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Use of IRF-3 and/or IRF-7 Knockout Mice To Study Viral
Pathogenesis: Lessons from a Murine Retrovirus-Induced AIDS Model

Megan A. O'Connor,® William R. Green®®

Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA?; Norris Cotton Cancer Center, Geisel School of

Medicine at Dartmouth, Lebanon, New Hampshire, USA®

Interferon regulatory factor (IRF) regulation of the type I interferon response has not been extensively explored in murine retro-
viral infections. IRF-37/~ and select IRF-3/7 '~ mice were resistant to LP-BM5-induced pathogenesis. However, further analyses
strongly suggested that resistance could be attributed to strain 129-specific contamination of the known retrovirus resistance
gene Fv1. Therefore, caution should be taken when interpreting phenotypes observed in these knockout mice, as strain 129-de-

rived genetic polymorphisms may explain observed differences.

he type I interferon (IFN) antiviral response (IFN-a and

IFN-B) plays a major role in host innate immunity to RNA and
DNA virus infections (1-12). This antiviral type I IEN response is
tightly regulated, in part, by interferon regulatory factors (IRFs)
via upstream signaling induction by various pattern recognition
receptors (PRRs). Several studies utilizing knockout mice for
IRF-3, IRF-7, and IRF-3/7 (DKO) have reported on the overall
complexity and sometimes distinct roles of IRF-3 and IRF-7 in
antiviral IFN-dependent and IFN-independent responses to mul-
tiple viral infections (1-3, 9, 10, 13—16). Although most retrovi-
ruses are relatively poor inducers of robust innate antiviral
responses, there is growing evidence for the existence of retrovi-
rus-induced type I IFNs; therefore, IRF-3 and/or IRF-7 may also
be involved (17-23).

LP-BMS5, a gammaretrovirus, causes murine AIDS (MAIDS)
upon infection of susceptible mouse strains—e.g., wild-type
C57BL/6 (B6) (24, 25). MAIDS is characterized by early activa-
tional parameters, followed by broad, profound immunodefi-

ciency of both T- and B-cell responses and susceptibility to oppor-
tunistic microbial infection (24-34).

To determine the possible role of IRFs in retroviral pathogen-
esis, B6 background mouse strains with IRE-3~'~, IRF-7 /", and
DKO congenic status (10, 13, 35) were infected with 5 X 10* PFU
of LP-BM5 retrovirus and were compared to MAIDS-susceptible
B6 and MAIDS-resistant 129S1/SvIim] (129) mice (NCI, Bethesda,
MD) (31, 36). Upon sacrifice, at 8 weeks postinfection (wpi),
MAIDS was assessed (Fig. 1). The extent of pathogenesis was cal-
culated from established disease parameters, and a disease index
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FIG 1 IRF-3"/" mice demonstrate increased MAIDS resistance. IRF-3~/~, IRF-7~/~, DKO, B6, and 129 mice were infected with LP-BM5, and MAIDS disease
index was calculated: gray symbols, uninfected mice; open or black symbols, mice assayed 8 wpi. Solid gray horizontal lines indicate means. *, P < 0.05; **, P <

0.01 (Mann-Whitney test).
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FIG 2 Strain 129 genetic contamination in IRF-37/~ and DKO mice. IRF-37/7, IRF-77', and DKO breeder mice were assessed at the DartMouse Speed
Congenic Core Facility for overall genetic background in comparison to B6 and 129 mice (A) and SNP genetic analysis of individual chromosomes (Chr) (B).
Additional strain 129 contamination on the distal portion of chromosome 4, the site of the FvI gene (enlarged box), of IRF-37'~ and DKO mice is indicated.

was assigned, with disease severity ranging from 0 (no disease) to  B6 controls. Surprisingly, DKO mice succumbed to variable and
5 (most-severe disease) (37-39). Infected IRF-3/~ mice were al-  intermediate disease, with some resistant mice, which was an un-
most as resistant as MAIDS-resistant 129 mice, whereas IRE-7 '~ expected result versus previous studies reporting increased sus-
mice developed disease equivalent to that seen with the susceptible  ceptibility to infection with other viruses in IRF-3~'"~ and/or IRE-

B6 129 IRF-3-/- IRF7-/- DKO
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FIG 3 Strain 129-specific contamination of FvI of IRF-3~'~ and DKO mice. FvI genotypes were determined with PCR and visualized by gel electrophoresis using
genomic DNA from male (M) and female (F) B6, 129, IRF-3~/, IRE-7 /", and DKO breeder mice. Expected band lengths: Fv1%, 621 bp; Fv1™ allele, 406 bp.
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The Basis for MAIDS Resistance in Mice Lacking IRF-3
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FIG 4 Presence of the Fv1"" allele in DKO mice and resistance to MAIDS. DKO Fv1%%, DKO Fv1"”", DKO Fv1¥", and B6 mice were infected with LP-BM5, and
the disease index was calculated at 8 wpi. **, P < 0.01 (Mann-Whitney test). Outlier mice are indicated as “(X)” and “(Y).”

7'~ mice and equal or greater susceptibility in DKO mice (3, 10,
13, 14).

Therefore, the genetic backgrounds of breeder knockout mice
were assessed for strain 129 genetic material originating from the
original knockout construction (27, 40, 41). Upon high-density
single nucleotide polymorphism (SNP) analysis (42), IRE-7'~
mice exhibited ~2% strain 129 contamination, consistent with
full, standard backcrossing (Fig. 2A). However, IRF-37"~ (15% to
25%) and DKO (10% to 20%) mice had substantial 129 contam-
ination (Fig. 2A): the intermediate contamination level of the
DKO mice expected from their derivation by crossing IRE-3 "/~
and IRF-7~'~ mice (10).

The Fvl gene restricts murine leukemia viruses (MLVs), in-
cluding LP-BM5 (27, 40, 43, 44), with the Fy1®, Fv1", and Fv1™
alleles restricting N-tropic, B-tropic, and B- and N-tropic MLV,
respectively (27, 41, 45, 46). To ensure successful B-tropic LP-
BM5 infectivity, our studies were performed with homozygous
Fy1%? (B6) mice. SNP analysis of IRF-3"/~ and DKO mice iden-
tified 129 contamination, in part, at chromosome 4 (distal) in the
area of FvI (Fig. 2B) (47, 48). Engineered PCR primers specific for
FvI alleles allowed definition of IRF-7~/~ breeders as uniformly
FvI"’; in contrast, IRE-3~/~ breeders were defined as Fv1""",
marking these strains as permissive versus nonpermissive, respec-
tively, to LP-BMS5 infection (Fig. 3). DKO breeders were mixed,
with Fv1?® (susceptible) versus Fy1¥" and Fv1™" (resistant)
DKO progeny (Fig. 3).

DKO progeny mice from controlled matings were produced to
allow segregation of the Fv1” and Fv1™ alleles, genotyped, and
infected with LP-BMS5 to potentially correlate susceptibility and
resistance phenotypes with the Fvl genotype rather than with
knockout of IRF-3 (Fig. 4). The disease index determined at 8 wpi,
in comparison to susceptible B6 mice, demonstrated that (i) DKO
Fv1"" mice displayed equivalent disease and equal viral load (eco-
tropic gag and defective gag) (data not shown); (ii) infected DKO
Fv1™" and DKO Fv1”" mice, each with at least one resistant
Fv1" allele, displayed significantly less disease; and (iii) there was
a single outlier mouse in each (“X” with less disease and “Y” with
more disease) for which SNP analysis revealed (~15%) 129 con-
tamination within the range of DKO mice as a whole (data not
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shown) (Fig. 4). These DKO data thus strongly associate MAIDS
pathogenesis with the observed strain 129 contamination and FvI
allelism in a manner independent of the status of the IRF-3 gene.

Thus, on the basis of comparisons to LP-BM5-infected IRF-
77/~ and B6 mice, we describe increased MAIDS resistance in
infected TRF-37/~ and certain DKO mice, apparently a result of
strain 129-derived contamination of the Fv1™" allele in purport-
edly fully backcrossed (to B6) congenic IRF-3~/" mice. The in-
consistent degrees of B6 genetic background in IRF-37/", IRF-
77/~, and DKO mice provide a cautionary note that results seen
with these mice, in our studies and in those of others, may not be
indicative solely of the knockout of the IRF gene(s) itself. The
DKO mice have been bred at least three times independently from
the single knockout mice, according to previous reports (3, 10, 13,
15, 35), and were previously reported to be of 91% B6 back-
ground, versus 97% for the IRF-7 '~ mice, via analysis of micro-
satellite markers (15). These levels of contamination are similar to
the B6 background levels observed here by SNP analyses: >98% in
IRF-77'7, 75% to 85% in IRF-37'", and 80% to 90% in DKO
mice. The incomplete backcrossing to B6 of the IRF-3~/~ mice
and the 129-derived restrictive Fv-1"" inheritance notwithstand-
ing, the results from the two outlier DKO mice (Fig. 4) suggest the
presence of additional strain 129-derived genetic elements that
may also affect LP-BM5 infectivity or pathogenesis.
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