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Abstract 

Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disorder and the most prevalent form of
dementia worldwide. AD is characterized pathologically by amyloid-� plaques, neurofibrillary tangles and neu-
ronal loss, and clinically by a progressive loss of cognitive abilities. At present, the fundamental molecular mech-
anisms underlying the disease are unclear and no treatment for AD is known. Epidemiological evidence contin-
ues to mount linking vascular diseases, such as hypertension and diabetes, and hypercholesterolaemia with an
increased risk for developing AD. A growing amount of evidence suggests a mechanistic link between choles-
terol metabolism in the brain and the formation of amyloid plaques in AD development. Cholesterol and statins
clearly modulate �-amyloid precursor protein (�APP) processing in cell culture and animal models. Statins not
only reduce endogenous cholesterol synthesis but also exert other various pleiotrophic effects, such as the
reduction in protein isoprenylation. Through these effects statins modulate a variety of cellular functions involv-
ing both cholesterol (and membrane rafts) and isoprenylation. Although clearly other factors, such as vascular
inflammation, oxidative stress and genetic factors, are intimately linked with the progression of AD, this review
focuses on the present research findings describing the effect of cholesterol, membrane rafts and isoprenyla-
tion in regulating �APP processing and in particular �-secretase complex assembly and function and AD pro-
gression, along with consideration for the potential role statins may play in modulating these events.
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Introduction

Alzheimer’s disease (AD) is a devastating neurologi-
cal disorder that has become increasingly common 

as the number of people worldwide over the age of
65 increases. Understanding the complex etiological
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and pathological underpinnings of the disease repre-
sent our best hope for developing therapies capable
of treating and/or reversing this devastating disease.
Although the several pathological hallmarks associ-
ated with AD, such as amyloid plaques and neurofib-
rillary tangles are well known, no single theory
appears to completely explain and/or account for all
of the complex pathological changes that ultimately
lead to neurodegeneration and cognitive dysfunction.
For the past decade, the prevailing theory underlying
AD has been the ‘amyloid cascade hypothesis’, in
which the major causative molecule responsible for
the disease is amyloid � (A�). Therefore, much of the
research community has focused on elucidating the
mechanisms underlying the processing and produc-
tion of this peptide.

�APP processing and A� generation

It is well established that the abnormal generation
and deposition of amyloid � peptides (A�) is a patho-
logic hallmark of AD. A� is generated by two sequen-
tial proteolytic cleavage steps from the �-amyloid
precursor protein (�APP) [Reviewed in 1–3]. �APP is
initially cleaved by �-secretase, which has been
identified as a �-site APP-cleaving transmembrane
aspartic protease (BACE) [4], which has been sug-
gested to occur in the endocytic pathway. This cleav-
age is followed by the subsequent intramembrane
proteolysis of the membrane-bound C-terminal frag-
ment (�CTF, C99) catalyzed by the �-secretase com-
plex, which has been suggested to occur at the plasma
membrane, although the exact cellular location of either
of the cleavage events is not clearly understood.

Importantly, the A� peptides produced by �-secre-
tase cleavage are heterogeneous in size, ranging
from 38 to 43 amino acids, with the highly amyloid-
genic 42 amino acid peptide suggested to be the
most pathogenic [5]. These A� peptides can exist as
monomers, oligomers or as amyloid fibrils [5].
Recent evidence suggests that the oligomeric form
of these A� peptides may be the key form responsi-
ble for the cognitive problems of people with AD [5,
6]. Interestingly, the exact function of �APP
processed A� peptides remains unknown. In an
alternative pathway �APP is cleaved by �-secretase,
a member of the ADAMs (a disintegrin and metallo-
protease) family of enzymes, within the A� domain

and the remaining CTF (C83) is also cleaved by 
�-secretase to release the non-amyloidgenic p3 pep-
tide. Not all A� is released extracellularly, as recent
evidence suggests that intraneuronal A� is also toxic
and appears to play a significant role in the perturba-
tion of cognitive function [7–9].

The activation of the �-secretase complex activity
requires the formation of a stable high-molecular-
weight multiprotein complex, which includes prese-
nilin, nicastrin (NCT), anterior pharynx-defective-1
(APH-1) and PS-enhancer-2 (PEN-2) [Reviewed in
10]. These four transmembrane proteins are pre-
sumed to be indispensable for �-secretase activity,
because their co-expression enables reconstitution
of the �-secretase activity [10–14], while the absence
of even one results in the absence of �-secretase
activity and defects in the expression and/or matura-
tion of the remaining partners [10, 11]. NCT, an inte-
gral membrane protein, has been reported to bind
tightly to �APP-C99 and recruit it into the �-secre-
tase complex [15]. Conformation changes in and/or
N-linked glycosylation of NCT appears to play a
prominent role in modulating �-secretase activity
[16–19]. Various APH-1 variants are believed to sta-
bilize presenilin within the �-secretase complex [20],
while PEN-2 appears necessary for the endoproteol-
ysis of presenilin, a step essential for the activity of
the �-secretase complex [21, 22]. In addition to the
processing of �APP, the �-secretase complex facili-
tates the regulated intramembrane proteolysis of
other select type I membrane proteins, such as Notch,
CD44 and E-cadherin, which play diverse physiological
roles in multiple cell types and tissue [1].

Cholesterol

There is growing evidence that cholesterol is linked to
the development of AD [Reviewed in 23, 24]. Clearly
there exists a relationship between AD and hypercho-
lesterolaemia, in addition to coronary artery disease
and hypertension [25–27]. Various experimental and
clinical findings also strongly suggest that brain vas-
cular and hemodynamic alternations may play an
important role in the progression of AD [28–30]. In
addition, the regulation of cholesterol homeostasis
appears to also be perturbed, as the �4 allele of
ApoE, a major apolipoprotein in the brain, has been
identified as important risk factors for AD [31–34].

© 2007 The Authors
Journal compilation © 2007 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
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The central nervous system (CNS) contains about
25% of the total body cholesterol, the highest content
of any organ, the majority of which is found in neu-
ronal plasma membranes and the myelin sheaths of
axons [35]. Cholesterol is a major regulator of mem-
brane lipid organization and fluidity, and as such,
mammals have developed complex and sophisticat-
ed homeostatic mechanisms that function to main-
tain cellular cholesterol levels in membranes within a
narrow range. Alterations and/or disturbances in
these homeostatic mechanisms, either by genetic,
environmental, diet-induced or natural aging can
lead to altered cell function and disease [36]

In AD, the �-secretase complex catalyzes the
cleavage of �APP within the hydrophobic lipid bilay-
er suggesting that perturbations in cellular choles-
terol levels, trafficking and/or organization that disor-
ganize the structure of the protein–lipid bilayer may
accelerate or contribute to the generation of A�.
Animals fed cholesterol rich diets exhibit increased
brain A� levels that can be reduced upon return of
the animals to normal chow diets [37, 38]. In vivo
studies have demonstrated that high cholesterol
diets can increase A� levels in rabbits and in an AD
mouse model [39]. While in vitro studies indicate that
increased cellular cholesterol levels result in the
increased production of A� peptides [40, 41]. In addi-
tion, cholesterol depletion also inhibits A� generation
in hippocampal neurons [41] and increases �-secre-
tase activity in cultured cells [42, 43]. Although these
studies reveal that cellular cholesterol levels can
modulate �APP processing, the exact mechanism by
which this occurs remains unclear. To understand the
relationship between cellular cholesterol levels and
cellular �APP processing and A� production, we
must discuss the distribution of membrane choles-
terol and membrane rafts.

Membrane rafts

Membrane rafts (previously referred to as lipid rafts) are
dynamic highly ordered membrane microdomains
enriched in cholesterol, sphingolipids and saturated
phospholipids distinct from the surrounding bilayer of
mostly unsaturated phospholipids. Proteins can be
selectively included or excluded from these
microdomains [Reviewed in 44–47]. Although there
remains considerable uncertainty about the abun-
dance, size, duration and exact composition of mem-

brane rafts (some of which we believe is attributable
to cell type variation), membrane rafts are believed to
be around 50 nm in diameter (10–100 nm range),
with each individual raft potentially carrying around
20 protein molecules [described in 48, 49].
Theoretically, a cell may have around 1,000,000
membrane rafts covering more than half of its mem-
brane surface. In this fashion, it is unlikely that a pro-
tein in one raft would encounter its interaction partner
or substrate in the same individual raft. This function
underlies the theory that the small size of individual
membrane rafts may serve to segregate and hold
membrane signaling proteins in the ‘off’ state.

Once the cell is activated, membrane rafts are
believed to function as a concentrating platform for a
variety of signal transduction molecules [44–47].
During activation, many rafts would cluster, forming a
larger platform, thus allowing functional proteins to
concentrate and interact, likely with cytoplasmic sig-
naling factors, such as small G proteins, that are
recruited to the cytoplasmic face of rafts in response
to clustering, thereby facilitating the initiation of 
signaling events. Due to the highly ordered nature 
of lipid rafts, glycosyl-phosphatidylinositol (GPI)
anchored and doubly acylated proteins tend to clus-
ter in these microdomains. Additionally, other pro-
teins have shown the ability to move in and out of
membrane rafts in response to ligand binding or
oligomerization. Importantly, this clustering is believed to
be cholesterol dependent [48, 49]. In this regard, mem-
brane rafts are believed to play a central role in regu-
lating several cellular processes, such as membrane
sorting, trafficking and signal transduction [45, 47].

Several lines of evidence suggest the involvement
of membrane rafts in �- and �-cleavage of �APP
[Reviewed in 48, Refer to Fig. 1]. It has been report-
ed that the proteins relevant to A� generation, includ-
ing presenilin, NCT, APH-1, PEN-2 and a small por-
tion of �APP, localize in membrane rafts [49-59]. In
addition to the �-secretase components, it has also
been reported that �-secretase localizes in mem-
brane rafts and that cholesterol depletion 
abrogates this localization [49, 50]. Ehehalt et al. [49]
have reported that �APP exists in two pools, one
associated with membrane rafts, in which �-cleavage
occurs, and another outside of membrane rafts,
where �-cleavage occurs, suggesting that raft local-
ization favors the generation of A�. Recent reports
have suggested that �-secretase activity is predomi-
nantly localized in membrane rafts and cholesterol

© 2007 The Authors
Journal compilation © 2007 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
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can directly regulate the �-secretase activity [59].
Collectively, these findings suggest that the raft or
non-raft membrane distribution of �APP may in part
determine its processing fate. It has been suggested
that during embryonic development, the �-secretase
complex may be primarily located in non-raft mem-
branes facilitating the proteolysis of diverse substrates
important for development, while the translocation of

�-secretase to membrane rafts in adults facilitates
the processing of adult-specific substrates, including
�APP CTFs, while limiting the processing of other
potential substrates [60]. Although the experimental
evidence remains unclear, under such a scenario,
high cellular cholesterol levels and/or lipid bilayer
alterations that increase the number or potentially
the size of membrane rafts would disrupt the 

© 2007 The Authors
Journal compilation © 2007 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

Fig. 1 Schematic diagram of lipid mediated dynamic association of �-secretase complex with its substrates.
Assembly of presenilin (PS) with nicastrin (NCT) and APH-1 stabilizes PS, and the association of PEN2 activates PS
to fragmented form [11]. Active �-secretase complex is targeted to membrane rafts by lipid modifications, such as
myristoylation, palmitoylation or double isoprenylation. Amyloid precursor protein (�APP) is mostly cleaved by �-sec-
retase in non-raft domain to generate APPs� and �CTF, but some part of �APP in the membrane raft is cleaved at
the beta site by �-secretase, which resides in cholesterol rich membrane raft, to generate APPs� and �CTF. After the 
�- or �- cleavage, NCT serves as a receptor for the �-secretase substrates. Accordingly, the �CTF (C99) is cleaved
at gamma site by �-secretase in the raft domain to generate pathogenic form of A� peptides. C-terminal peptide is
further cleaved at � or � site by �-secretase to generate amyloid intracellular domain (AICD) peptide. In the non-raft
domain, �CTF (C83) is further cleaved by �-secretase to generate P3 and AICD peptides. Other �-secretase sub-
strates, such as the CTFs derived from Notch1, Jagged2, deleted in colorectal cancer (DCC), and N-cadherin, are
cleaved in non-raft domain [61].
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segregation ability of the raft/non-raft membrane and
unintentionally allow the interaction between �APP
and the �-secretase complex in an individual raft, thus
favoring A� production. Low cellular cholesterol levels
or disruption of lipid rafts could be envisaged to
decrease A� production and favor the non-pathogen-
ic cleavage by �-secretase. In further support of the
importance of membrane rafts in AD progression, it
has been recently reported that following dimeric A�
accumulation in membrane rafts, both ApoE and
phopshorylated tau, were observed to increase in
membrane rafts in the aged Tg2576 mouse model 
of AD [61].

Diet, genetic factors and environmental factors
may well contribute to, in association with membrane
lipid changes associated with aging [Reviewed in
62], the perturbation of membrane raft structure and
function and thus ultimately imbalance this important
segregation of proteolytic complex, �-secretase
and/or �-secretase and �APP titling the balance
toward pathogenic A� production. This scenario
could be envisaged to play out over years and be inti-
mately intertwined with the aging process, in a fash-
ion similar to cardiovascular disease. Due to similar-
ities between AD and cardiovascular disease, and
the well-established benefit of reducing cholesterol
levels in patients with cardiovascular disease, similar
therapeutic strategies have received significant con-
sideration for the treatment of AD [31].

Statins

Several epidemiological studies have suggested that
the use of 3-hydroxy-3-methylglutaryl-CoA-reduc-
tase inhibitors (‘statins’) to treat hypercholestero-
laemia may reduce the risk of dementia [63–66].
Statins efficiently inhibit the rate-limiting enzyme,
HMG CoA reductase, in the cholesterol biosynthetic
pathway responsible for the production of non-sterol
isoprenoids, notably farnesyl pyrophosphate (FPP) and
geranylgeranyl pyrophosphate (GGPP), ubiquinone
and dolichol, in addition to cholesterol [67]. Statins
also effect intracellular cholesterol distribution, gene
expression and proteasome activity [68]. Although
there have been initial reports that treatment with
cholesterol synthesis inhibitors can lower the A� lev-
els in guinea pig and in the AD mouse [40, 68],
recent findings suggest that the lowering of A� levels
by statins may not be so clear [69, 70]. Statins are

believed to exert their effects by manipulating choles-
terol and isoprenoid levels intracellularly leading to
altered �APP processing and membrane signaling.
Statin treatment has been shown to decrease the
association of the active form of the �-secretase
complex with membrane rafts [59]. Whether this
effect is due to statin’s reduction in cholesterol
biosynthesis or a reduction in isoprenylation, or the
more likely scenario, in which it is a complex combi-
nation of both, remains to be clearly elucidated
[Reviewed in 71, 72]. It has also been suggested that
statin-treatment-induced inhibition of isoprenylation
results in a reduction in membrane raft clustering
involved in �APP processing and A� generation [73].

The clinical relevance of these findings is ques-
tionable, as it has been shown that at clinical
dosages, only low statin concentrations are detected
in the cerebrospinal fluid, and at such concentra-
tions, although cholesterol biosynthesis may be
reduced, it appears highly unlikely that isoprenoid
synthesis is inhibited in the CNS [74–76]. Therefore,
there may be other mechanisms underlying the clini-
cal benefit of statin therapy [77]. It remains highly
plausible that many of the positive benefits of statin
treatment may in fact be associated with modifica-
tions and modulations of both the structure and func-
tioning of membrane rafts, not only in the CNS, but
possibly predominantly in the periphery, leading to
statin’s anti-oxidant and anti-inflammatory properties.

Isoprenoids and Ras superfamily 

of GTPases 

Isoprenylation, the after translational attachment of
FPP or GGPP to a protein, is an important cellular
regulated process of protein localization and function
[Reviewed in 78, 79]. It is well established that one of
the pleiotrophic benefits of statin therapy is the reduc-
tion in protein isoprenylation. Isoprenylation appears
to play a crucial role in regulating the subcellular
localization of proteins, including targeting these pro-
teins to plasma membranes, possibly specifically to
membrane lipid microdomains and intracellular mem-
branes as well as modulating protein interactions.
Whether a direct relationship, if any, exists between
isoprenylation and cellular or membrane cholesterol
levels remains unknown. Isoprenylation affects a
large variety of cellular processes and cellular

© 2007 The Authors
Journal compilation © 2007 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
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functions, including vesicular transport, cytoskeletal
alterations and cell signaling [Reviewed in 79].

A large number of proteins are isoprenylated,
including the subunits of trimeric G proteins, protein
kinases and the more than 150 members of the Ras
GTPase superfamily, including Rac, Ral, Rap and
Rho. Members of the Ras superfamily of GTPases
are integral components of complex signaling net-
works and control diverse cellular activities including
intracellular vesicle transport, cell adhesion, endocy-
tosis, cytoskeletal organization, receptor signaling,
cell cycle progression and gene expression [73,
80–82]. Experimental evidence suggests that
GTPases may play a significant role in AD pathogen-
esis [82, 83]. Ras has been implicated in the A� sig-
naling cascade [80]. Neuronal Ras, Rac and RhoA
appear to function in neuronal and synaptic plasticity
[84]. Rab1B and Rab6 appear to function in the intra-
cellular trafficking and processing of �APP [85].
Other GTPases have also been implicated in AD pro-
gression [86, 87]. Due to the fact that isoprenylation,
in part, regulates both the functionality and the sub-
cellular localization of these GTPases, it is likely that
statin-induced inhibition of isoprenylation, as some
experimental evidence suggests, would have com-
plex ramifications on �APP trafficking and process-
ing, A� formation and neuronal and synaptic plastic-
ity [88]. We have shown that statin treatment
decreases the association of the active form of the �-
secretase complex with lipid rafts, and that this effect
can be partially rescued through the addition of
GGPP, suggesting that GGPP may in part regulate
active �-secretase complex association with mem-
brane rafts [59]. Consistent with this finding, and
highlighting the importance of isoprenylation in AD
progression, it has been suggested that two pools of
A� exist and appear to function independently of
each other, with the intracellular pool regulated by
isoprenoids and the secreted pool regulated by cellu-
lar cholesterol levels [73].

ACAT inhibitors

In addition to interest in statin therapies for the treat-
ment of AD, recent reports suggest that inhibitors of
acyl-coenzyme A: cholesterol acyltransferase
(ACAT) may hold therapeutic promise [89]. In vitro
and in vivo findings demonstrated that treatment with

an ACAT inhibitor reduced the production of A� and
reduced the accumulation of amyloid plaques and
insoluble amyloid in the CNS of mice [90].
Cholesterol distribution in membranes, in particular
membrane rafts, appears to be more important for
A� processing than cellular cholesterol levels. The
mechanism underlying this observed effect have not
been clearly defined, yet inhibition of cholesterol
esterification may result in a greater or enhanced
mobilization of the cellular cholesterol efflux machin-
ery thereby decreasing membrane cholesterol levels.

Conclusions

Clearly AD is a complex disease caused by various
genetic and environmental factors. Although there
has recently been a number of exciting findings in the
AD field, the relationship between cholesterol, iso-
prenylation and the processing of �APP is far from
understood. It remains controversial what is the pri-
mary causative agent or factor versus what are sec-
ondary effects/ responses. Consistent with the view
of many researchers, it remains important for the AD
research community to approach the ever-increasing
number of new research findings with an open mind,
and continue to search for a unifying theory that can
account for all of the biochemical and pathological
complexities associated with AD.
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