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MCL1 Enhances the Survival of CD8� Memory T Cells after Viral
Infection

Jingang Gui,a Zhuting Hu,b Ching-Yi Tsai,b Tian Ma,a Yan Song,a Amanda Morales,a Li-Hao Huang,c Ethan Dmitrovsky,a

Ruth W. Craig,a Edward J. Usherwoodb

Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USAa; Department of Microbiology and Immunology,
Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USAb; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New
Hampshire, USAc

ABSTRACT

Viral infection results in the generation of massive numbers of activated effector CD8� T cells that recognize viral components.
Most of these are short-lived effector T cells (SLECs) that die after clearance of the virus. However, a small proportion of this
population survives and forms antigen-specific memory precursor effector cells (MPECs), which ultimately develop into mem-
ory cells. These can participate in a recall response upon reexposure to antigen even at protracted times postinfection. Here, anti-
apoptotic myeloid cell leukemia 1 (MCL1) was found to prolong survival upon T cell stimulation, and mice expressing human
MCL1 as a transgene exhibited a skewing in the proportion of CD8� T cells, away from SLECs toward MPECs, during the acute
phase of vaccinia virus infection. A higher frequency and total number of antigen-specific CD8� T cells were observed in MCL1
transgenic mice. These findings show that MCL1 can shape the makeup of the CD8� T cell response, promoting the formation of
long-term memory.

IMPORTANCE

During an immune response to a virus, CD8� T cells kill cells infected by the virus, and most die when the infection resolves.
However, a small proportion of cells survives and differentiates into long-lived memory cells that confer protection from rein-
fection by the same virus. This report shows that transgenic expression of an MCL1 protein enhances survival of memory CD8�

T cells following infection with vaccinia virus. This is important because it shows that MCL1 expression may be an important
determinant of the formation of long-term CD8� T cell memory.

Upon exposure to infectious agents, T cells undergo changes in
gene expression that promote the generation and survival of

effector cells, followed by the emergence of long-lived memory
cells. The acute phase of virus infection results in the following
sequence of events in CD8� T cells. A primary phase of clonal
expansion generates cytolytic effector cells to facilitate elimination
of the pathogen. This is followed by a contraction phase, during
which a large number of potentially damaging cytotoxic effector
cells undergo apoptosis. However, a number of cells survive this
contraction and form the precursors of memory cells. Finally,
during the memory phase, a small subset of antigen-specific CD8�

T cells is maintained for an extended period, providing memory
for later recall responses (1).

While short-lived effector cells (SLECs) are important for the
resolution of infection, memory precursor effector cells (MPECs)
differentiate into the long-lived memory population (2). MPECs
exhibit differences from SLECs in terms of phenotype and func-
tion (3). While both populations elaborate effector functions,
MPECs have more subdued effector activity than SLECs (1, 4, 5).
MPECs exhibit lower cell surface expression of the killer cell lec-
tin-like receptor subfamily G member 1 (KLRG1) but higher ex-
pression of CD127 (IL-7R�) (3). In contrast, SLECs exhibit higher
KLRG1 but lower CD127 expression. In addition, interleukin-2
(IL-2) production is largely restricted to the MPEC CD8� popu-
lation and is necessary for memory cells to mount efficient recall
responses (6). The formation of memory versus effector CD8� T
cells depends on multiple factors, including the strength of T cell
receptor (TCR) signaling, engagement of costimulatory mole-

cules, and responsiveness to cytokines such as IL-2, IL-10, IL-12,
and IL-21 (7, 8).

BCL2 family members control the viability of T cells during
development and in response to foreign antigens (9, 10). MCL1 is
a viability-promoting member of this family that contains the sig-
nature BCL2 homology (BH) domains in its carboxyl portion
(11). MCL1 also exhibits characteristics different from those of
BCL2 and is unique in containing a long N-terminal regulatory
region. Accordingly, a salient characteristic of MCL1 is its ability
to undergo rapid upregulation/stabilization in response to envi-
ronmental stimuli, such as cytokines/growth factors and antigen
signaling (11, 12). MCL1 also binds proapoptotic family mem-
bers, such as Noxa, that do not interact extensively with BCL2.
While MCL1 was identified in myeloid leukemia cells stimulated
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to differentiate, it has effects in lymphoid cells at various stages of
development. These effects were first seen in transgenic mice ex-
pressing a human MCL1 minigene in hematolymphoid tissues,
where transgene expression is in the range of that normally seen in
response to stimulation (13). Lymphoid cells from the spleens of
transgenic mice exhibit enhanced survival in tissue culture. How-
ever, the mice do not exhibit an increase in circulating lymphocyte
numbers, presumably because of homeostatic regulatory influ-
ences. Knockout experiments have shown that MCL1 has an im-
portant role in T cell development, as this lineage is reduced upon
conditional knockout in thymic cells at early or later stages (14).
Congruently, the MCL1 transgene can promote survival in early
thymic progenitors (15, 16). MCL1 also has a role in the response
of T cells to foreign antigens. TCR ligation leads to MCL1 stabili-
zation and promotes the survival of high-affinity clones, by neu-
tralizing proapoptotic family members (prominently Noxa) (17).
In recent studies, knockout of MCL1 during infection with lym-
phocytic choriomeningitis virus was found to result in a severe
decrease in the production of virus-specific T cells (18, 19).

It is not yet clear how the survival of memory T cells is regu-
lated. BCL2 is expressed during memory formation, but knockout
of BCL2 or BCLX does not abolish T-cell memory (20–24). Recent
experiments are consistent with the possibility that MCL1 could
have a role, as an association was observed between MCL1 stabi-
lization and enhanced memory precursor frequency, induced
through NKG2D signaling (25).

The present studies used transgenic mice expressing a human
MCL1 minigene to assess the effect of the transgene on memory
CD8� T cell formation. The findings obtained show that MCL1
prolongs the survival of antigen-stimulated cells and that MCL1
transgenic mice exposed to vaccinia virus exhibit an increase in
antigen-specific CD8� T cells with the MPEC phenotype. In ad-
dition, the frequency and total number of antigen-specific CD8�

T cells increase during the memory stage. By demonstrating that
MCL1 transgene expression favors the MPEC phenotype and
memory cell formation, our data show that MCL1 can contribute
to the development and maintenance of this important cell pop-
ulation.

MATERIALS AND METHODS
Animals. C57BL/6 mice bearing a human MCL1 transgene have been
described (16). These mice were bred and maintained in the animal facil-
ity at the Geisel School of Medicine at Dartmouth. Genotyping was carried
out with primers that are specific to the human MCL1 transgene but do
not recognize the endogenous mouse homologue (26), by using the
RedExtract-N-AMP tissue PCR kit (Sigma-Aldrich). Mice found to lack
the MCL1 transgene, from the same or contemporaneous litters, served as
nontransgenic controls. Animal studies were performed in accordance
with a protocol approved by the institutional animal care and use com-
mittee of the Geisel School of Medicine at Dartmouth and with the Na-
tional Institutes of Health recommendations set forth in the Guide for the
Care and Use of Laboratory Animals.

Vaccinia virus primary infection and Listeria recall infection. Pri-
mary infection with the vaccinia virus Western Reserve strain (VV-WR)
(1,000 PFU) was administered via the intranasal (i.n.) route under anes-
thesia with isoflurane. For secondary infections, replication-defective Lis-
teria monocytogenes expressing the VV-WR dominant epitope, B8R20 –27

(TSYKFESV)/Kb (here referred to as B8R), was administered (2 � 106

CFU) via the intravenous route under anesthesia with ketamine-xylazine.
Antibodies and flow cytometry. To obtain single-cell suspensions,

spleens were passed through a 70-�m cell strainer with a syringe plunger.
Red blood cells were lysed with Gey’s solution. Cell counts were moni-

tored with a Coulter counter as in previous studies (16). This method is
optimized to exclude debris, which may include debris representing dying
cells. Cell surface staining was performed by incubation with antibodies in
cell staining buffer (phosphate-buffered saline [PBS] containing 2% fetal
bovine serum [FBS]) on ice for 20 min. The fluorochrome-conjugated
antibodies used included fluorescein isothiocyanate (FITC)-CD127,
FITC-CD44, phycoerythrin (PE)-KLRG1, PE–IL-2, PE-tumor necrosis
factor alpha (TNF-�), and allophycocyanin (APC)-gamma interferon
(IFN-�) from BioLegend, PE-granzyme B from Invitrogen, and peridinin
chlorophyll protein-eFluor 710 CD8� from eBioscience. To measure
apoptosis, cells were washed once with annexin V binding buffer and
stained with PE-annexin V (eBioscience). Samples were analyzed with an
Accuri C6 flow cytometer or a FACSCalibur (BD Biosciences) in the Dart-
lab core facility at the Geisel School of Medicine at Dartmouth. Data were
analyzed with FlowJo (Tree Star) or Accuri CFlow plus software.

Tetramer and intracellular cytokine/molecule staining. Peptide ma-
jor histocompatibility complex class I tetramers consisting of B8R20-27/Kb

conjugated to APC were obtained from the NIH tetramer core facility.
Splenocytes were either directly stained with tetramer together with Fc
block (2.4G2) or, in some cases, stimulated with 1 �g/ml B8R peptide for
5 h at 37°C in complete medium containing 10 U/ml recombinant IL-2
and 10 �g/ml brefeldin A in 96-well U-bottom plates. Cells were stained
with antibodies detecting surface markers (20 min at 4°C) and then fixed
(2% formaldehyde at room temperature for 20 min). They were then
incubated in permeabilization buffer (PBS containing 2% FBS and 0.5%
saponin) for 10 min and maintained in this buffer for staining with anti-
bodies directed against intracellular cytokines/molecules (IFN-�, TNF-�,
granzyme B, IL-2) by incubation for 30 min at 4°C.

Plaque assay. To assess the lung virus load after vaccinia virus infec-
tion, lung tissue homogenate was diluted, added to 143B cells in 12-well
plates, and incubated for 1 h at 37°C to allow absorption before the addi-
tion of 2 ml of prewarmed medium containing carboxymethyl cellulose.
Cultures were incubated at 37°C for 2 days, fixed with methanol, and then
stained with Giemsa stain. Plaques were counted, and the viral titer was
calculated by multiplying by the relevant dilution.

CFSE cell proliferation assay. Assays measuring carboxyfluorescein
succinimidyl ester (CFSE) dye dilution (as a measure of proliferation) and
7-aminoactinomycin D (7-AAD) dye exclusion (as a measure of cell via-
bility) were carried out as follows. Splenocytes were cultured with 10 �M
CFSE (CellTrace CFSE cell proliferation kit; Life Technologies) at 37°C for
10 min. After being washed twice with cold RPMI 1640 medium, 2.5 � 106

splenocytes were dispensed into each well of 24-well plates. Cells were
then stimulated with 2 �g/ml CD3ε and CD28 soluble antibodies. On day
3, cells were harvested, washed once with cell staining buffer, and stained
with 1 �g/ml 7-AAD. CFSE dye dilution was detected as a measure of
proliferation and 7-AAD exclusion to measure cell viability by flow cy-
tometry on a FACSCalibur. CFSE data were processed by using the pro-
liferation function in FlowJo software.

Western blot assay. Splenocytes were cultured in RPMI 1640 medium
supplemented with 10% FBS (24-well plates, 37°C) in the absence or
presence of 2 �g/ml anti-CD3ε and -CD28 antibodies. Protein was ex-
tracted by sonication in radioimmunoprecipitation assay buffer, and the
protein concentration was measured by bicinchoninic acid assay. Equal
amounts of protein were loaded onto 12.5% polyacrylamide gels and
probed with a rabbit polyclonal anti-MCL1 antibody (S-19; Santa Cruz).
The blots were then reprobed with anti-glyceraldehyde 3-phosphate de-
hydrogenase antibody.

Statistical analysis. Statistical analysis was carried out, after testing for
normality, with the Student t test or by analysis of variance (SigmaStat
Software), and a P value of �0.05 was considered significant.

RESULTS
Anti-CD3 and anti-CD28 antibodies increase MCL1 transgene
expression and prolong survival in cultured splenocytes. In
transgenic mice expressing human MCL1 under the control of its
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endogenous promoter, splenocytes of both B- and T-cell origins
exhibit enhanced survival in tissue culture, with the transgene
being expressed at levels comparable to those seen upon the stim-
ulation of endogenously expressing cells (13). Enhanced survival
might therefore also occur upon exposure to anti-CD3ε and anti-
CD28 antibodies to simulate T cell activation, especially since nor-
mal T cells, when activated, exhibit MCL1 induction and pro-
longed survival (14). Transgene expression was indeed increased
when splenocytes were cultured in the presence of anti-CD3ε and
anti-CD28 antibodies (two transgenic mice are shown in Fig. 1A,
lanes 8 versus 6 and 12 versus 10). Such an effect was not seen with
IL-2, and IL-2 did not further enhance the effect seen with anti-
CD3 and anti-CD28 antibodies. As predicted, survival was also

enhanced in the presence of the transgene plus anti-CD3 and anti-
CD28 antibodies (Fig. 1B). Survival from day 1 to day 3 was
greater in stimulated than in unstimulated cultures (white versus
black bars), and the survival of transgenic splenocytes was en-
hanced to a greater extent than that of their nontransgenic coun-
terparts. Three days after stimulation, the viable cells remaining in
transgenic and nontransgenic cultures exhibited equivalent dilu-
tions of CFSE, used to measure cell proliferation (Fig. 1C). Trans-
genic and nontransgenic cells also exhibited equivalent levels of
expression of CD25 (IL-2R�), a marker of activation (Fig. 1D). In
sum, more cells remained present on day 3 upon the stimulation
of transgenic cultures, but this did not appear to be due to greater
proliferation or activation. Instead, the MCL1 transgene appeared

FIG 1 Anti-CD3 and anti-CD28 antibodies increase MCL1 transgene expression in splenocytes, prolonging their survival in culture. Splenocytes from MCL1
transgenic (TR) and nontransgenic (Non TR) mice were explanted into tissue culture and exposed to anti-CD3 and anti-CD28 antibodies. (A) Transgene
expression was monitored (Western blotting) on days 1 and 3 in the absence or presence of recombinant murine IL-2. The lack of signal in cells from
nontransgenic animals (lanes 1 to 4) was consistent with the fact that human (but not mouse) MCL1 is detected by the antibodies under the conditions used. (B)
Viable cell numbers were monitored by 7-AAD staining. The percentage of viable cells remaining on day 3, relative to day 1, is shown, and represents the mean
value of eight independent pairs of transgenic and nontransgenic animals. *, P � 0.05 (for the difference between transgenic and nontransgenic cultures;
ANOVA). (C) Cell proliferation (CFSE) was examined 3 days after the application of anti-CD3 and anti-CD28 antibodies. The filled gray histogram represents
nontransgenic splenocytes, and the open histogram represents MCL1 transgenic splenocytes, in the 7AAD� (viable-cell) gate. (D) Expression of the T cell
activation marker CD25 was examined on day 1.
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to be capable of enhancing survival in the presence of T cell acti-
vation.

The MCL1 transgene enhances the viability of antigen-spe-
cific CD8� T cells during the acute phase of virus infection.
Given the above findings, we tested if the MCL1 transgene would
prolong T cell survival during the acute phase of virus infection.
We chose to study the CD8� T cell response to VV-WR, admin-
istered by the i.n. route, as CD8� T cells are crucial for protection
by this route of infection (27). We infected mice i.n. with VV-WR
and measured the response to the immunodominant endogenous,
H-2Kb-restricted TSYKFESV epitope (B8R). Antigen-specific
CD8� T cells were monitored by staining with B8R tetramers at
day 10 after virus infection, which is the peak of the antigen-
specific CD8� T cell response. Naive MCL1 transgenic mice had
spleen cell numbers similar to those of nontransgenic B6 control
mice. After infection, MCL1 transgenic and nontransgenic mice
exhibited comparable numbers of total splenocytes and CD8� T
cells (data not shown), as well as B8R-specific CD8� T cells in the
spleen (Fig. 2A) at day 10 postinfection. Similar data were ob-
tained from the mediastinal lymph node, which drains the lung
(data not shown). This agreed with the observation that the lung
virus loads were similar (Fig. 2B), as measured by plaque assay, as
were the titers of serum antibodies recognizing VV-WR (mea-
sured by virus neutralization assay; data not shown). Next, we
tested the frequency of B8R-specific CD8� T cells undergoing
apoptosis by measuring annexin V expression. Lower frequencies
of both total and B8R-specific CD8� T cells expressed annexin V
in MCL1 transgenic mice than in nontransgenic mice (Fig. 2C) at
day 10 postinfection. In sum, the MCL1 transgene not only en-
hanced the survival of CD3/CD28-stimulated cells in in vitro cul-
tures (Fig. 1) but also reduced apoptosis in virus-specific CD8� T
cells upon infection in vivo.

The MCL1 transgene promotes memory precursor effector
cell (MPEC) formation. Upon initial virus infection, CD8� T cells
become activated, expand, and differentiate into effector T cells.
While some of these effector cells terminally differentiate and ul-
timately die, a subset of activated CD8� T cells survives and con-
tinues to differentiate to become precursors of long-lived memory
CD8� T cells. Knowing that the MCL1 transgene enhanced anti-
gen-specific CD8� T cell viability, we proposed that this may re-
sult in a larger population of MPECs. Characteristics of MPECs
are increased expression of the cytokine receptor CD127 (IL-7R�)
and decreased expression of KLRG1 (28). Indeed, at 10 days
postinfection, the spleen B8R-specific CD8� T cells in MCL1
transgenic mice displayed a lower percentage of KLRG1� cells, as

FIG 2 The MCL1 transgene decreases apoptosis of antigen-specific CD8� T
cells during the acute phase of virus infection. Mice were infected i.n. with
VV-WR, and splenocytes were harvested at 10 days postinfection. (A) Flow
cytometry was used to monitor the expression of CD8 and B8R, an H-2Kb-
restricted VV-WR epitope. The percentages of B8R-specific cells shown are
those within the CD8� gate. TR, transgenic; Non TR, nontransgenic. (B) Lung
virus titers were measured at 10 days postinfection. (C) Apoptosis of CD8�

splenocytes and B8R-specific CD8� T cells was assessed by annexin V staining.
The percentages of annexin V� cells (filled histogram, nontransgenic; open
histogram, transgenic) are the values obtained after gating on CD8� (left pan-
els) or B8R� CD8� (right panels) cells. The data shown are representative of
two independent experiments, where each point in the graphs represents one
mouse and the mean value of the six mice is represented by the horizontal line.
**, P � 0.001 (for the difference between transgenic and nontransgenic ani-
mals; Student’s t test).
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well as higher CD127 expression (Fig. 3A), indicative of a skewing
toward the MPEC phenotype. Examination of the mediastinal
lymph nodes showed that the frequency of KLRG1 was signifi-
cantly lower in B8R� CD8� T cells of MCL1 transgenic mice,
although CD127 expression did not exhibit a statistically signifi-
cant difference (Fig. 3B).

CD8� T cell effector functions remain intact in the presence
of the MCL1 transgene. We wished to determine if expression of
the MCL1 transgene would affect effector CD8� T cell functions
during the acute phase of virus infection. We therefore stimulated
splenocytes from infected animals with the B8R peptide and used

intracellular staining to measure IFN-�, TNF-�, granzyme B, and
IL-2 production in CD8� T cells. Transgenic splenocytes did not
exhibit any significant difference in the percentage of IFN-�� cells
in CD44� CD8� T cells (Fig. 4A). No difference was seen in terms
of the expression of TNF-� (Fig. 4B) or granzyme B in the IFN-��

CD8� T cell population (Fig. 4C). Interestingly, the percentage of
IL-2-producing cells within the IFN-�� CD8� T cell population
was higher in MCL1 transgenic splenocytes than in nontransgenic
splenocytes (Fig. 4D). The ability to produce IL-2 increases pro-
gressively during memory CD8� T cell differentiation and is one
of the characteristics of MPECs. The greater capacity to produce

FIG 3 The MCL1 transgene promotes antigen-specific CD8� T cell skewing to an MPEC phenotype during primary viral infection. Mice were infected with
VV-WR, and spleens and mediastinal lymph nodes were harvested on day 10 postinfection. (A) By flow cytometry, B8R� CD8� T cells from the spleen were
assayed for expression of KLRG1 and CD127 (filled histogram, nontransgenic [Non TR]; open histogram, transgenic [TR]). The values shown are percentages
of KLRG1� cells or mean fluorescence intensity for CD127 in the B8R� CD8� gate. (B) B8R� CD8� T cells from mediastinal lymph node cells were assayed for
expression of CD127 and KLRG1. The data shown are representative of two independent experiments with four mice per experiment. *, P � 0.05; **, P � 0.001
(for the difference between transgenic and nontransgenic animals; Student’s t test).
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IL-2 in MCL1 transgenic peptide-responding CD8� T cell subsets
likely reflects a propensity for transition to memory cells. These
data, together with surface marker expression, demonstrate that
increased MPEC formation in MCL1 transgenic mice during the
acute phase of virus infection occurred without a loss of effector
capacity.

MCL1 transgenic mice exhibit increased numbers of anti-
gen-specific CD8� T cells upon a secondary challenge. Given the
MPEC skewing seen in MCL1 transgenic mice 10 days after infec-
tion, we wished to test for longer-term effects. The memory recall
response was examined 2 months after primary VV-WR infection
by challenging mice with the intracellular pathogen L. monocyto-

FIG 4 Effector function during primary viral infection remains intact in the presence of the MCL1 transgene. Mice were infected with VV-WR, and their spleens
were harvested at day 10 postinfection. Splenocytes were restimulated with or without B8R peptide for 5 h in the presence of brefeldin A. Intracellular staining
was performed to determine IFN-� production by CD44� CD8� T cells (A). No peptide stimulation is shown as a negative control. The percentages in the
representative fluorescence-activated cell sorter plots and graphs are those within the CD44� CD8� gate. (B) Percentages of IFN-�� CD8� cells that were
TNF-��. (C) Granzyme B (GzmB) mean fluorescence intensity in IFN-�� CD8� cells (filled, nontransgenic [Non TR]; open, transgenic [TR]). Antibody isotype
(ISO) for GzmB (light gray line) was used as a negative control for staining. (D) Percentages of IFN-�� CD8� cells that were IL-2�. The data shown are
representative of two independent experiments with four mice per experiment. ***, P � 0.0001 (for the difference between transgenic and nontransgenic animals;
Student’s t test).
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genes engineered to express the B8R epitope. A marked secondary
expansion of B8R-specific CD8� T cells was seen in transgenic and
nontransgenic animals, with B8R-specific cells representing a
much larger proportion of the CD8 population than had been
seen during the acute phase of infection (nontransgenic, 16% pri-
mary versus 48% secondary; MCL1 transgenic, 15% primary ver-
sus 54% secondary; averages from Fig. 2A and 5A). Interestingly,
the total number of B8R-specific CD8� T cells was significantly
higher in MCL1 transgenic mice than in nontransgenic mice (Fig.
5A). This appeared to relate, at least in part, to the presence of a
larger spleen during the recall response in transgenic mice than in
nontransgenic mice, whereas the proportion of B8R-specific
cells among CD8� T cells did not exhibit a statistically signifi-
cant difference. B8R peptide stimulation revealed similar pro-
portions of CD44� CD8� T cells that were IFN-�� and TNF-

�-, granzyme B-, and IL-2-producing CD8� T cells that were
IFN-�� in splenocytes from these MCL1 transgenic and non-
transgenic mice (Fig. 5B).

MCL1 transgenic mice have a higher frequency of virus-spe-
cific memory CD8� T cells. The above data showing a larger recall
response in MCL1 transgenic mice raised the question of whether
there was a larger “resting” memory population of virus-specific
cells in these mice. Mice were therefore examined at 69 days after
primary infection, without a secondary challenge. MCL1 trans-
genic mice exhibited an increase in the total number of spleno-
cytes and CD8� T cells (Fig. 6A). Importantly, the frequency of
B8R� cells in the CD8� T cell pool was 2-fold higher in MCL1
transgenic mice than in nontransgenic mice (3% versus 1.5%)
(Fig. 6B, left panel). With an increase in both the total splenocyte
number and the proportion of B8R� CD8� T cells, the number of

FIG 5 MCL1 transgenic mice exhibit an increased number of B8R-specific CD8� T cells during recall in response to a secondary challenge. Mice were infected
with VV-WR, and at 55 days after receiving primary infection, they were administered 2 � 106 CFU of L. monocytogenes expressing the B8R epitope. At 7 days
after a secondary challenge, their spleens were harvested. (A) Splenocytes were stained with B8R tetramer and anti-CD8 antibody and analyzed by flow cytometry.
The percentages of B8R-specific cells shown are those within the CD8� gate. (B) Splenocytes were restimulated with B8R peptide for 5 h in the presence of
brefeldin A. Intracellular staining was performed to measure the percentage of CD44� CD8� T cells that were IFN-��, the percentage of IFN-�� CD8� cells that
were TNF-��, the GzmB mean fluorescence intensity in IFN-�� CD8� cells, and the percentage of IFN-�� CD8� cells that were IL-2�. The data shown are
representative of two independent experiments with four mice per experiment. **, P � 0.001 (for the difference between transgenic [TR] and nontransgenic
[Non TR] animals; Student’s t test).
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antigen-specific T cells remaining 2 months after primary infec-
tion was increased 3-fold in the presence of the MCL1 transgene
(Fig. 6B, right panel). Overall, these findings showed that an
MCL1 transgene can contribute to the long-term survival of virus-
specific T cells following infection.

DISCUSSION

MCL1 promotes viability in a host of hematopoietic and lym-
phoid cells at various stages of differentiation and in response to
different stimuli (14, 29–31). In T cells, MCL1 controls death dur-
ing development (14, 16) and is upregulated in response to cyto-
kines that promote T cell survival (32). In the present work, using
a transgenic mouse model expressing a human MCL1 minigene,
we found that expression of exogenous human in addition to en-
dogenous mouse MCL1 extended the survival of mouse spleno-
cytes in vitro after T cell activation by TCR ligation (Fig. 1). This
observation led us to hypothesize that the transgene might pro-
mote the survival of CD8� T cells after activation in vivo during
infection and might have an effect in memory T cells. In support of
this concept, MCL1 has been shown to be essential for B cell mem-
ory (12).

Our studies of primary infection with vaccinia virus showed
that, in the acute phase of infection, antigen-specific CD8� T cells
were shifted toward the MPEC phenotype in the presence of the
MCL1 transgene. Cells exhibited higher expression of CD127,
lower expression of KLRG1 (Fig. 3A), and higher IL-2 secretion
after restimulation with antigen (Fig. 4D). The increased propor-
tion of MPECs did not impair CD8 effector functions, as IFN-�,
TNF-�, and granzyme B production was normal and the virus
loads in the lungs of transgenic and nontransgenic mice during the
acute phase were comparable (Fig. 4A to C). MCL1 transgenic
mice exhibited a reduced proportion of antigen-specific CD8� T

cells entering apoptosis (Fig. 2C). Thus, while the number and
percentage of antigen-specific CD8� T cells were equivalent in
nontransgenic and transgenic animals at 10 days, in transgenic
animals, a lower proportion of these cells expressed annexin V, a
marker that appears with the onset of apoptosis. In other words,
while transgenic animals exhibit unaltered total numbers of anti-
gen-specific cells, a greater proportion of these cells were viable.
This is consistent with antigen-specific cells being generated in
equal numbers at 10 days (and proliferating to a similar extent),
with a smaller proportion of these cells being destined to die in the
case of the transgenic animals. This reduction in the number of
cells destined to die likely relates to the observation that a higher
frequency of memory cells was present at 2 months after infection.

A previous body of work examining the effects of MCL1 in a
variety of tissues has led to a model in which MCL1 promotes cell
viability but does not abolish cell death, often resulting in an in-
crease in the percentage of viable cells for a limited period of time;
nonetheless, by having this effect in specific cells at key points in
their life span, MCL1 can significantly influence cell pool sizes and
even organ sizes over the life span of the organism (11, 16). This
model may be applicable to the present studies of T cell memory.
Expression of transgenic MCL1 in SLECs may not be sufficient to
promote their survival significantly in vivo. However, MCL1
transgene expression in MPECs, which are more resistant to apop-
tosis because of higher-level expression of BCL2 and BCL-XL, may
further increase the survival of these cells during infection. Thus,
the lower level of annexin V staining seen in cells from transgenic
animals than in those from nontransgenic animals at 10 days may
spare a proportion of the cells that otherwise would have died. The
maintenance of these cells may result in the observed increase in
the population of long-term memory cells seen at 2 months
postinfection.

Previous studies have shown that CD8� T cells from patients
with chronic hepatitis B virus infection were highly susceptible to
apoptotic cell death (33). However, the surviving cells expressed
higher levels of CD127 and MCL1. The survival of these cells in
vitro was enhanced by inhibition of Bim-mediated apoptosis, con-
sistent with MCL1 expression favoring the survival of memory
cells in vivo. Proapoptotic Noxa may also negatively regulate the
memory T cell population size, as seen in influenza virus and
cytomegalovirus infection experiments (34). In addition, a recent
report on NKG2D gene knockout mice showed that NKG2D po-
tentiates IL-15-mediated signaling through phosphoinositol 3-ki-
nase, leading to increased MCL1 protein levels and enhanced sur-
vival of memory precursors (25). These findings, along with those
presented here, suggest that, in addition to its functions promot-
ing the survival of immature T cells and primary T cells, MCL1
may contribute to memory cell formation and/or survival.

Following resolution of the primary virus infection, we de-
tected a significantly larger memory CD8� T cell population in
MCL1 transgenic mice. This is likely due to the preferential sur-
vival of a larger population of memory precursor cells within the
effector population in MCL1 mice. The MCL1 transgene appears
to promote antigen-specific CD8 T cell survival after pathogen
recognition. It is also possible that MCL1 affects cellular processes
distinct from those involved in cell survival. Some studies suggest
that forms of MCL1 may play a role in normal mitochondrial
physiology (35) and autophagy (36), both of which affect T cell
differentiation (32, 37). Further studies are necessary to elucidate

FIG 6 The MCL1 transgene increases the frequency and total number of
memory B8R-specific CD8� T cells at late times following infection. Mice were
infected with VV-WR, and their spleens were harvested at day 69 postinfec-
tion. (A) Total splenocytes and CD8� T cell numbers were determined. (B)
Splenocytes were stained with B8R tetramer and anti-CD8 antibody and ana-
lyzed by flow cytometry. The data shown are representative of two indepen-
dent experiments with six to eight mice per experiment. **, P � 0.001 (for the
difference between transgenic and nontransgenic animals; Student’s t test).
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the molecular mechanisms underlying these effects regarding
skewing toward the MPEC phenotype.

It has been shown that the apoptosis threshold set by MCL1
and its antagonist Noxa determined the selection of high-affinity
T cell clones. Effector T cells activated in Noxa knockout mice
displayed decreased antigen affinity and functionality (17). Simi-
larly, MCL1 transgenic mice might support the survival of subop-
timal clones competing for low-affinity antigen, which results in
an effector pool with a high proportion of cells with weak avidity
for cognate antigen. While this was not directly addressed in our
studies, neither control of vaccinia virus upon a primary challenge
nor control of L. monocytogenes upon a secondary challenge was
significantly compromised. This indicates that the CD8� T cell
response was of sufficient avidity to recognize and eliminate in-
fected cells. However, we cannot rule out changes in CD8� T cell
avidity that did not prevent efficient recognition of target cells and
therefore control of the infection.

In conclusion, this report complements other studies involving
knockout of MCL1 (14, 18, 32) and shows that the presence of an
MCL1 transgene promotes the survival and differentiation of
memory CD8� T cells. This finding adds a further dimension to
our understanding of the ability of the MCL1 protein to act at
multiple stages during T cell development and the response to
viral antigens.
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