
As a follow-up approach, WT MDSCs were treated with the
anti-VISTA MAb, L-NMMA, or both reagents (Fig. 4B). Only
when the involvement of both VISTA and iNOS/NO was inter-
fered with was there an essentially complete blockade of sup-
pression (Fig. 4B). Considering also repeat experimentation,
additive, if not synergistic, blocking by simultaneously inter-
fering with iNOS/NO and VISTA corroborated these two pri-
mary independent mechanisms of MDSC-mediated suppres-
sion of B-cell responses.

To independently assess the ability of VISTA to inhibit B-cell
responsiveness, we employed a VISTA-Ig chimeric fusion protein
(28) (legend to Fig. 4). As shown in the representative results in

FIG 2 Distinct mechanistic requirements, involving iNOS/NO versus VISTA, differentiate LP-BM5-augmented Ly6C� CD11b� MDSC suppression of B-cell
versus T-cell proliferation. Three-day cultures terminating with 6-h [3H]thymidine pulses were set up as previously reported (10). WT responder spleen cells
stimulated with 50 	g/ml anti-CD40 antibody plus 10 ng/ml IL-4 (A) or 0.75 	g/ml concanavalin A (B) were cocultured with Ly6C� CD11b� MDSCs (10) left
untreated or treated with anti-VISTA MAb 13F3 (80 	g/ml, the optimal concentration determined by dose-response experiments), 0.8 mM L-NMMA (AG
Scientific, San Diego, CA), or analogous controls. The pattern of results presented is representative of two additional experiments for each stimulation. (C, D)
Cocultures of WT (C) and VISTA�/� (D) responders with stimulation by anti-CD40 antibody plus IL-4, depicting the average percent blockade of suppression
by anti-VISTA MAb-treated MDSCs. Each panel represents the mean values of three independent experiments. Error bars represent the standard deviations.
Statistical significance levels: *, P 
 0.05; **, P 
 0.01; ***, P 
 0.001 (Student t test, with the Holm-Bonferroni post hoc test when there are multiple
comparisons).
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Fig. 4C, VISTA-Ig inhibited polyclonal B-cell responsiveness by 40
to 59%, in a titratable manner, relative to control mIg2a—for both
WT and VISTA�/� B-cell responders. Considering repeat exper-
imentation (legend to Fig. 4), such inhibition was observed upon
stimulation either with anti-CD40 antibody plus interleukin-4
(IL-4) or with lipopolysaccharide (LPS), complete titration could
be achieved, and there was no consistent difference in susceptibil-
ity between WT and VISTA�/� responder B cells to blocking by
VISTA-Ig.

In conclusion, we describe here for the first time, to our knowl-
edge, the involvement of the novel negative-checkpoint regulator
VISTA in MDSC-mediated suppression—in particular, of B-cell
responsiveness. Our recent finding (10) that LP-BM5-augmented
MDSC-mediated suppression depends on neither PD-L1 nor
PD-1 further underscores the uniqueness of VISTA-related func-

tion versus its closest relative by sequence homology, PD-L1 (28,
30). The differential involvement of VISTA in the suppression of
B-cell versus T-cell responsiveness by the same population of
monocytic MDSCs raises the possibility of functional/phenotypic
MDSC subpopulations. In addition, the inability to block MDSC
inhibition of T-cell polyclonal responses by anti-VISTA MAb
treatment here is to be contrasted with previous results demon-
strating substantial effects on T-cell function by anti-VISTA MAb
blockade in in vitro and in vivo assays (28, 29). Whether this di-
chotomy relates to the different myeloid compartment cells stud-
ied (e.g., MDSCs here versus myeloid DCs), the differential
strength of the stimulatory signal to the responder T cells, and/or
differences in the experimental microenvironments from which
the myeloid cells were derived is at present unclear but likely in-
sightful.

FIG 3 Ly6C� CD11b� MDSCs from WT, INOS�/�, and VISTA�/� mice infected for 5 weeks with LP-BM5, each uniquely suppress B-cell proliferation
of responder spleen cells. CFSE-labeled responder B cells (identified as CD19�) were cultured for 4 days with no stimulation (a) or anti-CD40 antibody
plus IL-4 only (b) or with WT MDSCs that were left untreated (c) or treated with D-NMMA (d) or L-NMMA (e). The fully shaded control response in panel
b is repeated throughout panels c to h for comparison. For direct comparisons, overlay panels were created for responders with INOS�/� MDSCs (dark
line) versus L-NMMA-treated WT MDSCs (dotted line) (f), iNOS�/� MDSCs (dark line) versus WT untreated MDSCs (dotted line) (g), and VISTA�/�

MDSCs (dark line) versus WT untreated MDSCs (dotted line) (h). Italicized values are the geometric MFIs of the CFSE� cells under the dark line in panels
b to h, and the nonitalicized values to the right within each panel are the percentages of undivided cells. Calculation for quantitative assessment of
responder B-cell suppression: MFI 80 (WT MDSCs) � MFI 42 (control proliferation) � �MFI 38 (suppression due to WT MDSCs). As an example, to
assess the effect of the INOS knockout on suppression (panel g), MFI 80 (WT MDSCs) � MFI 63 (INOS�/� MDSCs) � �MFI 17, or 17 fewer suppression
units than for WT MDSCs (�38). Thus, �17/D38 � 45% (iNOS-associated suppression by WT MDSCs). The pattern of results presented is representative
of one additional experiment.
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