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RESEARCH ARTICLE Open Access

E2F4 regulatory program predicts patient survival
prognosis in breast cancer
Sari S Khaleel1 ? , Erik H Andrews1? , Matthew Ung1, James DiRenzo2 and Chao Cheng1,3,4*

Abstract

Introduction: Genetic and molecular signatures have been incorporated into cancer prognosis prediction and
treatment decisions with good success over the past decade. Clinically, these signatures are usually used in early-stage
cancers to evaluate whether they require adjuvant therapy following surgical resection. A molecular signature that is
prognostic across more clinical contexts would be a useful addition to current signatures.

Methods: We defined a signature for the ubiquitous tissue factor, E2F4, based on its shared target genes in multiple
tissues. These target genes were identified by chromatin immunoprecipitation sequencing (ChIP-seq) experiments
using a probabilistic method. We then computationally calculated the regulatory activity score (RAS) of E2F4 in cancer
tissues, and examined how E2F4 RAS correlates with patient survival.

Results: Genes in our E2F4 signature were 21-fold more likely to be correlated with breast cancer patient survival time
compared to randomly selected genes. Using eight independent breast cancer datasets containing over 1,900 unique
samples, we stratified patients into low and high E2F4 RAS groups. E2F4 activity stratification was highly predictive of
patient outcome, and our results remained robust even when controlling for many factors including patient age, tumor
size, grade, estrogen receptor (ER) status, lymph node (LN) status, whether the patient received adjuvant therapy, and
the patient? s other prognostic indices such as Adjuvant! and the Nottingham Prognostic Index scores. Furthermore, the
fractions of samples with positive E2F4 RAS vary in different intrinsic breast cancer subtypes, consistent with the
different survival profiles of these subtypes.

Conclusions: We defined a prognostic signature, the E2F4 regulatory activity score, and showed it to be significantly
predictive of patient outcome in breast cancer regardless of treatment status and the states of many other
clinicopathological variables. It can be used in conjunction with other breast cancer classification methods such as
Oncotype DX to improve clinical outcome prediction.

Introduction
Cancer prognosis and treatment plans rely on a collection
of clinicopathological variables that stratify cancers out-
comes by stage, grade, responsiveness to adjuvant therapy,
and so on. Despite stratification, cancer ? s enormous het-
erogeneity has made precise outcome prediction elusive
and the selection of the optimal treatment for each patient
a difficult and uncertain choice. Over the past two de-
cades, advances in molecular biology have allowed mo-
lecular signatures to become increasingly obtainable [1]

and incorporated into determining cancer prognosis and
treatment [2]. For some cancer types, like breast cancer,
gene expression signatures are now routinely used prog-
nostically, with many research groups having identified
signatures that predict cancer outcome or consider if pa-
tients will benefit from adjuvant therapy following surgical
resection [3-9]. Surprisingly, however, there is little overlap
in genes between the various signatures within different tis-
sues or the same tissue (for example, breast cancer) raising
questions about their biological meaning. Furthermore, even
with gene expression signatures? successes in cancer out-
come prediction, improvement is possible, as the majority of
these signatures are applicable only to early-stage cancers
without lymph node (LN) metastasis or even previous
chemotherapy. As cancer is fundamentally a disease of gen-
etic dysregulation, specifically analyzing a tumor ?s regulatory
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actors, such as transcription factors (TFs), may provide add-
itional prognostic insight [10,11], since transcription factors
are relatively universal among different cell lines when com-
pared to the tissue-specific gene clusters from which most
gene signatures are made.
TFs are proteins that relay cellular signals to their target

genes by binding to the DNA regulatory sequences of these
genes and modulating their transcription [12]. They play
major roles in many diverse cellular processes [13-17]. Un-
surprisingly, aberrant expression or mutation of TFs or of
their upstream signaling proteins has been implicated in an
array of human diseases, including cancer [18-20]. Given
their central regulatory functions, monitoring of TFs is
widely regarded as a potentially useful and biologically sens-
ible method for the prediction of cancer and disease out-
come [1].
While differences in the transcriptional expression level

of a TF do not necessarily correspond to differences in its
regulatory activity, differences in the expression levels of a
TF? s target genes do [21-23]. We have previously devel-
oped an algorithm to make this inference of a TF? s regula-
tory activity from the expression of its target genes, called
REACTIN (REgulatory ACTivity INference) [24]. REAC-
TIN can calculate the activity level of a TF on each indi-
vidual sample in a given dataset. By calculating these
levels and generating individual regulatory activity scores
(iRASs) for a given TF and sample, REACTIN reveals a
given TF? s activity level for each individual sample relative
to all others in a dataset, thereby enabling the incorpor-
ation of a TF? s activity level into regression-based analyses.
For example, by combining these iRAS TF activity levels
with survival data, Cox proportional hazard (PH) models
can be employed to examine how TF activity levels correl-
ate with survival outcomes.
In this study, we define an E2F4 signature based on its tar-

get genes identified by chromatin immunoprecipitation se-
quencing (ChIP-seq) experiments. Based on the signature,
E2F4 activity is inferred in breast cancer samples and used
for predicting clinical outcomes. We focus on the E2F4 sig-
nature, because we have previously identified it as being
prognostic in breast cancer in a large-scale computational
screening analysis [24]. Further, in other work we have
found E2F4?s activity level to be the most important of all
TFs in predicting cell cycle phase in the HeLa and K562 cell
lines, suggesting an essential role for E2F4 in cell cycle regu-
lation [25]. Beyond our work, it is broadly considered that
E2F4 plays an important role in both cell cycle arrest [26]
and in modulating cell proliferation [27]. Furthermore,
transgenic mice overexpressing E2F4 develop tumors, and
mutated E2F4 has been reported in several types of cancers,
including cancers of the gastrointestinal tract and prostate
[26,28], suggesting a broad tumorigenic role for E2F4.
Using E2F4 with our REACTIN method and clinical

outcome data, we examine E2F4? s regulatory activity in

detail as a predictor of survival outcome for breast cancer.
With a collection of eight publicly available datasets contain-
ing gene expression and survival data for over 1,900 breast
tumor samples, we show that E2F4 regulatory activity is
strongly prognostic and remains so even after adjusting for
other molecular markers, clinicopathological variables, clin-
ical risk scores, Oncotype DX stratification, and differences
in patient treatment. E2F4 activity level also correlates with
classification assignment of breast cancers into their intrin-
sic subtypes. Extending beyond breast cancer, we preliminar-
ily analyze E2F4 regulatory activity levels in bladder, colon,
non-small cell lung, glioblastoma, acute myeloid leukemia,
and Burkitt?s lymphoma cancer types, respectively, and find
that they appear prognostic in colon, glioblastoma, and blad-
der cancer. E2F4 regulatory activity level predicts breast can-
cer survival outcome and may be of use in augmenting
prognosis in cancer types.

Methods
Collection of gene expression cell cycle data
Human cell cycle gene expression profiles collected in
HeLa S3 cells using two-channel cDNA arrays [29] were
downloaded from the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO,
[30]; GSE3497). The dataset contained expression pro-
files from five independent time courses, from which we
used the course with the largest number of time points
(N = 48) for our analysis.

Collection of gene expression and patient clinical and
survival data
Using the collated Ur-Rehman et al. [31] meta-analysis
as a guide, the ROCK, GEO [30], and National Institutes
of Health PubMed [32] databases were queried to access
and download all publicly available breast cancer gene
expression datasets for which standard clinical data (age
at diagnosis, estrogen receptor (ER) status, tumor size,
grade, and LN involvement) and survival outcome data
were present for a minimum of 150 samples. Depending
on the availability from the original publications, either
distant metastasis-free survival (DMFS) or relapse-free
survival (RFS) was used as survival outcome. This re-
sulted in the collection of 1,902 unique breast cancer
samples across eight different datasets and on both one-
and two-channel arrays (Table 1).
For each sample, composite predictive measures derived

from clinical data, the Nottingham Prognostic Index (NPI)
[42] and Adjuvant!Online [43] scores, were calculated and
recorded. The Adjuvant! risk score of ? high? or ? low? was de-
rived from the Adjuvant!Online numerical scores following
the procedure in [34], while the NPI risk scores of ? low? ,
?medium? , or ? high? were derived from the standard numer-
ical score ranges of <3.4 , 3.4 to 5.4, and >5.4, respectively

Khaleel et al. Breast Cancer Research  (2014) 16:486 Page 2 of 14



[42]. The combined table with all sample metadata can be
found in Table S1 in Additional file 1.
In addition to breast cancer data, we collected gene ex-

pression and survival data for six other cancer types, in-
cluding bladder cancer, glioblastoma, non-small cell lung
cancer (NSCLC), colon cancer, acute myeloid leukemia
(AML) and Burkitt? s lymphoma (Table 1).

Definition of the E2F4 target gene signature
All publicly available E2F4 ChIP-seq datasets were accessed
and downloaded, resulting in the collection of E2F4
chromatin-binding data in the GM06900, HeLa, and K562
cell lines [27,44]. With a threshold false discovery rate of 1%,
the TIP probabilistic method [45] was used to determine the
candidate target genes of E2F4 in each cell line, resulting in
the identification of 428, 438, and 429 target genes in the
GM06990, HeLa, K562 and cells lines, respectively. The 199
identified target genes shared across the three cell lines were
selected as the E2F4 target gene signature.

Calculation of iRASs for E2F4 in cancer samples
The REACTIN algorithm, as introduced and previously
described in [24], was applied to all collected cancer sam-
ples using the E2F4 target gene signature and with a mini-
mum of 10,000 permutations. Briefly, REACTIN sorts the
relative expression levels of all genes in a given sample
and generates two cumulative distribution functions to
summarize the expression levels of a target gene set and
non-target gene set of a chosen TF - here, E2F4. REAC-
TIN then uses the differential scores, calculated by com-
paring the two functions, to obtain the iRAS for E2F4 in
each tumor sample. These resulting iRASs are scores simi-
lar to the values of the D-statistic in the Kolmogorov-
Simonov test (KS test) and reflect the regulatory activity

of E2F4 in a sample, with a higher iRAS value indicating a
higher E2F4 regulatory activity as compared to a lower
iRAS value.
For gene expression data measured by two-channel

arrays, the expression levels of genes are represented as
relative values: the log ratios of genes in a sample with
respect to a control. In this case, the expression data
can be directly used as input to the REACTIN method.
However, for gene expression data from one-channel ar-
rays, the absolute expression levels of genes are pro-
vided, which cannot be directly taken as input. To
manage this problem, we performed gene-wise median
normalization to convert the data into relative expres-
sion values. Specifically, we calculated median expres-
sion level for each gene across all samples and
subtracted this median from all values. This median
normalization was performed in log-transformed abso-
lute expression values, thus making post-normalization
data somewhat similar to the log ratios captured by
two-channel arrays.

Survival analyses
Cox PH models were used to examine if E2F4 activity cor-
related with patient survival outcomes. Both univariate
and multivariate regression models with E2F4 iRASs
alone, or E2F4 iRASs plus confounding variables (ER sta-
tus, tumor size, grade, patient age, and so on), respectively,
were investigated. Where indicated, E2F4 iRASs were di-
chotomized into positive score and negative score groups,
enabling E2F4 iRASs to be treated as a binary variable
throughout the analyses. Kaplan-Meier survival curves de-
rived from the Cox PH models were also generated. For
the breast cancer samples, analyses were performed both
within each individual dataset and across the aggregated

Table 1 List of cancer datasets used in this analysis

GSE ID Platform Cancer type Number of samples Source

- cDNA two channel Breast 295 Vijver et al., 2002 [4]

GSE1456 HG-U133A Breast 159 Pawitan et al., 2005 [8]

GSE2034 HG-U133A Breast 286 Wang et al., 2005 [5]

GSE2990 HG-U133A Breast 177 Sotiriou et al., 2006 [6]

GSE3494 HG-U133A Breast 260 Miller et al., 2005 [7]

GSE6532 HG-U133A Breast 327 Loi et al., 2008 [33]

GSE7390 HG-U133A Breast 198 Desmedt et al., 2007 [34]

GSE11121 HG-U133A Breast 200 Schmidt et al., 2008 [35]

GSE13507 Illumina beadchip Bladder 256 Kim et al., 2010 [36]

GSE13041 HG-U133A Glioblastoma 191 Lee et al., 2008 [37]

GSE8894 HG-U133 Plus 2 Non-small cell lung 138 Lee et al., 2008 [38]

GSE17536 HG-U133 Plus 2 Colon 177 Smith et al., 2010 [39]

GSE425 cDNA two channel Acute myeloid leukemia 119 Bullinger et al., 2004 [40]

GSE4475 HG-U133A Burkitt? s lymphoma 221 Hummel et al., 2006 [41]
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dataset derived from all individual datasets pooled to-
gether, as indicated. Analyses were performed in R using
the ? survival? package, specifically using the ? survreg? and
?coxph? functions to construct the Cox PH models and the
? survdiff ? function to compare the difference between two
survival curves.

Determination of intrinsic subtypes of breast cancer
samples
Breast cancer samples were classified into the five in-
trinsic subtypes - basal-like, luminal A, luminal B,
HER2-enriched, and normal-like [46] - using the
PAM50 algorithm [47] after having their gene expres-
sion values median-centered as recommended [48].
Namely, Spearman correlation coefficients between the
median-centered expression values in each sample and
the provided PAM50 centroids for each of the five in-
trinsic subtypes were calculated. Samples were assigned
to the subtype for which they had the highest Spearman
correlation coefficient. Samples with correlations less
than 0.1 for all subtypes were excluded from subsequent
analysis.

Oncotype DX analysis
The recurrence scores of breast cancer samples (ER-
positive, LN-negative) were calculated using a 21-gene
signature proposed by Oncotype DX [49]. Based on the
scores, samples are stratified into low-, intermediate-
and high-risk groups. The R package ? genefu ? was used
to implement the Oncotype DX analysis.

Results
The E2F4 target gene signature contains cell cycle
regulators and is enriched for genes that correlate with
patient survival
Leveraging E2F4 ChIP-seq data from experiments per-
formed across HeLa and K562 [44] and GM06990 [27] cell
lines, the TIP method [45] was used to identify E2F4 target
genes in each cell line at a P value <0.01 confidence level. A
total of 438, 429, and 428 target genes were identified in
the HeLa, K562 and GM06990 cell lines, respectively, of
which 199 were found to overlap across the three cell lines
(Figure 1A). This shared group was defined as the E2F4 tar-
get gene signature. Examination of this gene signature using
DAVID Functional Annotation Clustering [50] against a
Homo sapiens gene background produced 58 clusters re-
lated to cell cycle regulation, mitosis, and microtubule
organization; kinetochore; DNA repair; DNA replication;
nucleoplasm; meiotic cell cycle, and nucleotide binding
(Table S2 in Additional file 2). These cluster categories
match the known important role played by E2F4 in cell
cycle regulation, arrest, and/or progression [26,27].
To preliminarily examine how these 199 E2F4 target

genes might relate to survival, we next compared the cor-
relation of their expression with survival to that of all genes
in an initial dataset, van de Vijver et al. [4]. van de Vijver
et al. measured the expression of a total of 10,333 genes,
102 of which are contained in the 199 E2F4 target gene sig-
nature. For all 10,333 genes, we carried out Cox regression
analysis and found 751 of them to be significantly corre-
lated with patient survival times (disease-free survival
(DFS) time). Of these genes, 58 were among the 102 E2F4
targets, yielding an enrichment of 8-fold (751/10,333 vs. 58/

Figure 1 E2F4? s target gene signature consists of 199 genes and reflects its activity in the cell cycle. (A) A Venn diagram of target genes
identified by ChIP-seq experiments in the HeLa, K562, and GM06900 cell lines. Using a P value <0.01 threshold, 199 genes are found to be
targeted by E2F4 across all three cell lines. (B) E2F4 activity and expression levels throughout the cell cycle in HeLa S3 cells. Activity is calculated
as the regulatory activity score (RAS) and expression is calculated in log ratio from cDNA array. The inferred E2F4 activity derived from RAS
(solid black line), but not the E2F4 expression level (hashed gray line), is significantly periodic during the cell cycle. ChIP-seq, chromatin
immunoprecipitation sequencing.
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102; P = 8e-40, Fisher ? s exact test). After taking confounding
factors such as ER status and positive LN involvement into
account in the model, we identified 83 significant genes, 17
of which were E2F4 targets, yielding an enrichment of 21-
fold (83/10,333 vs. 17/102; P = 2e-18, Fisher ? s exact test).
These results indicate that our E2F4 target gene signature
is enriched for genes with predictive ability for patient sur-
vival in breast cancer.

E2F4 iRASs outperform E2F4 expression levels as markers
of cell cycle phase
To test the E2F4 target gene signature as an indicator
of E2F4 ? s regulatory activity, we compared it to E2F4 ? s
mRNA expression level in how it correlates to cell
cycle phase in a HeLa S3 cell cycle dataset [29]. As
E2F4 is a known critical cell cycle regulator, its activ-
ity cycles with cell cycle phase. Using REACTIN and
E2F4 ? s target gene signature, we calculated the iRASs
of E2F4 throughout the cell cycle. These iRASs show
a significant periodical pattern (P = 3e-10, Fisher ? s G
test), while the expression levels of E2F4 do not
(P >0.1, Fisher ? s G test) (Figure 1B). We conclude
that REACTIN-derived E2F4 iRASs more accurately
reflect E2F4 regulatory activity than E2F4 expression
levels do.

E2F4 iRASs predict breast cancer survival prognosis
We have previously shown that E2F4 activity inferred
from expression of all genes predicts patient survival
prognosis of breast cancer patients [24]. As a first test
of our REACTIN method restricted to the E2F4 target
gene signature, we paralleled this analysis here (Figure 2)
using the same dataset [4]. For each breast cancer sam-
ple, an E2F4 iRAS was generated using REACTIN based
on the sorted relative expression levels of the E2F4 tar-
get genes in the sample (Figure 2A). We compared the
survival prediction with these iRASs scores to survival
prediction with two commonly considered pathological
variables: LN status (positive or negative) and ER status.
Looking at patient outcome data, a Cox PH model
shows that E2F4 iRASs improve survival prediction over
ER and LN status alone (Figure 2B; P = 1e-5). After di-
chotomizing E2F4 iRASs into two groups of high activ-
ity, E2F4 iRAS >0 and low activity, E2F4 iRAS <0, a
Kaplan-Meier plot comparing the two groups recapitu-
lates this finding (Figure 2C; significance of difference
between curves, P = 7e-9), with the E2F4 iRAS >0 group
associated with worse prognosis. In contrast, the ex-
pression level of E2F4 itself does not significantly
predict survival prognosis (P >0.4, data not shown), mir-
roring the Figure 1 finding that activity scores are a

Figure 2 E2F4 activity predicts patient survival in the van de Vijver breast cancer dataset. (A) The E2F4 iRAS derives from the relative
expression levels of E2F4? s target genes in individual samples. If its target genes are relatively highly expressed a larger iRAS results (Sample X),
while lower average expression yields a lower iRAS (Sample Z). (B) In a Cox PH model, E2F4 iRAS significantly predicts patient survival even after
adjusting for ER and LN lymph node status. (C) Patients with positive E2F4 scores (red curve) show significantly shorter survival times than those
with negative E2F4 scores (green curve). Vertical hash marks indicate points of censored data. (B) and (C) derive from the van de Vijver dataset
with overall survival (OS) as the endpoint. ER, estrogen receptor; iRAS, individual regulatory activity score; LN, lymph node; PH,
proportional hazard.
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better indicator of E2F4 function than expression levels
alone.
To ensure that these results were not limited to the van

de Vijver dataset, we obtained all additional publicly avail-
able breast cancer datasets for which survival and clinico-
pathological data were available for at least 150 samples
(Table 1). As with the samples in the van de Vivjer dataset,
we calculated iRASs for each sample and dichotomized
them into high E2F4 activity (E2F4 iRAS >0) and low
E2F4 activity (E2F4 iRAS <0) groups. Kaplan-Meier sur-
vival plots were then generated separately for each dataset,
using as the survival endpoint whichever variable (overall
survival, relapse-free survival, or distant metastasis-free
survival) was most complete. In all seven of the datasets,
E2F4 iRASs significantly predict survival outcome (all P
values <0.05, Figure 3). As with the van de Vijver dataset,
higher E2F4 activity (red curves) is predictive of worse
survival prognosis.
Moreover, we carried out a similar analysis in the breast

cancer metadata downloaded from the ROCK database,
which provides normalized gene expression profiles and
clinical information for 1,570 breast cancer samples. We
calculated the E2F4 iRASs for all samples and dichoto-
mized them into positive and negative groups. Survival
analysis indicates that the RFS times of the positive groups
are significantly shorter than those of the negative groups
(P = 4e-8). After controlling for many clinical variables in-
cluding patient age, tumor size, grade, ER status and LN
status, the E2F4 iRAS is still highly significant in predict-
ing patient RFS times (P = 6e-6) in a Cox survival regres-
sion model.

E2F4 iRASs remain predictive of survival prognosis after
pooling and adjustment for clinicopathological data
Based on our results with individual breast cancer data-
sets, we decided to test REACTIN on a larger dataset, as
the increased sample size from pooling would enable
stratification and adjustment for other variables. Since
iRASs are normalized values, they may be pooled to con-
duct aggregate analyses across data points. Combining to-
gether the samples from all eight breast cancer datasets, a
Kaplan-Meier plot of the pooled data recapitulates the
previous Figures 2 and 3 findings (Figure 4A, significance
of difference between curves, P = 1e-21). As detailed in
the Methods section, clinical data (age at diagnosis, ER
status, tumor size, tumor grade, and LN involvement)
were collected for all breast cancer samples and used to
calculate clinical risk scores using the NPI and Adjuvant!
Online formulae. The pharmacological treatment status of
each sample - whether chemotherapy and/or hormone
therapy was used - was additionally recorded.
Inclusion of these clinicopathological covariates in Cox

PH models of the pooled samples results in adjusted E2F4
iRAS hazard ratios (HRs) that are positive and statistically

significant (Table 2). Regardless of model chosen (Table 2A,
B, and C), E2F4 iRASs significantly predict survival out-
come, with a high E2F4 iRAS resulting in a worse survival
prognosis than low E2F4 iRAS data points (HRs >1.00,
P values <0.001 in all cases). Graphically, Kaplan-Meier
plots of the pooled data, stratified by pharmacological treat-
ment status and composite clinical risk, exhibit these find-
ings as well (Figure 4B). E2F4 iRASs provide additional
prognosis prediction beyond the commonly collected clini-
copathological variables alone.

E2F4 iRASs predict patient survival prognosis in ER-
positive, PR-positive, and MYC-negative histological
subtypes
A tumor ? s histological subtype is a key factor in planning
breast cancer therapy. Stratifying tumors by ER subtype, we
found that E2F4 regulatory activity was significantly
correlated with survival in patients with ER-positive tu-
mors (P = 6e-12), but not in ER-negative ones (P > 0.1)
(Figure 5A). Furthermore, an examination of E2F4 activity
distribution in ER-positive versus ER-negative patients
showed significantly lower levels of E2F4 activity in the
ER-negative group (P = 3e-10, Wilcoxon rank-sum test)
(Figure S1 in Additional file 3). A similar pattern was seen
with progesterone receptor (PR) status, where E2F4 was
significantly correlated with survival in PR-positive (P =
2e-5) but not PR-negative patients (P >0.1) (Figure 5B).
Stratification by MYC expression found E2F4 iRASs to be
significantly correlated in MYC-negative (P = 2e-4) but
not MYC-positive (P = 0.1) patients (Figure 5C).

E2F4 iRASs correlate with the survival prognosis of
intrinsic breast cancer subtypes
It has become increasingly understood that breast can-
cers segregate by gene expression into different intrinsic
subtypes, with the assumption that cancers falling
within the same subtype share a similar prognosis and
suggested therapy method [51]. Several breast cancer
subtypes have been identified, including luminal A, lu-
minal B, HER2-enriched, basal-like, and normal-like
cancers [47]. In a pooled analysis of the eight breast
cancer datasets, a Kaplan-Meier plot of each sample
classified into one of these intrinsic subtypes shows that
subtypes have different survival prognoses (Figure 6A).
Consistent with previous reports [47], the subtypes fall
from good to poor prognosis in the order of luminal A,
normal-like, basal-like, luminal B and HER2-enriched.
Furthermore, the prognosis of these different molecular
subtypes is strongly correlated with E2F4 iRAS: a high
fraction of samples with positive E2F4 iRASs fall into
the poor prognostic subtypes (HER2-enriched, luminal
B and basal-like), whereas in good prognostic subtypes
(luminal A and normal-like), the fraction of samples
with a positive E2F4 iRAS is much lower (Figure 6B).
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These results indicate that the survival prognoses of dif-
ferent intrinsic subtypes can be at least partially
reflected by the E2F4 regulatory program.

Application of E2F4 signature to other cancers
The predictive power of E2F4 iRASs for breast cancer
survival and the correlation of this signature with cell

Figure 3 E2F4 activity predicts patient survival prognosis in an additional seven independent breast cancer datasets. Patients with
positive E2F4 scores (red curve) show shorter survival times than those with negative E2F4 scores (green curve) across all datasets (all P values
<0.05, log-rank test). Vertical hash marks indicate points of censored data. Survival endpoints are as indicated on the vertical axes: overall survival
(OS); relapse-free survival (RFS); distant metastasis-free survival (DMFS).
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cycle phase encouraged us to test the effectiveness of the
E2F4 signature for patient survival prediction in other
cancers. E2F4 iRASs were calculated for samples in blad-
der cancer [36], colon cancer [39], NSCLC [38], glioblast-
oma [37], AML [40], and Burkitt? s lymphoma [41] datasets
and used in conjunction with the available survival data to
generate Kaplan-Meier plots (Figure 7). E2F4 activity level
significantly correlates with survival time in bladder can-
cer (P = 0.01) and glioblastoma (P = 0.007), but not in
NSCLC, AML or Burkitt? s lymphoma (P >0.05). In colon
cancer, although the survival curves for E2F4 iRAS >0
group and iRAS <0 groups are fairly separated, the statis-
tical difference is only moderately significant (P = 0.04). In

addition, the survival times of the two groups are opposite
to what we observed in other cancer types. More detailed
analyses - in datasets with larger number of samples and
with controlling for other factors - should be carried out
before we can conclude the significance of the E2F4 signa-
ture in non-breast cancer types.

Discussion
Several breast and other cancer prognostic methods rely on
gene expression signatures as predictors of survival or the
need for adjuvant therapy for a patient. While these
methods have seen prognostic success and improved
decision-making regarding patient treatment plans, they

Figure 4 Kaplan-Meier plots of the pooled breast cancer datasets, both unstratified (A) and stratified (B). (A) As with the unpooled
results, positive E2F4 scores (red curve) show shorter survival times than those with negative E2F4 scores (green curve) across all datasets
(P value = 1.43e-21, log-rank test). (B) After stratification by pharmacological treatment (top two plots) or the Adjuvant! composite clinical risk
score (bottom two plots), E2F4 iRASs remain predictive of survival prognosis within each stratum (all P values <0.001). Vertical hash marks indicate
points of censored data. Survival endpoint is relapse-free survival (RFS) as indicated on the vertical axes. iRASs, individual regulatory activity scores.
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intrinsically suffer from problems of overfitting and multiple
comparisons that raise questions of whether the genes se-
lected in the signatures are of biological and etiological sig-
nificance. Indeed, much concern has been raised about the
small degree of overlap between different prognostic gene
signatures and the degree to which the given microarray
platform (Affymetrix vs. Agilent, and so on) affects the gene
composition of each signature [52,53].
In this manuscript, we present the result of an alternative

and more robust method of deriving a gene prognostic

signature: using ChIP-seq data from multiple cell lines, we
identify a TF?s set of gene targets, whose differential expres-
sion in patient samples can be used to calculate the TF?s
regulatory activity in these samples. By examining TF activ-
ity, biological significance of the signature is preserved. Fur-
ther, by inferring this TF activity through the expression
levels of its set of gene targets, the TF?s actual functional ac-
tivity is assessed - TFs work via altering their target genes?
expression levels - and in a way that allows for the use of
widely available microarray data and regardless of platform

Table 2 Cox PH models of E2F4 iRAS hazard ratios (HRs) adjusted for clinicopathological data

A

Variable Type Hazard ratio Std. error 95% CI P value

E2F4 iRAS (high vs. low) Binary 2.013 0.108 1.63 - 2.49 8.54E-11

Age Continuous 1.002 0.004 0.99 - 1.01 0.6890

ER status (+ vs. -) Binary 1.061 0.113 0.85 - 1.33 0.6029

Grade Ordinal 1.157 0.074 1.01 - 1.34 0.0475

Size Continuous 1.013 0.004 1.01 - 1.02 0.0001

Lymph node status (+ vs. -) Binary 1.407 0.149 1.05 - 1.88 0.0215

Pharmacological treatment Binary 0.651 0.148 0.49 - 0.87 0.0037

B

Variable Type Hazard ratio Std. error 95% CI P value

E2F4 iRAS (high vs. low) Binary 1.9013 0.0918 1.59 - 2.28 2.57E-12

Adjuvant! risk score (low vs. high) Binary 0.6799 0.1001 0.56 - 0.83 0.0001

Pharmacological treatment Binary 0.8362 0.091 0.70 - 0.99 0.0493

C

Variable Type Hazard ratio Std. error 95% CI P value

E2F4 iRAS (high vs. low) Binary 1.86177 0.10 1.52 - 2.27 1.12E-09

NPI score Continuous 1.29314 0.05844 1.15 - 1.45 1.09E-05

Pharmacological treatment Binary 0.76527 0.09927 0.63 - 0.93 0.0070

Whether clinicopathological covariates are considered separately (A) or combined into either the stratified Adjuvant!Online score (B) or the Nottingham Prognostic
Index (NPI) (C), E2F4 iRASs significantly predict survival outcome, with a high E2F4 iRAS resulting in worse survival prognosis (HRs >1.00, P values <0.001 in all
cases). Survival endpoint is relapse-free survival for all three tables. Distant metastasis-free survival and overall survival endpoints recapitulate these results (data
not shown). Results represent the pooled sample data of all eight breast cancer datasets (Table 1). For (A), n = 1,349; (B), n = 1,511; (C), n = 1,369. ER, estrogen
receptor; iRASs, individual regulatory activity scores.

Figure 5 Application of the E2F4 signature for predicting patient survival times in different histological subtypes. Note that E2F4
signature is effective in ER+ but not in ER- samples (A), in PR+ but not in PR- samples (B), and in low MYC but not in high MYC samples (C). ER,
estrogen receptor; PR, progesterone receptor.
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type. Hence, the signature is fundamentally derived from
mechanistic relationships of genetic regulation and is easily
measured with current techniques.
With E2F4 ChIP-seq data in the three cell lines of

GM06990, K562, and HeLa S3, we have identified a set of
199 genes as significantly targeted (P <0.01) by E2F4 across
the three cell lines (Figure 1A). To confirm this gene set?s
ability to infer E2F4?s regulatory activity level, we have used
the gene set in conjunction with REACTIN to generate

E2F4 iRASs in a cell cycle phase dataset [29], finding that
E2F4 iRASs exhibits a periodic pattern and greatly outper-
forms E2F4 gene expression level in correlating with cell
cycle phase (Figure 1B). As E2F4 is a known critical regula-
tor of the cell cycle [25], this result suggests that E2F4 iRASs
reflect E2F4 functional activity and with much better accur-
acy than E2F4 gene expression level alone.
Using this method of generating E2F4 iRASs for given

samples, we turned to breast cancer based on our prior
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Figure 7 Application of the E2F4 signature for predicting patient survival times in six cancer types. In each cancer dataset, patients are
stratified into a group with positive E2F4 activity and a group with negative E2F4 activity. The difference in their survival curves is calculated
using the log-rank test.

Figure 6 E2F4 scores in different molecular subtypes of breast cancer. (A) The survival curves of patients in five molecular subtypes. (B) The
number of samples with positive (red) and negative (green) E2F4 iRASs in each molecular subtype. For the subtypes with relatively good
prognosis, luminal A and normal-like, there is a high fraction of positive E2F4 iRAS samples, while the subtypes with relatively poor prognosis,
HER2-enriched, luminal B and basal-like, have predominantly high fractions of negative E2F4 iRAS samples (A) compared to (B). iRASs, individual
regulatory activity scores.
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work [24] to examine E2F4 ? s inferred functional activity
through iRASs and its ability to predict survival progno-
sis. In all publicly available, sufficiently sized datasets
containing survival data, we have found that E2F4 iRASs
are significant predictors of survival outcome (Figures 2,
3 and 4A), with a higher E2F4 iRAS predicting shorter
survival. Importantly, pooled analyses further show that
this predictive power remains robust even after adjusting
for clinicopathological data through Cox PH multivariate
regression (Table 2) and stratification, including by
pharmacological treatment status (Figure 4). In contrast,
most of the currently available prognostic gene signature
tools apply only to early-stage, untreated cancers. Inter-
estingly, in all Cox PH models (Table 2), the E2F4 iRAS
has the largest HR and smallest P value of all covariates,
suggesting it not only provides prognostic prediction be-
yond the other variables but that it is additionally the
most important driver of survival outcome. The finding
that it remains prognostic even with stratification by
treatment status further indicates that current pharma-
cological therapy does not disrupt the E2F4 functional
program, perhaps suggesting a potential future treatment
target.
Beyond examination with clinicopathological data, we ex-

amined E2F4 iRASs and their relationship to histological
and molecular subtypes. We evaluated confounding of our
results by patient ER and PR status, based on literature
linking E2F4 with progression of estrogen-dependent breast
cancer cell lines. Interestingly, E2F4 was a significant pre-
dictor of survival only in ER-positive and PR-positive and
not ER-negative or PR-negative patients (Figure 5A and B),
suggesting that E2F4? s regulatory activity plays a role in
steroid-dependent but not steroid-independent cancers. A
connection between ER-mediated regulation of the cell
cycle and E2F4 has been previously suggested: Carrol et al.
proposed a mechanism for anti-estrogen drug effects on
cell cycle arrest involving the phosphorylation of E2F4,
which then induced cell cycle arrest in the MCF7 breast
cancer cell line [54]. Dhillon et al. showed that MCF7-
CycE, a breast cancer cell line overexpressing cyclin E
(which, in turn, binds E2F4), was capable of overriding
tamoxifen-mediated growth arrest in comparison to its
wild-type MCF7 counterpart [55]. These results imply a
connection between E2F4 activity and ER-mediated effects
on the cell cycle, which agree with our observation of ER
status as a confounder of E2F4 activity in breast cancer
survival.
Additionally, we have compared the results from the

E2F4 signature and those from the Oncotype DX method
[49] (Figure S2 in Additional file 4). From the Ur-Rehman
breast cancer metadata, we selected 557 samples that were
ER-positive, LN-negative and had known RFS information.
We calculated the ? recurrence score? of these samples using
the Oncotype DX method, and then divided samples into

low- (200 samples), intermediate- (124 samples) or high-
(233 samples) risk groups. Survival analysis indicates that
the three groups are significantly different in their RFS (P =
2e-12). The E2F4 signature achieved comparable results in
the same sample set - the iRAS >0 group (195 samples) dis-
played significantly shorter RFS than the iRAS <0 (362
samples) group (P = 8e-11). There is a correlation between
the Oncotype DX groups and the E2F4 groups. In the high,
intermediate and low Oncotype DX groups, the fraction of
samples with E2F4 iRAS >0 are 64%, 19% and 11%, respect-
ively, consistent with their expected prognosis. More im-
portantly, our results indicate that the E2F4 signature can
further improve the Oncotype DX classification results.
When the 124 intermediate Oncotype DX samples were
further stratified into iRAS >0 and iRAS <0 subgroups
based on their E2F4 scores, the positive subgroup showed
significantly shorter RFS than the negative subgroup (P =
0.0004). This suggests that E2F4 signature can be used in
conjunction with the Oncotype DX system to achieve bet-
ter performance.
Beyond E2F4 regulatory activity, cell proliferation can be

captured by other molecular features. For instance, the Ki-
67 protein (encoded by the MKI67 gene) is strictly associ-
ated with cell proliferation and has been used as a cellular
marker for proliferation [56]. The prognostic value of it has
been demonstrated in multiple tumor types including
breast cancer [57-59]. Compared to the E2F4 signature that
is based on multiple genes, however, the single gene MKI67
marker is not stable and generally shows lower predictive
accuracy. Specifically, when samples are stratified into two
groups with high and low MKI67 expression respectively,
the two groups show significant survival difference with
P = 0.0001 (data not shown), which is less predictive then
the E2F4 signature (P = 7e-9, Figure 2C).
An emerging method for breast cancer prognosis relies

on classification of breast cancer into intrinsic subtypes
based on their gene expression profiles, with the five sub-
types of normal-like, basal-like, luminal A and B, and
HER2-enriched most frequently used (Parker et al. 2009
[47]). Analysis of E2F4 levels in these subtypes showed a
significant variation among them, with lower levels of E2F4
activity seen in a greater fraction of cancer samples classi-
fied into intrinsic subtypes with better prognosis (Figure 6).
Still, E2F4 could serve to improve the prognostic power of
the current molecular classifications by adding an add-
itional factor of classification: negative (low) versus positive
(high) E2F4 activity. For example, when luminal B samples
were further stratified into two groups based on E2F4 iRAS,
the 50% samples with lower E2F4 activity exhibit signifi-
cantly longer RFS times than the remaining 50% samples
with higher E2F4 activity (P = 0.02).
Since our derived E2F4 signature was selected with the

intent of being relatively tissue-independent, consisting
of genes that play a role in cell cycle progression across
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three cell lines, we decided to evaluate E2F4 in six other
cancers: bladder cancer, colon cancer, lung cancer (NSCLC),
brain cancer (glioblastoma), leukemia (AML) and Burkitt?s
lymphoma. Our results show that E2F4 was significantly
correlated with survival time in bladder cancer, glioblastoma,
and colon cancer, but not in NSCLC, AML or Burkitt?s
lymphoma. These are preliminary results, and more investi-
gations are needed to more precisely understand the role of
the E2F4 regulatory program in tumorigenesis and progres-
sion of cancer types beyond breast cancer.
This study has several limitations. First, the numbers of

effective samples in different cancer datasets are very dif-
ferent, which influence the power of statistical analysis.
This also restricts the ability to examine the E2F4 signa-
ture in certain breast cancer subtypes accounting for only
a small fraction of samples. Second, the breast cancer
datasets used in this study are diverse in terms of sample
selection, platforms for gene expression measurement,
genetic background of patients, and treatment to patients.
As such, it is difficult to identify the confounding variables
in each dataset and correct their effect in prognosis. Fi-
nally, the quality of survival information in each dataset
can vary considerably depending on the length of follow-
up and other factors. This will also impact the results of
the prognostic predictions.
Going forward, we aim to extend the application of the

E2F4 signature to several directions. First, to refine the sig-
nature, we will select a subset of core genes from the E2F4
signature while keeping a comparable predictive power.
Second, it will be useful to examine the effectiveness of this
signature in more specific breast cancer subtypes, for ex-
ample in ER+ LN+ (LN-positive) and ER+ LN-. Third, it
will also be interesting to test whether the E2F4 signature
can predict sensitivity to a specific drug or treatment, for
example the CDK inhibitors, which can repress the E2F4
regulatory program. Finally, it will be useful to more thor-
oughly examine its effectiveness in other cancer types.

Conclusions
This study presents a novel method of determining a signa-
ture for cancer prognosis that relies on a TF? s activity in-
ferred from the differential expression of its target genes.
We evaluated our method using E2F4, a well-known cell
cycle regulator with an unclear role in cancer progression,
and tested its predictive power for patient survival in breast
cancer. Our results show a significant difference in survival
between patients with positive and negative E2F4 activity
scores, corresponding to high and low levels of E2F4 target
gene expression, respectively. Survival is favored for pa-
tients with negative E2F4 activity scores, suggesting that the
upregulation of E2F4 activity is associated with worse breast
cancer prognosis. Comparison of hazard ratios between
E2F4 activity scores and common prognostic scales, such
as Adjuvant! and Nottingham, shows E2F4 to have a higher

hazard ratio, suggesting it is a stronger predictor of tumor
prognosis than these two clinicopathological-derived prog-
nostic indices. Examining E2F4 activity scores within strati-
fied groups, such as Oncotype DX risk strata, breast cancer
intrinsic subtypes, and pharmacological treatment status,
shows that E2F4 activity scores convey additional prognos-
tic information within these strata. E2F4 activity level ro-
bustly predicts breast cancer patient survival across a
variety of clinical contexts.
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Additional file 1: Table S1. Clinical information and iRAS scores for all
breast cancer samples used in this analysis.

Additional file 2: Table S2. Gene Ontology categories that are
enriched in the 199 E2F4 signature genes.

Additional file 3: Figure S1. The distribution of E2F4 scores in all (the
left panel), ER+ (the middle panel) and ER- (the right panel) breast cancer
samples.

Additional file 4: Figure S2. Application of E2F4 signature to predicting
prognosis of ER+ node-breast cancer. Top left: Oncotype DX divides samples
into high-, intermediate- and low-relapse risk groups. Top right: E2F4 signature
divides patient into two groups with significant survival difference. Bottom left:
E2F4 can further stratify the Oncotype-classified intermediate group into
high- and low-risk groups. Bottom right: Within the Oncotype-classified
intermediate group, patients with high and low Oncotype DX scores do not
show significant difference in their survival times.
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