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Intrinsic Innate Immunity Fails To Control Herpes Simplex Virus and
Vesicular Stomatitis Virus Replication in Sensory Neurons and
Fibroblasts

Pamela C. Rosato, David A. Leib

Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA

ABSTRACT

Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in the sensory neurons of the trigeminal ganglia (TG), wherein it
retains the capacity to reactivate. The interferon (IFN)-driven antiviral response is critical for the control of HSV-1 acute replication.
We therefore sought to further investigate this response in TG neurons cultured from adult mice deficient in a variety of IFN signaling
components. Parallel experiments were also performed in fibroblasts isolated concurrently. We showed that HSV-1 replication was
comparable in wild-type (WT) and IFN signaling-deficient neurons and fibroblasts. Unexpectedly, a similar pattern was observed for
the IFN-sensitive vesicular stomatitis virus (VSV). Despite these findings, TG neurons responded to IFN-� pretreatment with STAT1
nuclear localization and restricted replication of both VSV and an HSV-1 strain deficient in �34.5, while wild-type HSV-1 replication
was unaffected. This was in contrast to fibroblasts in which all viruses were restricted by the addition of IFN-�. Taken together, these
data show that adult TG neurons can mount an effective antiviral response only if provided with an exogenous source of IFN-�, and
HSV-1 combats this response through �34.5. These results further our understanding of the antiviral response of neurons and high-
light the importance of paracrine IFN-� signaling in establishing an antiviral state.

IMPORTANCE

Herpes simplex virus 1 (HSV-1) is a ubiquitous virus that establishes a lifelong latent infection in neurons. Reactivation from
latency can cause cold sores, blindness, and death from encephalitis. Humans with deficiencies in innate immunity have signifi-
cant problems controlling HSV infections. In this study, we therefore sought to elucidate the role of neuronal innate immunity
in the control of viral infection. Using neurons isolated from mice, we found that the intrinsic capacity of neurons to restrict vi-
rus replication was unaffected by the presence or absence of innate immunity. In contrast, neurons were able to mount a robust
antiviral response when provided with beta interferon, a molecule that strongly stimulates innate immunity, and that HSV-1 can
combat this response through the �34.5 viral gene. Our results have important implications for understanding how the nervous
system defends itself against virus infections.

Herpes simplex virus 1 (HSV-1) is a prevalent neurotropic vi-
rus that persists for the lifetime of the host (1). It infects

primarily via the orofacial route, where it undergoes rounds of
lytic replication in the mucosal epithelium of the eyes, nose, and
mouth. After entering the axonal terminals of innervating sensory
neurons, the virus then travels in a retrograde direction to the cell
body, which resides in the trigeminal ganglia (TG), where it estab-
lishes latency, facilitating persistence in the host. Spontaneous re-
activation from latency can occur, and the virus travels in the
anterograde direction to undergo subsequent rounds of lytic rep-
lication in the mucosal epithelium, resulting in viral shedding and
enabling host-to-host transmission (2, 3). It is notable that the
successful completion of the HSV-1 life cycle in vivo requires that
the virus can infect and replicate in multiple cell types.

HSV-1 replication results in the production of type I interferon
(IFN), and IFN responses are essential to controlling infection
(4–10). Classically, infected cells can detect the presence of virus
through pathogen recognition receptors (PRRs), which leads to
the activation of key transcription factors, including interferon
regulatory factor 3 (IRF-3) and nuclear factor �B (NF-�B) (11).
This induces the production and secretion of type I IFN, which
acts in an autocrine or paracrine manner to engage the IFN recep-
tor (IFNR) and activate the Janus-activated kinase (JAK) and sig-
nal transducer and activator of transcription (STAT) pathway

through the transcription factor STAT1. Once activated, STAT1
localizes to the nucleus and subsequently induces production of
interferon-stimulated genes (ISGs) (12). This pathway self-ampli-
fies via successive secretion of IFN-�/� and stimulation of IFN
receptors. ISGs establish an antiviral state in the cell through in-
hibition of transcription and translation, stimulation of cytokine
production, and promotion of apoptosis. Uninfected cells can also
respond to secreted exogenous type I IFN, establishing an antiviral
state to further halt viral spread (13).

The importance of the IFN-driven antiviral response in com-
bating HSV-1 has been demonstrated in humans with genetic im-
pairments in Toll-like receptor 3 (TLR3)- and STAT1-dependent
pathways manifesting as increased frequency of recurrent herpes
simplex encephalitis (HSE) (4–7). This is recapitulated in mouse
models of acute HSV-1 infection, where mice lacking components
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of antiviral signaling succumb rapidly to disease (8–10). The im-
portance of this pathway to both host and pathogen is further
underscored by the presence of many HSV genes that counter this
antiviral response (14, 15). Of note is the �34.5 viral protein,
which reverses the double-stranded RNA (dsRNA)-dependent
protein kinase R (PKR)-mediated phosphorylation of eIF2�,
thereby relieving translational arrest, and prevents TANK-bind-
ing kinase (TBK) phosphorylation of IRF3 (16–18). �34.5 also
serves to counter the host autophagy response, thereby suppress-
ing xenophagy and antigen presentation (19, 20). HSV-1 strains
lacking �34.5 are attenuated in humans (21) and in mouse models
of intracerebral and corneal infection (22, 23). The virulence of
��34.5 mutant viruses is fully and specifically restored in IFN-
���R�/� and PKR�/� mice, demonstrating the role of �34.5 in
counteracting the IFN response (22). Additionally, the demon-
strated safety of �34.5-deficient oncolytic HSV-1 vectors upon
intracerebral infection in clinical trials highlights the importance
of �34.5 as a neurovirulence factor in humans (21).

Recent work has shown that autophagy rather than IFN signal-
ing is the dominant pathway for the neuronal antiviral response to
HSV-1 (24). Autophagy is a catabolic process of cytoplasmic pro-
tein and organelle degradation, which can also be triggered by
invading pathogens in a process known as xenophagy. This occurs
through engulfment of cytoplasmic contents by autophagosomes
and subsequent fusion with the lysosome (25, 26). Other studies,
however, have shown an important role for type I IFN signaling in
combating HSV-1 infection in neurons (27). For example, HSV-1
replication was reduced in IFN-pretreated sensory neurons in-
fected via axon terminals (28), and this promoted a quiescent state
that resembled bona fide latency (29, 30). Additionally, neurons
derived from stem cells from patients with genetic defects in IFN-
driven antiviral signaling showed increased permissivity to HSV-1
(31). Given these findings, a clearer understanding of the nature of
the neuronal antiviral response to HSV-1 is needed to elucidate
the factors that regulate establishment, maintenance, and reacti-
vation from latency.

Many previous in vitro studies of neuronal HSV infection have
utilized sensory or sympathetic neurons derived from embryonic
or early postnatal animals (30, 32–34). While these models have
been informative, the innate responses in these cells may not ac-
curately reflect those of adult sensory neurons, since subtype and
differentiation state significantly impact the magnitude and qual-
ity of antiviral responses (35, 36). We therefore cultured TG neu-
rons from adult mice in an attempt to more accurately reflect the
neuronal subpopulations and differentiation state of the neurons
infected by HSV-1 in vivo (37). These cultures have been charac-
terized previously and represent the neuronal heterogeneity of the
adult murine trigeminal ganglia seen in vivo (37–40).

To better dissect the antiviral response of neurons and gain
perspective on responses to RNA virus infection, we also used the
prototypic interferon-sensitive virus, vesicular stomatitis virus
(VSV) (41, 42). IFN has been show to restrict VSV replication in
other neuronal cultures (43, 44), and mouse models of intranasal
VSV infection have demonstrated a critical role for IFN in protec-
tion against neuropathogenesis (45, 46). Using VSV and HSV-1
mutants in combination with genetic knockouts of IFN signaling,
we sought to further our understanding of the antiviral response
of sensory neurons. For comparison purposes, and to gain a wider
perspective on the potential impact of these cells on pathogenesis,
we also performed parallel experiments using bone marrow-de-

rived dendritic cells (BMDCs) and adult fibroblast cultures. Den-
dritic cells are able to mount robust antiviral responses and were
used as a positive control (47, 48). Murine embryonic fibroblasts
(MEFs) have been used in many studies as an IFN-responsive
nonimmune cell capable of responding to viral infection, includ-
ing HSV-1 and VSV, through upregulation of IFN-� transcript
and protein (49–52). Rather than using MEFs, in this study we
chose to utilize fibroblasts derived from adult mice to provide a
more appropriate comparison with neurons derived from mice of
the same developmental age.

Our results showed that the intrinsic innate antiviral response
of adult TG neurons is insufficient to counter viral replication. TG
neurons did, however, respond robustly to exogenous IFN-� to
effectively restrict VSV replication, demonstrating the presence of
a functional antiviral response through paracrine IFN signaling.
This response was insufficient, however, to restrict HSV-1 repli-
cation. This is in contrast to adult fibroblasts and BMDCs, in
which HSV-1 replication was significantly reduced by exogenous
IFN-�. We further showed that resistance of HSV-1 to IFN-�
signaling in neurons is mediated by �34.5 and is only partly de-
pendent on the ability of �34.5 to bind the essential autophagy
protein Beclin 1. Importantly, these data demonstrate a critical
role for exogenous IFN-� in establishing a functional antiviral
state in TG neurons and have significant implications for our un-
derstanding of acute and latent HSV infections.

MATERIALS AND METHODS
Neuron isolation and culture. Coverslips (12 mm) were coated with
poly-D-lysine (BD Biosciences) at 20 �g/ml in Hanks balanced salt solu-
tion minus calcium/magnesium (HBSS; Cellgro) for a minimum of 3 h.
Coverslips were then washed three times with sterile distilled water and
coated with natural mouse laminin (Invitrogen) at a concentration of 18
�g/ml in HBSS overnight. Trigeminal ganglia (TG) neurons were isolated
as described previously with a few modifications (37). Mice 6 to 10 weeks
old were euthanized by CO2 and transcardially perfused with phosphate-
buffered saline (PBS; HyClone). TGs were harvested and enzymatically
digested in papain solution consisting of 40 units/ml papain (Worthing-
ton) in HBSS with 1 mg L-cysteine (Sigma) and 3 �l saturated sodium
bicarbonate (Sigma) for 20 min at 37°C on a rotator. This was followed by
a subsequent 20-min incubation at 37°C on a rotator in a solution of 5
mg/ml collagenase type II (Invitrogen) and 5.5 mg/ml neutral protease
(Worthington) dissolved in HBSS. TGs were then triturated in Neuro-
basal-A (NB-A) working medium consisting of Neurobasal-A (Invitro-
gen), 2% SM1 (StemCell), and 1% penicillin-streptomycin (penn/strep;
HyClone). The resulting homogenate was spun over a four-layer density
gradient made with Optiprep and NB-A working medium. Optiprep was
first diluted to 50.5% with 0.8% sodium chloride and then combined with
NB-A working medium to obtain the following gradient layers (Optiprep:
NB-A working medium); 450 �l:550 �l, 350 �l:650 �l, 250 �l:750 �l, and
150 �l:850 �l. After a 20-min spin at 800 	 g, two bands of lower density
were collected and washed three times. Neurons were counted and seeded
at a density of 3,600 neurons/12-mm coated coverslip in a volume of 60
�l. After 1 to 2 h, coverslips were transferred to 24-well plates and neurons
were cultured in NB-A complete medium with the antimitotic 5=-fluro-
2=deoxyuridine (FUDR; Sigma) for a minimum of 3 days prior to use.
NB-A complete medium consisted of Neurobasal-A, 2% SM1, 1% Glu-
taMAX (Invitrogen), 1% penn/strep, 50 ng/ml Neurturin (R&D Systems),
50 ng/ml neuronal growth factor (NGF; Invitrogen), 50 ng/ml glial-de-
rived neurotrophic factor (GDNF; R&D Systems), and 60 �M FUDR.

BMDC isolation and culture. Bone marrow-derived dendritic cells
(BMDCs) were isolated and cultured as described previously (8). Briefly,
femurs were removed from mice that had been lightly perfused for TG
neuronal isolation. Bone marrow was flushed and filtered through a 100-
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�M-pore-size mesh. Cells were seeded in 6-well plates at a density of 3
million cells per well. Cells were differentiated through culture with RPMI
1640 (HyClone), 1% sodium pyruvate (HyClone), 10% fetal bovine se-
rum (FBS; Atlanta Biologicals), 0.5% penn/strep, 1% L-glutamine (Hy-
Clone), and 15% granulocyte-macrophage colony-stimulating factor
(GM-CSF). Isolation of BMDCs and resulting experiments were done
separately and independently for each knockout and respective wild-type
strain.

Fibroblast isolation and culture. Fibroblasts from adult mice were
obtained through ear clippings and subsequently minced and digested in
1,000 U/ml collagenase type II (Invitrogen) followed by 0.05% trypsin
(Cellgro). Resulting cell lysate was triturated and plated in 6-well plates in
Dulbecco’s modified Eagle’s medium (DMEM) (HyClone) with 10% FBS,
1% nonessential amino acids, 1% GlutaMAX (Invitrogen), and 1% penn/
strep.

Virus infection and interferon treatment. Neurons cultured on cov-
erslips were infected in NB-A complete medium (minus FUDR) in 60 �l
for 1 h. They were then washed in NB-A working medium and replaced
with NB-A complete. For viral growth curves, samples underwent a
freeze-thaw prior to determining the titer of supernatant and cell lysate
combined. A multiplicity of infection (MOI) of 20 (neurons) and 0.5
(fibroblasts) was used for all growth curves unless otherwise noted, which
corresponds to an approximate effective MOI of 0.01, as determined by
infection and staining 6 h postinfection (hpi) with a polyclonal HSV-1
antibody (B0114; Dako). BMDCs were harvested and resuspended in me-
dium without GM-CSF in a 15-ml conical tube in 500 �l. Cells were
incubated with virus for 1 h at 37°C, agitating every 15 min. Cells were
spun down and washed with PBS and then resuspended and seeded in a
12-well dish. An MOI of 0.1 was used for all BMDC growth curves. Viral
titers were assessed via plaque assay on Vero cells as described previously
(53). When noted, cells were treated with IFN-� (PBL Interferon Source)
at 12.5 units/ml 18 h prior to infection.

Immunofluorescence. Cells were fixed in 3% paraformaldehyde and
then permeabilized with 0.1% Triton X-100 (Sigma) in 2% normal goat
serum (NGS; Vector Laboratories) in PBS. Primary and secondary anti-
body incubations were done in 2% NGS for 30 min at 37°C and room
temperature, respectively. Primary antibodies used were rabbit anti-
STAT1�91 (M-23; Santa Cruz Biotechnology), rabbit anti-phospho-
STAT1 (A-2; Santa Cruz Biotechnology), rabbit anti-beta III tubulin (Ab-
cam), mouse anti-NeuN (A60; Millipore), mouse anti-ICP0 (Virusys),
mouse anti-ICP8 (39S; kindly provided by David Knipe) (54), and rabbit
anti-HSV-1 (B0114, Dako). Secondary antibodies used were goat anti-
mouse Alexa 555 and goat anti mouse/rabbit Alexa 488 (Invitrogen).
STAT1 staining was quantified and scored as the percentage of cells ex-
hibiting predominantly nuclear localization. This was done for a mini-
mum of 100 cells per group per sample.

Viruses and mice. Strains KOS and 17 syn
 and the �34.5-null mu-
tant (��34.5 mutant) and Beclin-binding domain mutant (�BBD mu-
tant) were made as previously described (55–58). ICP0 virus (dl1403) (59)
was kindly provided by David Bloom. STING�/� mice were generously
provided by Glen Barber and described previously (60). STAT1�/� mice
were generously provided by Joan Durbin and previously described (61).
IFN-���R�/� (AG129) mice were described previously (62). IRF3/7
double knockout mice were generated by crossing IRF3�/� and IRF7�/�

mice (50) and have been described previously (63). This study was carried
out in strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health.
The protocol was approved by the Dartmouth IACUC Committee (5 June
2012, permit number leib.da.1). No surgery was performed, and all efforts
were made to minimize suffering.

IFN-� enzyme-linked immunosorbent assay (ELISA). Neurons, fi-
broblasts, and BMDCs were infected with virus as described above,
washed, and then cultured for 24 h in minimal medium. Approximately
5,000 neurons, 5,000 fibroblasts, and 20,000 BMDCs were infected per
sample, and results were normalized to cell number. Supernatants were

harvested and processed on an IFN-� ELISA-HS kit as per the manufac-
ture’s protocol (PBL Interferon Source).

RESULTS
The intrinsic antiviral response of TG neurons is insufficient to
control HSV-1 replication. To assess the impact of intrinsic anti-
viral signaling of TG neurons on HSV-1 replication, we isolated
neurons from wild-type (WT) mice and mice deficient in succes-
sive components of the antiviral signaling cascade, namely, the
DNA sensor/adaptor molecule stimulator of interferon genes
(STING), the transcription factors IRF3 and IRF7, type I and II
interferon receptors (IFN-���R), and STAT1. Neuronal cultures
were infected with HSV-1 strain KOS, and viral replication was
measured over time in parallel with concurrently isolated bone
marrow-derived dendritic cells (BMDCs). BMDCs are well char-
acterized in their ability to mount a robust and effective antiviral
response and were therefore used as a positive control (47, 48). As
expected (10), WT BMDCs controlled HSV-1 replication, while
BMDCs deficient in antiviral signaling supported significantly
higher viral titers (Fig. 1A). Contrary to this, however, WT and
antiviral signaling-deficient neuronal cultures yielded comparable
titers of HSV-1 with no significant differences (Fig. 1B). Since
KOS is a relatively avirulent HSV-1 strain in vivo (64), we wished
to rule out the possibility that it replicates inherently poorly in
neurons, even in the absence of IFN signaling. We therefore per-
formed analogous experiments with HSV-1 strain 17 in WT and
STAT1�/� neurons and BMDCs (Fig. 1C). Strain 17 showed the
identical pattern to KOS whereby there was no difference in rep-
lication between WT and STAT1�/� neurons, while STAT1�/�

BMDCs yielded significantly increased titers compared to those of
the WT. This pattern of results was also observed at lower MOIs
(data not shown).

Dendritic cells (DCs) are uniquely equipped to mount a robust
antiviral response to HSV and other viruses and are a significant
source of type I IFN (48, 65, 66). To gain further insight into the
cell specificity of the antiviral response, we measured HSV repli-
cation in fibroblasts, a cell type that is important to the HSV life
cycle and has been used to examine antiviral responses in other
studies (49–52). WT (129SVEV) or STAT1�/� fibroblasts were
seeded and infected at a density comparable to our experiments
with TG neurons. As judged by antibody staining 6 hpi, an MOI of
0.5 for fibroblasts and an MOI of 20 for neurons achieved infec-
tion of approximately 1% of cells and was used for all experiments
unless noted otherwise. The relatively high MOI needed to infect
1% of cultured neurons was consistent with previous findings
(37). A comparison of strain 17 replication in WT and STAT1�/�

fibroblasts revealed no difference in replication (Fig. 1C), demon-
strating that these cells, like TG neurons, may be impaired in
mounting an intrinsic antiviral response to HSV.

Exogenous IFN-� but not viral infection causes STAT1 relo-
calization to the nucleus of TG neurons. Given the above-de-
scribed data, we wished to test the hypothesis that TG neurons lack
the capacity to mount an effective IFN-driven antiviral response.
We exposed neurons, fibroblasts, and BMDCs to IFN-� and ex-
amined cells for STAT1 nuclear localization by immunofluores-
cence as a readout for IFN responsiveness (Fig. 2). One hour post-
IFN-� exposure, we observed STAT1 nuclear localization in
�99% of BMDCs (Fig. 2A and B), 90% of fibroblasts (Fig. 2C and
D), and 90% of neurons (Fig. 2E and F). Having shown that these
cell types could all respond robustly to IFN-�, we next measured
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STAT1 relocalization upon HSV infection. Cells were infected
with wild-type HSV-1 strain 17 and stained for both STAT1 and
the abundant HSV-1 DNA replication protein ICP8 as a marker
for infected cells (67). In these infected cultures, BMDCs exhibit-
ing both ICP8-positive and ICP8-negative staining showed signif-
icantly increased nuclear STAT1 staining 5 h postinfection (Fig.
2A and B). This indicates that HSV infection of BMDCs was suf-
ficient to initiate autocrine IFN signaling in infected cells and a
paracrine response in naive cells (Fig. 2A and B). In contrast, in
infected TG neuron and fibroblast cultures, there was minimal
STAT1 nuclear localization in ICP8-positive or ICP8-negative
cells 5 h postinfection (Fig. 2C to F), with similar results observed
at 3 and 12 hpi (data not shown). The relatively faint STAT1 stain-
ing in mock and infected fibroblasts (Fig. 2C) is likely due to the
large cell size and diffuse cytoplasmic STAT1 distribution.

HSV-1 encodes proteins that interfere with STAT1 phosphor-

ylation (14, 15). Given the observed lack of STAT1 nuclear local-
ization in infected neurons and fibroblasts, we wished to distin-
guish whether this was due to a suppressive activity mediated by
HSV or a limited cellular response to infection. To test this, we
infected TG neurons, fibroblasts, or BMDCs with vesicular stoma-
titis virus (VSV), a prototypic IFN-sensitive virus (41). Cells were
examined by immunofluorescence for STAT1 (neurons and fi-
broblasts) or phosphorylated STAT1 (pSTAT1; BMDCs) localiza-
tion and presence of the VSV spike glycoprotein VSV-G (Fig. 2A,
C, and E, right panels). In VSV-infected BMDCs, the majority of
both VSV-G-positive and -negative cells showed STAT1 staining
in the nucleus (Fig. 2A and B) consistent with autocrine and para-
crine responses to IFN. In contrast, in TG neuron and fibroblast
cultures, we observed minimal STAT1 nuclear staining in VSV-G-
positive or -negative cells (Fig. 2C to F), suggesting these cells may
have inefficient responses to infection. We subsequently tested

FIG 1 The intrinsic antiviral response of TG neurons is insufficient to effectively control HSV-1 replication. (A) Replication of HSV-1 KOS in BMDCs derived
from mice deficient in antiviral signaling (STING�/�, STAT1�/�, IRF3/7�/�, and IFN-���R�/�) or respective wild-type background strains. Cells were infected
at an MOI of 0.1. For all experiments, viral yield was determined by plaque assay on Vero cells at 12 and 48 h postinfection (hpi). (B) HSV-1 KOS replication in
TG neurons derived from the mice used for panel A, infected at an MOI of 20. (C) HSV-1 strain 17 replication in WT (129SVEV) and STAT1�/� BMDCs, TG
neurons, and fibroblasts infected at an MOI of 0.1, 20, and 0.5, respectively. In all experiments, time zero represents input inoculum. Data points represent a total
from at least three (for neurons) or two (for BMDCs and fibroblasts) independent experiments each performed in triplicate. Error bars represent standard errors
of the means (SEM). Significance was evaluated by two-way analysis of variance (ANOVA) with Bonferroni posttests. ***, P � 0.001.
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whether exogenous IFN-� exposure could induce STAT1 nuclear
localization in HSV-1-infected neurons and fibroblasts. In in-
fected fibroblast cultures, nearly 100% of ICP8-positive and ICP8-
negative cells had STAT1 nuclear staining, demonstrating that the
addition of exogenous IFN-� is sufficient to induce STAT1 nu-
clear localization in infected fibroblasts (Fig. 2C and D). In TG
neurons, we observed STAT1 nuclear localization in 41% of ICP8-
positive and 83% of ICP8-negative neurons (Fig. 2E and F). These
results are consistent with the ability of HSV to inhibit STAT1
translocation (15, 68). These data also suggest that fibroblasts may
be more sensitive to exogenous IFN or HSV may be more efficient
at blocking STAT1 nuclear localization in neurons.

Given the efficient translocation of STAT1 in IFN-�-treated
neurons, the observed lack of STAT1 nuclear staining in HSV- and
VSV-infected neurons led to the hypothesis that infected cells may
make only a limited amount of IFN. We therefore measured
IFN-� secretion by HSV- or VSV-infected TG neuronal cultures,
fibroblasts, and BMDCs (Fig. 3). Consistent with our hypothesis
and previous studies (24), we observed minimal levels of IFN-�
production from neuron cultures in response to VSV or HSV-1

FIG 2 Exogenous IFN-� but not viral infection causes STAT1 relocalization to the nucleus of TG neurons. (A) Immunofluorescence staining for STAT1 (red) or HSV-1
ICP8 or VSV-G (green) in BMDCs that were mock infected, treated with 12.5 units/ml IFN-� for 1 h, or infected with HSV-1 or VSV for 5 h. Images were merged with
nuclear stain (blue; Hoechst). (B) Quantification of nuclear STAT1 staining shown in panel A. Separate quantification is shown for both infected (ICP8
 or VSVG
)
and uninfected (ICP8� or VSVG�) cells of the same culture. (C) Immunofluorescence staining for STAT1 (red) or HSV-1 ICP8 or VSV-G (green) in fibroblasts. Cells
were either mock infected, exposed to 12.5 units/ml IFN-� for 1 h, infected with HSV-1 or VSV for 5 h, or infected with HSV-1 for 4 h and then exposed to IFN-� for
1 h. Images were merged with nuclear stain (blue; Hoechst). (D) Quantification of nuclear STAT1 staining shown in panel C. Separate quantification is shown for both
infected and uninfected cells in the same culture. (E) Analogous infection/treatment and staining as for panel C done in TG neuron cultures. Images were merged with
nuclear stain (blue; Hoechst), and white arrowheads mark neurons as determined by phase contrast. (F) Quantification of nuclear STAT1 staining in panel E. Scale bar 
10 �m. Quantification was done in �3 replicates with �100 cells quantified for each group. Error bars represent SEM. Significance was evaluated in each group
compared to mock (unless noted by brackets) by one-way ANOVA with Bonferroni posttests. ***, P � 0.001.

FIG 3 Limited IFN-� production by infected TG neuron cultures. TG neu-
rons, fibroblasts, or BMDCs were mock treated or infected with an MOI of 20,
0.5, and 0.1, respectively, to achieve comparable numbers of infected cells.
Supernatants were collected at 24 hpi, and IFN-� production measured by
ELISA. Data points represent the averages of the means from at least two
independent experiments. Error bars represent SEM. ND, not detectable. Dot-
ted line represents the limit of detection.
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infection and almost undetectable IFN-� production by infected
fibroblasts. In contrast, and as expected, we observed robust
IFN-� production from infected BMDCs. Together, these data
show that adult TG neurons and fibroblasts are limited in their
ability to respond directly to viral infection but are capable of
responding to exogenous IFN-� through STAT1 nuclear localiza-
tion.

Exogenous IFN-� effectively restricts VSV but not HSV-1
replication in TG neurons. To test whether exogenous IFN-� and
STAT1 translocation is sufficient to establish a functional antiviral
response in TG neurons, we measured replication of VSV in WT
and STAT1�/� neurons (Fig. 4A). VSV replicated to high titers,
showing a modest but statistically significant 5-fold increase in
replication in STAT1�/� neurons relative to WT. In fibroblasts,
we observed no difference in VSV replication between WT and
STAT1�/� cells. Upon exogenous IFN-� exposure, however, VSV
replication in neurons and fibroblasts was reduced by 1,000 to
100,000-fold, compared to untreated WT or STAT1�/� cells (Fig.
4A). Interestingly, we observed a significant decrease in VSV rep-
lication in STAT1�/� fibroblasts treated with IFN-� compared to
that of untreated cells, suggesting that fibroblasts may also utilize
STAT1-independent IFN signaling pathways. This is in contrast to
VSV replication in BMDCs where we observed a 1,000-fold de-
crease in titers in WT compared to in STAT1�/� cells even with-
out the addition of exogenous IFN-� (Fig. 4A).

Having shown that exogenous IFN-� is sufficient to establish
an antiviral response to VSV in neurons, we next assessed the
ability of IFN-pretreated TG cultures to control HSV-1 infection
(Fig. 4B). In contrast to VSV, we observed no significant differ-
ence in HSV-1 replication in untreated or IFN-�-treated TG neu-
rons, regardless of the presence of an intact antiviral response.
Additionally, we observed statistically significant restricted HSV-1
replication in WT BMDCs and fibroblasts with the addition of
exogenous IFN-� in a STAT1-dependent manner (Fig. 4B). Com-
parable results showing no impact of IFN on HSV-1 titers were
also obtained from experiments performed at an MOI of 2 in
neurons (data not shown).

Virus lacking �34.5 is restricted in replication in IFN-�-
treated neurons by a STAT1-dependent pathway. The data given
above strongly suggested that neurons are inefficient at establish-
ing an IFN-dependent antiviral state upon HSV infection. We
therefore wished to address the hypothesis that HSV controls the
IFN-induced antiviral response of TG neurons (14, 15). To test
this, we utilized an HSV-1 strain lacking �34.5 (��34.5 mutant), a
neurovirulence factor capable of reversing establishment of the
antiviral state and meditating resistance to IFN (16, 17). Consis-
tent with the idea that neurons are inefficient at establishing an
IFN-dependent antiviral state, there was no significant difference
in replication between WT virus (strain 17) and the ��34.5 mu-
tant in TG neurons, regardless of the presence of an intact IFN

FIG 4 Exogenous IFN-� effectively restricts VSV but not HSV-1 replication in TG neurons. (A) VSV replication in cells isolated from WT (129SVEV) and
STAT1�/� mice. TG neurons, fibroblasts, and BMDCs were untreated or pretreated with 12.5 units/ml IFN-� for 18 h and were then infected with VSV at an MOI
of 20, 0.5, and 0.1, respectively. (B) Replication of HSV-1 in 129SVEV and STAT1�/� TG neurons, fibroblasts, and BMDCs. Cells were untreated or treated with
IFN-� and infected as described for panel A. Data points represent the averages of the means from at least two independent experiments. Error bars represent
SEM. Significance was evaluated by two-way ANOVA with Bonferroni posttests. On the graphs, one symbol represents P values of �0.05; two symbols represent
P values of �0.01; and three symbols represent P values of �0.001. * indicates significant differences between 129SVEV and 129SVEV 
 IFN-�; #, between
129SVEV and STAT1�/�; and †, between STAT1�/� and STAT1�/� 
 IFN-�.
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signaling pathway (Fig. 5A and B). These results were comparable
at 24 h and at lower MOIs (data not shown). This is in contrast to
a significant STAT1-dependent attenuation of ��34.5 mutant
replication in fibroblasts and BMDCs relative to strain 17 (Fig. 5A
and B). Notably, at 48 h postinfection, the fibroblast cultures were
largely destroyed by virus infection. This likely explains the similar
titers of strain 17 and the ��34.5 mutant at this time point. Upon
IFN-� pretreatment, however, we observed a 100-fold decrease in
the yield of the ��34.5 mutant from WT neurons, and this de-
crease was dependent upon the presence of STAT1 (Fig. 5A and
B). These results were further validated by costaining WT cultures
for the neuronal marker �III-tubulin and the HSV immediate
early protein, ICP0 (Fig. 5C and D). At 48 hpi, ICP0 expression
was observed in approximately 60% of neurons in strain 17-in-
fected cultures with or without IFN-� and in 60% of neurons in
untreated ��34.5 mutant-infected cultures. In contrast, only 15%
of neurons were ICP0 positive in IFN-�-treated ��34.5 mutant-
infected cultures, consistent with decreases in viral titers described
above (Fig. 5A). From these results, we conclude that �34.5 neu-
tralizes the antiviral impact of exogenous IFN-� on HSV-1 repli-
cation in TG neuronal cultures.

The role of �34.5 in promoting replication in IFN-�-treated
neurons is only partly dependent on the control of autophagy.
�34.5 also modulates the autophagic pathway through binding to
the host protein Beclin 1 (19). Recently, autophagy was implicated
in a dominant role in neuronal defense against HSV-1 (24). To
address the contribution of autophagy modulation by �34.5 in

promoting HSV-1 replication in TG neurons, we measured repli-
cation of an HSV-1 strain that lacks the �34.5 Beclin-binding do-
main (�BBD mutant). This in-frame deletion mutant virus has
been characterized previously and retains the ability to dephos-
phorylate eIF2� and is thereby capable of relieving translational
arrest but is incapable of binding Beclin 1 and therefore ineffi-
ciently interferes with autophagy (19). In WT neurons, there were
no differences in viral yields between strain 17, the ��34.5 mu-
tant, or the �BBD mutant at 48 hpi (Fig. 6). Upon IFN-� treat-
ment, however, we observed a 10-fold reduction in the yield of the
�BBD mutant and a 100-fold reduction of the ��34.5 mutant
(Fig. 6). All 3 viruses replicated equivalently with or without
IFN-� treatment in STAT1�/� neurons. This suggests that the
large decrease in ��34.5 mutant replication in IFN-�-treated
neurons is a combination of a failure to counter autophagy as well
as an inability to counter the IFN-driven antiviral state. That said,
the countering of the antiviral state through dephosphorylation of
eIF2� likely represents the dominant function of �34.5 in promot-
ing viral replication in the presence of exogenous IFN-�.

DISCUSSION

Neuronal populations vary greatly, and this heterogeneity is re-
flected by a corresponding diversity in the nature and magnitude
of innate antiviral responses (35, 36). This diversity, coupled with
discordant paradigms of IFN-driven responses established in
other cell types, significantly complicates interpretation of data
derived from neurons infected in vitro and in vivo. Using cultured

FIG 5 Virus lacking �34.5 is restricted in replication in IFN-�-treated neurons in a STAT1-dependent manner. Replication of HSV-1 in 129SVEV (A) or
STAT1�/� (B) cells. TG neurons, fibroblasts, or BMDCs were untreated or treated with 12.5 units/ml IFN-� for 18 h and then infected at an MOI of 20, 0.5, and
0.1, respectively, with strain 17 or the ��34.5 mutant. Data points represent the averages of the means from at least two independent experiments. (C) 129SVEV
TG neurons were infected with st17 and the ��34.5 mutant with or without pretreatment with 12.5 units/ml IFN-� and then fixed at 48 hpi. Immunofluorescent
staining was done for neuronal marker �III tubulin (red), HSV protein ICP0 (green), and nuclear stain (blue; DAPI). Scale bar  100 �m. (D) Quantification
of ICP0-positive neurons in panel C expressed as a percentage of total neurons, with at least 100 cells counted per sample, and performed in triplicate. Error bars
represent SEM. Significance was evaluated by two-way ANOVA with Bonferroni posttests. One symbol represents P values of �0.05; two symbols represent P
values of �0.01; and three symbols represent P values of �0.001. * indicates significant difference between st17 and st17 
 IFN-�; #, between st17 and ��34.5
mutant; and †, between ��34.5 mutant and ��34.5 mutant 
 IFN-�.
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TG neurons from adult mice, we have demonstrated that the in-
fection-driven antiviral response of TG neurons is insufficient to
alter HSV-1 replication and only modestly reduces VSV replica-
tion. This relatively weak antiviral response correlates with the
modest nuclear relocalization of STAT1 and low-level IFN-� pro-
duction upon virus infection. Limited production of IFN-� by
adult sensory neurons is consistent with previously published re-
sults (24). Importantly, we show that TG neurons are capable of
responding to exogenous IFN-� through STAT1 nuclear localiza-
tion and effective restriction of VSV and the ��34.5 mutant. The
ability of exogenous IFN-� to restrict VSV replication in TG neu-
rons in a STAT1-dependent manner is consistent with previous
findings (43, 69).

MEFs are capable of responding to virus infection (49–52) with
production of an IFN-driven response, but many viruses, includ-
ing HSV and VSV, are capable of at least partially counteracting
this response (70). Consistent with this idea, adult fibroblasts
showed limited STAT1 nuclear localization and IFN-� produc-
tion upon infection. It is likely, therefore, that adult fibroblasts are
fully capable of detecting infection and mounting a response, but
this pathway is counteracted by HSV and VSV. Consistent with
this hypothesis, ��34.5 mutant replication was attenuated in a
STAT1-dependent manner, suggesting that the intrinsic antiviral
response of fibroblasts is suppressed by �34.5. Additionally, there
was no difference in VSV or HSV-1 replication between untreated
WT and STAT1�/� adult fibroblasts, in accordance with a recent
study in MEFs (71). Notably, this mirrors the pattern of virus
replication observed in neurons.

Neurons and fibroblasts differ significantly in their abilities to
control HSV-1 replication following IFN treatment. IFN-treated
neurons were incapable of inhibiting HSV-1 replication, and these
dampened IFN responses of primary neurons are consistent with
previous work (24). In contrast to our findings, other studies have
shown that when provided with high concentrations of IFN (100
to 1,000 U/ml), adult sensory neurons can modestly restrict
HSV-1 replication (24) and viral gene expression (72). We em-
ployed a low concentration (12.5 U/ml) of IFN-� in this study to
more accurately reflect the limiting concentrations found during
acute HSV infection of the murine nervous system (70) (Z. M.
Parker and D. A. Leib, unpublished data). The difference in IFN
concentration likely explains the disparity between our data and
those previously published.

These differences notwithstanding, we have demonstrated a

critical and specific role for �34.5 in promoting HSV replication in
neurons by combating the antiviral state established in neurons
upon IFN-� exposure. Indeed, in the absence of �34.5, HSV-1 is as
sensitive to IFN as VSV. Additionally, a virus lacking ICP0, an
HSV gene also shown to mediate resistance to IFN responses (73,
74), showed no difference in replication in STAT1 and WT neu-
rons with or without IFN (data not shown). Together these data
suggest that the resistance of HSV to the neuronal antiviral re-
sponse is specific to �34.5.

Previous work has shown that HSV strains lacking �34.5 are
significantly attenuated in the nervous systems of mice and hu-
mans and replicate poorly in neurons in vitro (16, 21–23, 75). It
was unexpected, therefore, to find comparable replication of WT
and ��34.5 mutant viruses in untreated TG cultures. This con-
trasts viral replication in untreated fibroblasts and BMDCs where
we observed the predictable STAT1-dependent attenuation of the
��34.5 mutant, further highlighting the lack of an effective intrin-
sic antiviral response in TG neurons. The significant attenuation
of ��34.5 mutant replication upon IFN-� pretreatment of neu-
rons suggests that the neuroattenuation of the ��34.5 mutant
seen in other studies (16, 21, 23, 75) is at least partially dependent
on paracrine IFN-� signaling. During HSV-1 infection in vivo,
IFN-� is present both in the peripheral nervous system (76) and
central nervous system (77), which likely restricts further ��34.5
mutant replication, spread, and neurovirulence. It is also probable
that in previous in vitro studies, nonneuronal cells were a signifi-
cant source of IFN that primed infected and uninfected neurons
leading to reduced yields of the ��34.5 mutant (78, 79). To our
knowledge, this is the first study to examine replication of the
��34.5 mutant in adult murine TG neurons and in neurons of
such high purity (32, 34). These factors are all likely important
determinants of the ability of neurons to exert innate control of
HSV replication in the absence of �34.5. It is possible that a lim-
iting level of �34.5 expression during natural infections in vivo
may contribute to the susceptibility of HSV-1 to innate defense,
thereby promoting the establishment of latency and a successful
viral life cycle (80, 81).

In addition to modulating establishment of the antiviral state,
�34.5 also modulates autophagy through its Beclin-binding do-
main (BBD) (19), and this activity promotes HSV replication in
the nervous system (24). This previous study furthered the idea
that autophagy can act as a nondestructive antiviral defense in
neurons (82). In the present study, however, �BBD mutant rep-

FIG 6 HSV resistance to IFN-� in neurons is only partly dependent on control of autophagy by the ��34.5 mutant. Replication of HSV strain 17, ��34.5 mutant,
or �BBD mutant in 129SVEV or STAT1�/� neurons. Cells were untreated or treated with 12.5 units/ml IFN-� for 18 h and then infected at an MOI of 20, and
sample titers were determined at 48 hpi. Error bars represent SEM. Experiments were performed twice in triplicate, and significance was evaluated by two-way
ANOVA with Bonferroni posttests. *, P � 0.05; ***, P � 0.001.
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lication was comparable to that of strain 17 in untreated neurons
but showed a significant STAT1-dependent decrease following
IFN-� treatment. While IFN-induced autophagy has been directly
studied only in other cell types (83–85), these results are consistent
with a role for IFN in the upregulation of antiviral autophagy
(xenophagy) in neurons. The 10-fold decrease in �BBD mutant
replication following IFN pretreatment suggests that autophagy
cannot completely account for the 100-fold reduction of ��34.5
mutant replication upon IFN-� treatment. It seems more likely,
therefore, that the neuronal antiviral response is substantially re-
sponsible for this attenuation and that the autophagy and antiviral
countering functions of �34.5 synergize to combat the IFN-driven
neuronal response to infection.

This study demonstrates a requirement for exogenously sup-
plied IFN for establishment of the antiviral state in neurons. As
previously suggested, the requirement of exogenous IFN-� signal-
ing to upregulate antiviral responses may help ensure neuronal
survival (24, 72, 86–89) while promoting apoptosis in other cell
types (24, 90). Indeed, it has been shown that IFN can promote
survival of HSV-1-infected sensory neurons (72). Tight regulation
of antiviral signaling in neurons may be a potential safety mecha-
nism to preclude a vigorous antiviral response that may risk death
or damage of an irreplaceable cell population (24, 82). The lack of
an effective autocrine response in infected neurons and the appar-
ent requirement for paracrine IFN signaling may help ensure that
the antiviral response acts to balance viral clearance and cell sur-
vival. Additionally, these data highlight a more important role for
paracrine IFN responses in nonimmune cells in establishing an
effective antiviral response. Our data further our understanding of
the neuronal antiviral response and suggest an important role for
a measured neuronal IFN response in order to promote latent
HSV infections and to balance control of virus replication and
neuronal survival.
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