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|d4 deficiency attenuates prostate development
and promotes PIN-like lesions by regulating
androgen receptor activity and expression of
NKX3.1 and PTEN

Pankaj Sharma', Ashley Evans Knowell', Swathi Chinaranagari', Shravan Komaragiri', Peri Nagappan', Divya Patel’,
Mathew C Havrda®® and Jaideep Chaudhary'*"

Abstract

Background: Inhibitor of differentiation 4 (Id4), a member of the helix-loop-helix family of transcriptional regulators
has emerged as a tumor suppressor in prostate cancer. Id4 is expressed in the normal prostate where its expression
is also regulated by androgens. In this study we investigated the effect of loss of Id4 (Id4-/-) on adult prostate
morphology.

Methods: Histological analysis was performed on prostates from 6-8 weeks old 1d4-/-, Id4+/- and 1d4+/+ mice.
Expression of 1d1, Sox9, Myc, androgen receptor, Akt, p-Akt, Pten and Nkx3.1 was investigated by
immunohistochemistry. Androgen receptor binding on NKX3.1 promoter was studied by chromatin
immuno-precipitation. Id4 was either over-expressed or silenced in prostate cancer cell lines DU145 and LNCaP
respectively followed by analysis of PTEN, NKX3.1 and Sox9 expression.

Results: Id4-/- mice had smaller prostates with fewer tubules, smaller tubule diameters and subtle mPIN like lesions.
Levels of androgen receptor were similar between wild type and Id4-/- prostate. Decreased NKX3.1 expression was in
part due to decreased androgen receptor binding on NKX3.1 promoter in Id4-/- mice. The increase in the expression of
Myc, Sox9, Id1, Ki67 and decrease in the expression of PTEN, Akt and phospho-AKT was associated with subtle mPIN
like lesions in Id4-/- prostates. Finally, prostate cancer cell line models in which Id4 was either silenced or
over-expressed confirmed that Id4 regulates NKX3.1, Sox9 and PTEN.

Conclusions: Our results suggest that loss of Id4 attenuates normal prostate development and promotes hyperplasia/
dysplasia with subtle mPIN like lesions characterized by gain of Myc and Id1 and loss of Nkx3.1 and Pten expression.
One of the mechanisms by which Id4 may regulate normal prostate development is through regulating androgen
receptor binding to respective response elements such as those on NKX3.1 promoter. In spite of these complex
alterations, large neoplastic lesions in Id4-/- prostates were not observed suggesting the possibility of mechanisms/
pathways such as loss of Akt that could restrain the formation of significant pre-cancerous lesions.
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Background

Id4 (inhibitor of differentiation-4), is a member of the in-
hibitor of differentiation (Id) gene family (Id1, Id2 and
Id3) and acts as a transcriptional regulator of basic helix-
loop-helix (b HLH) family of transcription factors [1]. Due
to lack of the basic DNA binding domain, Id4 (and all Id
proteins) acts as a dominant negative regulator of bHLH
transcription factors, most notably E2A (TCF3) [1,2].

The interaction repertoire of Id proteins also involves
several non-bHLH proteins. Whereas all Id proteins
interact with bHLH TCEF3, their interaction with non-
bHLH proteins appears in large part to be isoform
dependent- Id1: CASK, ELK1, GATA4, caveolin; 1d2:
ELK1, 3 and 4, CDK2, PAX2, 5 and 8, Rb and related
pocket proteins, 1d3: ELK1 and 4, ADD1 ([1,2] and pub-
lic databases). Specific non-bHLH interaction partners
for Id4 are currently not known. Thus Id proteins are
capable of regulating the expression of a large number
of genes through specific PHLH and non-bHLH interac-
tions that in turn regulates many cellular processes such
as cell growth, differentiation, and apoptosis [3].

Id proteins are expressed by essentially all cell lineages
at some point of development. In general, Id expression
is highest in undifferentiated, proliferating populations
and is down-regulated as cells exit from cell cycle and
terminally differentiate (reviewed in [1-3]). Knock out
mouse models evaluating Id genes have demonstrated
their essential role in development. Id2 null mice dis-
plays phenotypic abnormalities of retarded growth and
neonatal morbidity due to a lactation defect [4], im-
paired chondrogenesis [5], B cell development [6] and
severe cardiac defects [7]. Male Id2-/- mice also exhibit
defects in spermatogenesis [8]. Id3 null mice develops
primary Sjogren’s syndrome-like symptoms [9], specific
defects in B/T lymphocyte development [10], and re-
stricted development of the gamma delta lineage during
thymopoiesis [11]. Interestingly, no phenotype is ob-
served in mice lacking only Id1 suggesting that its func-
tion can be effectively compensated by the other three
Ids. So far embryonic lethality has been observed only in
mice homozygously lacking both Id1 and Id3 suggesting
that Id1 and Id3 may have many overlapping functions
[12]. 1d4 is required for normal brain size and lateral ex-
pansion of the proliferative zone in the developing cortex
and hippocampus possibly by regulating neural stem cell
proliferation and differentiation [13]. Id4 is also required
for normal mammary gland development in p38MAPK
dependent pathway [14] and for spermatogonial stem cell
renewal [15].

Studies have also shown that unlike other Ids, Id4 pro-
motes differentiation in many systems including osteoblast
[16], adipocytes [17], neurons [13] and oligodendrocytes
[18]. Paradoxically, Id4 appears to demonstrate both pro-
tumor and anti-tumor properties. Epigenetic silencing of
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Id4 in leukemia [19], breast [20,21], colorectal [22] mouse
and human CLL (chronic lymphocytic leukemia [23]) and
gastric cancer [24] tend to support its anti-tumor activity.
Whereas high Id4 expression is reported in B-cell acute
lymphoblastic leukemia [25] and B-cell precursor acute
lymphoblastic leukemia (BCP-ALL) [26] due to the t(6;14)
(p22;q32) chromosomal translocation, and in bladder [27]
and rat mammary gland carcinomas [28] suggests that it
may also have pro-tumor activity.

We and others have recently shown that Id4 is highly
expressed in the normal prostate and decreased in pros-
tate cancer due to promoter hypermethylation [29,30]. 1d4
expression in the prostate thus appears in contrast with
the expression of other Id genes (Id1 and Id3) which are
expressed at low to negligible levels in the normal prostate
although their expression increases significantly in pros-
tate cancer [31-33]. Moreover, 1d4 is regulated by andro-
gens in cells that respond to androgen stimulation such as
testicular Sertoli cells and prostate epithelial cells [34]. Id4
also restores androgen receptor expression and activity in
the androgen receptor negative prostate cancer cell line
DU145 [35]. These results suggest that Id4 could poten-
tially act within the androgen receptor pathway to regulate
the development and function of the prostate. We used
the Id4 -/- mouse model to evaluate further the role of 1d4
in prostate development and its significance in prostate
cancer. Our findings suggest that Id4 is required for nor-
mal prostate development. The prostate in Id4-/- mice
have a complex phenotype characterized by attenuated
growth and development that also mimics subtle features
of prostatic intraepithelial neoplasia (PIN).

Results

Id4 is expressed in the normal mouse prostate

In this study we demonstrate that Id4 is highly expressed
in the adult mouse prostate glandular epithelial cells
(Figure 1A and B) with little to no expression in the adja-
cent stroma. While the majority of glandular epithelial cells
stained strongly positive for 1d4 (red arrow, Figure 1B), the
staining intensity in few cells was lower (yellow arrow,
Figure 1B) or absent (green arrow, Figure 1A). These low
to negative 1d4 cells were found interspersed suggesting
cell-cell variability in 1d4 expression. Id4 expression in the
mouse prostate is therefore similar to human prostate in
which Id4 expression is readily observed in most of the
epithelial cells. We then used the Id4-/- mice prostates
(Figure 1C) to investigate its role in prostate development.

Severe genital tract (GT) phenotype in male 1d4-/- mice

The genital tract (GT) size of Id4-/- mice was noticeably
smaller as compared to the wild type mice (Figure 1D).
The GT size of heterozygous mice (Id4+/-) was inter-
mediate between Id4+/+ and Id4-/- mice. The prostates
and seminal vesicles (Figure 1D bottom panel) were also
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Figure 1 Effect of loss of Id4 on mouse prostate development. A and B — Immuno-histochemical analysis of Id4 expression in the wild type
mouse prostate. Panel B is the enlarged version of the box represented in Panel A. Id4 expression is primarily localized to epithelial cell nuclei.
Red, green and yellow arrow heads represent cells expressing high, low or no Id4 respectively. C: Lack of Id4 expression in Id4-/- prostates. The
scale bars are 100um. D: The relative size of the genital tract (excluding testis and epididymis) of the wild type (Id4+/+) and mutant (Id4-/-) mice.
The representative image of three different tracts demonstrating clear size differences is shown. The bottom panel represents the size of the
seminal vesicle from the Id4+/+, Id4+/- and Id4-/- mice. E: Average number of tubules and tubule diameter per cross section in the wild type
and I1d4 -/- prostates. The number of tubules were counted in each section (n = 100 serial cross sections for Id4+/+, n = 76 for Id4+/- and n = 54
for 1d4-/, proximal to distal) at 50x and their mean + SEM is indicated as open bars. The black bars represent average tubule diameters (+SEM) of
the number of tubules counted in each of the serial sections at 50x. (*** P < 0.001, NS: non-significant).

visibly smaller in Id4-/- mice suggesting that 1d4 is required
for normal genital tract development. Previous studies
using the same Id-/- model have shown similar levels of cir-
culating testosterone between Id4+/+ and Id4-/- mice [15].
These results suggested that the smaller genital tract in
Id4-/- mice was not due to lower testosterone levels.

Loss of 1d4 results in impaired prostate development

Histological analysis indicated a significant decrease be-
tween the number and size of prostatic ducts in pros-
tates from Id4-/- mice as compared to age matched

littermates. The number of tubules were counted in each
section (n = 100 serial cross sections for Id4+/+, n = 76
for 1d4+/- and n = 54 for Id4-/-, proximal to distal) at
50x. The average number of tubules and tubule diameter
in all the lobes decreased more than three fold in Id4-/-
mice (Figure 1E, P < 0.001). Based on glandular hist-
ology, all lobes (dorsal, lateral anterior and ventral) were
identifiable in the wild type (Figure 2A and B, distal) and
Id4-/- (Figure 2J-N, distal, N is more proximal) pros-
tates. The finger like projections typical of anterior pros-
tate appeared to be normal in Id4-/- mice (Figure 2P).
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Apart from the smaller average diameter (Figure 1E), we  Histological analysis of Id4-/- mouse prostates

routinely saw less eosinophilic serous secretory material In some cross-sections of Id4-/- prostates, extensive
within the lumens in Id4-/- prostatic ducts (Figure 2P) layering and pseudo-stratification of the glandular epi-
as compared to Id4+/+ (Figure 2F). thelial cells was observed (arrowheads in Figure 2M, O,
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Figure 2 Hematoxylin and Eosin staining of the wild type (Id4+/+, A-F), heterozygous (Id4+/-, G-1) and homozygous (Id4-/-, J-Q) mouse
prostates (5 um sections from proximal to distal region). The yellow (Panel Q) and black arrowheads (Panels E, M, O, P, Q) represent
hyperchromatic nuclei and layers of stratified epithelium respectively. The asterisk indicates the stromal layer surrounding the tubules (Panels O,

P and Q). Panel O is an enlarged image of the corresponding box in panel N. Frequency of PIN like lesions (pseudo-stratification) in Id4+/+,
|d4+/- and Id4-/- was quantified (average n =100 cross sections, and >200 tubules) in each genotype and statistical analysis (1-way ANOVA and
Dunnett's multiple comparison test) is shown in panel R. Representative images are shown. AP: Anterior prostate, VP: ventral prostate, DLP: Dorso-
Lateral Prostate. The sections are counterstained with hematoxylin hence the nuclei are blue. Representative images are shown. The scale bar

is 100 um.
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Figure 3 Loss of Id4 has no effect of Androgen receptor but attenuates NKX3.1 expression. Androgen Receptor (Panels A and B) and
NKX3.1 expression (Panels C-F) in wild type (Id4+/+, B, C and D) and Id4 knockout (Id4-/- A, E and F) mice. Androgen receptor (AR) expression
was observed in the nucleus (black arrowheads) of both Id4-/- (A) and Id4+/+ (B) prostate epithelial cells. AR was also observed in the stromal
cells (yellow arrowheads) in Id4-/- and Id4+/+ mice. Panels C and D: Nkx3.1 is highly expressed in the nucleus of wild type prostatic glandular
epithelium cells (black arrowheads, Panel D). Panel D is the enlarged boxed region in Panel C. Panel E: Nkx3.1 expression is undetectable in mice
lacking Id4 (Id4-/-), however at higher magnification (Panel F, enlarged boxed region of Panel E) some cells stain positive for Nkx3.1 expression
(black arrowheads). The brown staining represents the expression of AR in A and B and NKX3.1 in C-F. Representative images are shown. The AR
and Nkx3.1 positive cells were counted in 25 tubules each in Id4+/+ and Id4-/- cross sections. The average AR or Nkx3.1 positive cells per tubule
is shown in Panels B and F respectively (***: P < 0.001, t-test, n = 25 tubules). The scale bar is 100um. G: Schematic of Nkx3.1 gene including
intron 1. The androgen response element (ARE) in intron 1 binds androgen receptor and regulates androgen dependent expression of Nkx3.1 in
mice prostate. H: Chromatin immuno-precipitation (ChIP) based analysis of androgen receptor binding to the ARE site in intron 1 of Nkx3.1. The
binding of RNA polymerase | (RNA Pol) and AR was quantitated using real time PCR. The data normalized to IgG shows the input, RNA pol and
AR in the Id4-/- knockout prostate as compared to wild type set to 1. (*** P < 0.001, n = 3 in triplicate).
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P and Q). A feature of the Id4-/- lateral prostatic ducts
was the presence of abundant fibro muscular stroma
surrounding the tubules (asterisk in Figure 2M, N, O, P
and Q). The nuclei of Id4-/- mice were hyperchromatic

(Yellow arrowhead in Figure 2Q) as compared to the
homogenous chromatin found in Id4+/+ nuclei (Figure 2F),
suggesting hyperplasia and dysplasia. Some of these abnor-
malities are consistent with changes associated with



Sharma et al. Molecular Cancer 2013, 12:67
http://www.molecular-cancer.com/content/12/1/67

prostatic intraepithelial neoplasia (mPIN), which is consid-
ered to be a precursor of invasive prostate carcinoma in
humans [36]. In fact more mPIN like lesions were ob-
served in Id4-/- prostatic tubules as compared to their
wild type counterparts (Figure 2, black arrowheads in
panels M, O, P and Q). Quantitation of PIN like lesions
(pseudo-stratification) in Id4+/+, Id4+/- and 1d4-/- (aver-
age n =100 cross sections, and >200 tubules in each geno-
type) followed by statistical analysis (1-way ANOVA and
Dunnett’s multiple comparison test, Figure 2R) revealed a
significant increase in PIN like lesions in Id4-/- mice as
compared to Id4+/+ (P < 0.001). Elongated nuclei were also
routinely observed in some Id4-/- dorso-lateral and ventral
lobe 1d4-/- tubules (Figure 2P and Q, see also Figure 3A
(arrow)). Presence of elongated and hyperchromatic nuclei
are frequently observed in mouse models of prostate can-
cer such as in LADY (12 T-7f) transgenic mice [37]. This
histological analysis revealed that Id4 is required for nor-
mal prostate development. Loss of Id4 leads to a decrease
in the number of ducts, small tubular size and appearance
of subtle PIN like lesions.

Effect of 1d4 on prostate regulatory proteins

We broadly classified the Id4-/- prostate phenotype in two
different categories: 1) a hyper-proliferative defect wherein
we observed intra-ductal hyperplasia and 2) a develop-
mental defect leading to small prostate size, decreased
branching and smaller tubule size. The molecular basis of
these alterations was explored by investigating the expres-
sion of representative markers associated with each of
these two processes.

Id4 And prostate development: loss of Id4 has no effect on
androgen receptor expression but results in down-
regulation of Nkx3.1

Androgen receptor is the key regulator of prostate devel-
opment including size, branching morphogenesis and
differentiation. Quantitation of androgen receptor posi-
tive cells (brown nuclei, Figure 3A and B, n =25 tubules
each) followed by statistical analysis revealed that loss of
Id4 had no apparent effect on androgen receptor expres-
sion (black arrowheads, Figure 3A) as compared to wild
type littermates (black arrowheads, Figure 3B and inset)
in the glandular epithelium of the prostate. Similar to
wild type, AR expression was also present in the stromal
cells in Id4-/- prostates (yellow arrowheads, Figure 3A
and B). AR was also predominantly nuclear suggesting
efficient nuclear translocation in Id4-/- following ligand
binding. Thus androgen receptor pathway which is es-
sential to support normal sex differentiation, develop-
ment of male genital tract and organ development
appears to be intact. These results also suggested that
Id4 is required to maintain normal prostate development
through genetic events downstream of androgen
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receptor and deficiency of 1d4 may attenuate these path-
ways leading to decreased prostatic secretions and PIN
like lesions.

We next investigated the expression of Nkx3.1, a key
androgen receptor downstream target. The expression of
homeobox gene Nkx3.1 in prostate epithelial cells is rap-
idly lost after castration, but is quickly restored after an-
drogen dependent prostate regeneration [38]. Nuclear
Nkx3.1 expression was clearly observed in prostates
from WT mice suggesting a normal prostate develop-
mental program and androgen response (Figure 3C and
D). In contrast, Nkx3.1 expression was noticeably absent
in the Id4-/- mice (Figure 3E and F and inset, Nkx3.1
positive nuclei counted in n = 25 tubules). Nkx3.1 is also
the earliest known marker of prostate development and
is a critical regulator of prostate epithelial differentiation
in mouse models [39]. Loss of Nkx3.1 leads to significant
decreases in prostatic ductal branching and production
of secretory proteins [39]. Nkx3.1 knockout mice also
frequently display prostate epithelial hyperplasia and
dysplasia and often develop PIN [39]. Some of these
phenotypes such as reduced ductal branching and diam-
eter (Figure 1D) and PIN like lesions (Figure 2M, O, P,
Q and R) were also present in 1d4-/- prostates, perhaps
due to loss of Nkx3.1 expression.

Androgen-dependent transcription of the mouse Nkx3.1
is conferred through a non-canonical androgen response
element (ARE) element within an intron [40] (Figure 3G).
Chromatin immuno-precipitation analysis using androgen
receptor antibody revealed that AR binding is significantly
reduced (P < 0.001) at this site in Id4-/- mice as compared
to the levels observed in prostates from WT mice
(Figure 3H). These results provided direct evidence that
decreased Nkx3.1 expression is not due to loss of andro-
gen receptor (Figure 3A and B) but due to attenuated an-
drogen receptor binding to its cognate response element.

Based on in vitro and in vivo studies, PTEN and its
downstream signaling pathways have emerged as major
regulators of NKX3.1 expression [41]. As expected, Pten
was highly expressed in the wild type prostate epithelium
and stroma (Figure 4A). The immuno-histochemical stud-
ies shown in Figure 4B and C clearly demonstrated a sig-
nificant decrease in Pten expression in Id4-/- prostate
epithelial cells (black arrowheads). Surprisingly, Pten ex-
pression was maintained in non-prostatic tissue such as
urethra (Figure 4C, asterisk) in Id4-/- mice suggesting that
the decreased Pten expression was specific to prostate.
Lack of Id4 expression in the urethra (data not shown)
further suggests that Pten expression is influenced by I1d4
specifically in the prostate. Since Pten regulates Nkx3.1
expression, the loss of prostatic Pten might be an alternate
mechanism by which Nkx3.1 is down-regulated in the
Id4-/- prostate [42]. Furthermore, these mechanisms may
be independent of AR-regulated Nkx3.1 gene transcription
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Figure 4 Pten, Akt and phospho-Akt (p-Akt) expression in wild type (Id4+/+) and Id4 knockout (Id4-/-) mice. A: Pten was expressed at
high level in the normal prostate both in the nucleus and cytoplasm of Id4+/+ prostate. B and C: Pten expression was significantly reduced or
undetectable (black arrowheads) in the Id4-/- prostate ducts. Note the hyperplastic regions in Panel B. Occasionally, few Pten positive cells were
observed that were primarily localized to epithelial cells near the basement membrane (Inset in Panel B). Pten expression was observed in the
urethra (asterisk, Panel C) but not in prostatic ducts. The inset in Panels A and B are enlarged boxed regions in corresponding panels. Panels
D-F: Lobe specific expression of phospho-Akt in Id4-/- mice. Increased phospho-Akt was observed in dorsal prostate (Panel D) but not in ventral
(E and inset)) and lateral (F) prostate. Phosphorylation of Akt correlated with total Akt expression (G-1) in Id4-/- prostate. Akt expression was
undetectable in lateral and ventral prostate (G) but was detectable in dorsal prostate (H and I) from Id4-/- mice. Panels J-L: Total Akt expression
in wild type mice prostate. Akt expression was highly variable within the glandular epithelium (J). Regions of undetectable to high Akt expression
were juxtaposed (K and L). Similar expression profile (low to high) of phospho-Akt was observed in wild type prostates (Panels M-O). The cells
staining positive for phospho-Akt were counted in tubules that also stained positive for Akt. The ratio of pAkt/Akt positive cells is shown in Panel
L (*** P < 0.001). Representative images are shown. The scale bar is 100 um.
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mechanism. The Id4-/- knockout model thus closely
mimics the Pten:Nkx3.1 mutant mice [43].

Pten, a phosphatase is involved in the regulation of
Akt phosphorylation. We measured the expression of
phospho-Akt (p-Aktl, 2 and 3) as readout of Pten
expression/activity in Id4-/- mice. High p-Akt activity
(nuclear and cytoplasmic) in the dorsal prostate of
Id4-/- mice was consistent with decreased Pten expres-
sion (Figure 4D). Unexpectedly, low to negligible p-Akt
activity was observed in the ventral (Figure 4E) and

lateral prostates (Figure 4F) suggesting a lobe specific ef-
fect. We reasoned that decreased p-Akt even in the ab-
sence of Pten could be due to reduced expression of total
AKkt. Surprisingly, total Akt expression was undetectable in
lateral and ventral prostate (Figure 4G) but was present in
dorsal prostate (Figure 4H and I). These results suggested
that loss of p-AKt observed in lateral and ventral prostate
was likely due to decreased expression of total Akt and
not due to loss of Pten. High Akt expression was observed
in the wild type prostate but the expression pattern was
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(See figure on previous page.)

sections and subjected to t-test (** P < 0.01, *** P < 0.001, inset).

Figure 5 1d4 expression is associated with proliferation (Ki67), apoptosis (TUNEL) and proliferative markers (Myc, Id1 and Sox9). A:
Increased proliferation represented by high Ki67 immuno-staining was observed in Id4-/-. Cells at the tips of the finger like projections stained
more strongly with Ki67 as compared to those near the basement membrane (inset in Panel A). Panel B: High Ki67 was observed only in a few
cells in the glandular epithelial cells of the wild type (Id4+/+4) prostate (black arrowheads). Panels C- F: High nuclear Myc (C) and Id1 (E, and inset)
expression was observed in the |d4-/- epithelial cells as compared to wild type littermates (D and F respectively). Panels G and H: Nuclear Sox9
expression was absent in the wild type (Id4+/+, Panel H) but high nuclear Sox9 expression was observed in the Id4-/- glandular epithelial cells of
the prostate (Panel G). Panels I and J: TUNEL assay demonstrated increased apoptosis in in Id4 -/- mice prostates (Panel I and inset, Brown
staining) as compared to the wild type littermates (Panel D and inset). The graph in panel J represents average number of TUNEL positive cells
per field. The TUNEL positive cells were counted in five fields (at 400x) on three different tissue samples. Average number of TUNEL positive cells
per field represented as mean + SEM in Id4-/- were not statistically different from WT littermates. Representative images are shown. The scale bar
is 100um. The respective Ki67 (B), Myc (D), Id1 (F), Sox9 (H) and Tunel (J) positive cells were counted (n = 25 tubules) in Id4+/+ and Id4-/- cross

unanticipated. Akt expression in the glandular epithelium
was not uniform but highly localized to few cells
(Figure 4J-L) suggesting that Akt expression is not consti-
tutive. The expression of p-Akt was consistent with
regions expressing high and low Akt. We next counted p-
Akt positive cells in tubules that also stained positive for
Akt (see panels D, H and I in Figure 4). A significant (P <
0.001) increase in the fraction of p-Akt positive cells in
this analysis (inset in Figure 4L) further supports the lack
of Pten in Id4-/- prostates as compared to Id4+/+ pros-
tate. Additional studies will be required to demonstrate
the functional significance of the localized Akt expression
and its effect on cell function, for example whether Akt
expression correlates with pAKt, Pten and downstream ef-
fectors of p-Akt in specific Akt positive and negative cell
types in a lobe specific manner.

Id4 and Proliferative defect: Loss of Id4 promotes
proliferation without altering apoptosis

The presence of hyperplastic regions (Figure 20-R) was
associated with increased expression of proliferative
marker Ki67 in Id4-/- in prostate ducts (Figure 5A).
Marked increase in Ki67 was also observed in growing
prostatic projections in the lumen in Id4-/- prostates
(Box in Figure 5A). In contrast, Ki67 positive nuclei in
Id4+/+ littermates were observed in only few cells per
tubule (Figure 5B, P <0.01, Ki67 positive nuclei counted
in n = 25 tubules).

Increased Ki67 was also associated with increased ex-
pression of regulators of proliferation such as Myc [44]
and Id1 [45]. Myc positive nuclei were more frequently
observed in glandular epithelial cells in Id4-/- (Figure 5C)
as compared to Id4+/+ prostates (Figure 5D, P <0.001,
Myc positive nuclei counted in n =25 tubules). Recent
studies have also shown an inverse relationship between
Myc and Nkx3.1 [46,47].

Id1, a member of the HLH family of transcription fac-
tors was undetectable in the Id4+/+ (Figure 5F) but in-
creased significantly in Id4-/- mice (Figure 5E, P < 0.001,
Id1 positive nuclei counted in n =25 tubules). Id1 pro-
motes cell cycle progression by down-regulating multiple

CDKNIs including p21 and p16(Ink4a) [48,49]. Together
with Myc, increased Id1l expression is also associated
with increasing grade of prostate cancer [33,34,50].

In Pten and Nkx3.1 mutant mice, cells with increased
levels of SOX9 are persistently present within prostate
epithelia [51]. Immuno-histochemical analysis using
Sox9 antibody revealed few Sox9 positive luminal epithe-
lial cells in the wild type prostates (Figure 5H) [52]. In
contrast, the epithelial cells from the Id4-/- prostate
showed significantly higher Sox9 expression (Figure 5G,
P <0.001, Sox9 positive nuclei counted in n=25 tu-
bules). Increased Sox9 expression is observed at early
stages of prostate hyperplasia and is associated with pro-
gression to high grade PIN lesions [53]. Sox9 is part of
the prostate developmental pathway that is reactivated
in prostate neoplasia where it promotes tumor cell pro-
liferation and correlates with Ki67 expression [51].

The average number of TUNEL positive cells (from 5
different fields) in Id4-/- mice prostate (Figure 5I and
inset) was not significantly different from WT mice
(Figure 5] and inset, and graph representing TUNEL
positive nuclei counted in n =25 tubules). We speculate
that even a small increase in proliferation, without no-
ticeable change in apoptosis could have a dramatic effect
on cellular growth.

The molecular changes in the prostate observed in the
Id4-/- mouse model were further confirmed in vitro using
Id4 gene silencing and gain-of-function approaches in the
prostate cancer cell lines LNCaP and DU145. Id4 was
silenced in LNCaP cells using gene specific siRNA
(Figure 6A) and over-expressed in DU145 cells as previ-
ously described [29,35]. Similar to the Id4-/- studies as
described above (Figure 3D and F), silencing of Id4 in
LNCaP cells resulted in decreased NKX3.1 expression,
whereas ectopic Id4 expression in DUI145 increased
NKX3.1 expression (Figure 6B). Consistent with lack of
androgen receptor binding on NKX3.1 promoter in Id4-/-
mice prostate (Figure 3H), a significant decrease (P <
0.001) in androgen receptor binding on consensus ARE in
NKX3.1 promoter (-3013 bp relative to transcriptional
start site) was observed in LNCaP-Id4 cells as compared
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Figure 6 1d4 expression in prostate cancer cell lines LNCaP and DU145 is associated with NKX3.1, Sox9 and PTEN expression. Panel A:
Id4 was silenced in LNCaP (L) cells with gene specific ShRNA (L-Id4). Panel B: NKX3.1 and Sox9 expression in LNCaP cells in which Id4 was
silenced (Panel A) or in DU45 cells (D) in which Id4 was ectopically expressed (D + Id4). Panel C: Chromatin immuno-precipitation to
demonstrate occupancy of androgen receptor (AR) at the androgen response element on NKX3.1 promoter in LNCaP (L) and LNCaP-Id4 (L-Id4)
cells. Polymerase A (PolA) enrichment on GAPDH promoter was used as an internal control. The data represented as mean + SEM of three
different experiments is normalized IgG (CS: Charcoal stripped FBS, a* and b*: p < 0.001 as compared to a and b respectively). Note that PolA
enrichment is shown on the right y-axis and IgG and ARE on the left y-axis. Panel D: PTEN protein is undetectable in LNCaP cells due to frame
shift mutation. Increased PTEN expression is observed in DU145 cells in which Id4 is constitutively expressed (D + Id4). PTEN null prostate cancer

\

cell line PC3 was used as a negative control for PTEN expression. Representative of three different experiments is shown.

LNCaP cells (Figure 6C). These results clearly demon-
strated that NKX3.1 is dependent on Id4. Loss of Id4
in LNCaP cells also resulted in increased Sox9 in these
cells whereas Sox9 was undetectable in DU145 + 1d4 cells
(Figure 6B). Due to frame shift mutation, PTEN protein
expression is not observed in LNCaP cells (Figure 6D) [54].
However, PTEN expression was higher in DU145 + Id4
cells as compared to DU145 cells alone (Figure 6D).
These results not only confirmed the molecular
changes observed in our in vivo and in vitro models
but strongly support the role of Id4 as a potential
tumor suppressor that is required for normal prostate
development also.

Discussion

This study supports a role for 1d4 as a key regulator of
male genital tract development. Although we focused on
the prostate, the size and development of accessory sex
glands (seminal vesicles) and testis is also severely im-
paired. Id4 may not be required to maintain fertility [15]
but it could cooperate with other possibly overlapping
regulatory genes to support normal development of vari-
ous organs within the genital tract.

Genital tract development in general and prostate in
particular are androgen dependent. Prostate fetal devel-
opment, structural and functional maturation at puberty
is strictly androgen regulated [55]. Loss of androgen
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receptor, specifically in the prostate epithelial cells
(PEARKO, prostate epithelial AR knockout) leads to a
phenotype [56,57] that is very similar to the Id4-/- pros-
tates e.g. increased proliferation, decreased size and num-
ber of tubules and lack of differentiated epithelial cells.
Based on the chromatin immuno-precipitation studies of
the mouse Nkx3.1 promoter and increased NKX.3.1 ex-
pression in DU145 +1d4 cells, we propose that Id4 is
required to maintain certain facets of androgen receptor
activity in the prostate epithelium. In particular, Id4 could
support the function of the AR as a suppressor of epithe-
lial proliferation in the mature prostate, which is defective
in prostate cancer [58].

Nkx3.1 regulates early postnatal ductal morphogenesis
and maintains normal differentiation of the prostate epi-
thelium including the production of secretory proteins
[38,39]. Similar to Nkx3.1-/- mice, the Id4-/- mice also
display reduced ductal branching morphogenesis, epithe-
lial hyperplasia and dysplasia. But unlike Id4-/- mice, the
overall prostate sizes and wet weights in Nkx3.1 -/- and
+/+ mice [39] are similar. Nevertheless, loss of Nkx3.1, a
marker of epithelial differentiation and androgen re-
sponse is a significant observation that further supports
the attenuation of androgen regulatory network post an-
drogen receptor expression in the 1d4-/- prostates.

Nkx3.1 also regulates the rate at which proliferating lu-
minal epithelial cells exit the cell cycle and its loss extends
the transient proliferative phase of luminal cells [59] which
is consistent with increased expression of ki67, Myc and
Id1 in Id4-/- prostate. An increase in the Myc:Nkx3.1 ratio
observed in Id4-/- mice could also promote Myc dependent
transactivation of pro-tumorigenic target genes [47]. Con-
versely, a decrease in Myc:Nkx3.1 ratio may promote
Nkx3.1 dependent transactivation of anti-tumorigenic tar-
get genes. Mice expressing Myc in the prostate also develop
PIN like lesions followed by invasive adenocarcinoma [60].
Inactivation of Pten also promotes cellular Myc activation
[42] which is consistent with our results. Thus, some of the
phenotypes resulting from the loss of Nkx3.1 are consistent
with the literature but the smaller prostate size in Id4-/-
mice appears to result also from alterations of other regula-
tory pathways that could be independent of Nkx3.1 such as
Akt signaling (see below).

Id1 is also a member of helix-loop-helix family of tran-
scriptional regulators that contributes to cell proliferation
and restrains differentiation and apoptosis [61,62]. Both
Id1 and Id4 share strong sequence homology and interact
with similar bBHLH proteins for example TCF3, but their
expression patterns are largely non-overlapping [61]. We
and others have shown that Id4 and Id1 expression is mu-
tually exclusive in the normal prostate [35] and prostate
cancer [29-31,33,50,63]. Such a mutually exclusive expres-
sion pattern is also observed in the Id4-/- mice further
suggesting loss of epithelial differentiation and increased
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proliferation. Sustained Id1 expression also failed to rescue
the Id4-/- deficient phenotype supporting the argument
that these two structurally similar proteins are functionally
divergent and non-compensatory.

Sox9 is critical for maintaining the basal epithelial cells
in tissues and may have a similar function in prostate
epithelium [64]. In the adult prostate, SOX9 is expressed
diffusely in the basal cell layer suggesting that it is re-
quired for maintaining basal cell function. These basal
cells represent and/or include prostate stem cells also
[65]. Increased Sox9 expression in the prostate epithelial
component may suggest the expansion of this basal cell
population that remains undifferentiated as evidenced by
persistent Id1 expression, increased proliferation (lack of
exit from cell cycle) and decreased differentiation
markers (Nkx3.1). However direct studies identifying
specific basal cell populations (e.g. p63 expression) and/
or stem cell markers and there transitions to specific cell
types will be required to further consolidate this specific
mechanism.

Investigating whether loss of Id4 results in an early de-
fect or is a later post-pubertal effect will be required to
fully comprehend the scope of Id4 in the regulation of
prostate development. Whether 1d4 is vital to maintain a
specific Sox9 positive prostate stem cell component that
eventually expands to promote normal prostate develop-
ment is an interesting proposition based on two different
studies. First, 1d4 is required for neuronal stem cell
maintenance but a relatively mild mutant phenotype is
observed at post natal day O despite the early loss of
stem cells due to both premature differentiation and
compromised cell cycle transition [13]. Second, in mice
lacking Id4 expression, quantitatively normal spermato-
genesis is impaired due to progressive loss of the undif-
ferentiated spermatogonial stem cell population during
adulthood [15]. These studies indicated that Id4 is a
distinguishing marker of spermatogonial stem cells in
the mammalian germline and plays an important role
in the regulation of self-renewal. The observations made
in the later study are particularly exciting given the over-
all impact of Id4-/- on the male reproductive tract and
suggests a potential common molecular mechanism of
action targeting a stem cell population in various organs
of the male reproductive tract. In the prostate, Id4 could
also be expressed in a specific stem cell population such
as Sca-1" Sca-1'°, Sca-negative [66] and/or their pro-
genitors that contribute to the prostate phenotype in
Id4-/- mice.

Loss of Id4-/- also impairs mammary gland develop-
ment [14]. In the mammary gland, Id4 expression is
mainly observed in the cap cells, basal cells and in a subset
of luminal cells, whereas in the prostate 1d4, expression is
primarily in the luminal epithelial cells. Conceptually, re-
duced ductal branching in prostate is similar to reduced
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ductal branching/expansion and branching morphogenesis
in mammary gland of Id4-/- mice. In mammary gland, loss
of 1d4-/- is associated with reduced cellular proliferation
but in the prostate, loss of Id4 was associated with in-
creased proliferation (Ki67) and decreased differentiation
(Nkx3.1) suggesting that the regulatory role of Id4 in
mammary gland and prostate are distinct.

The presence of focal hyperplastic regions resembling
PIN like lesions is also observed in Id4-/- mice. Many of
the genes associated with prostate cancer and their re-
spective knockout/transgenic phenotypes are also recapit-
ulated in the Id4-/- model that support the role of Id4 in
prostate cancer. Apart from loss of Nkx3.1 as discussed
above, a decrease in Pten specifically in the prostate,
sustained androgen receptor expression, increased Myc
and Sox9 also promote early stages prostatic intraepithelial
neoplasia [51]. Our results suggest that the above noted
genes and their regulated pathways are downstream
of Id4. However, in spite of these complex alterations,
we did not observe a significantly greater number of
pre-neoplastic lesions in Id4-/- prostate suggesting the
possibility of mechanisms/pathways that restrains the for-
mation of significant pre-cancerous lesions and prostate
cancer. One of these pathways could involve Akt, a kinase
on which many of these pathways converge. Aktl and 2
deficiency is sufficient to markedly reduce the incidence of
tumors in Pten(+/-) mice [67] and Myc also cooperates
with Aktl in promoting prostate tumorigenesis [68]. Thus
loss of Akt could be a key mechanism that negatively reg-
ulates the formation of PIN like lesions given the remark-
able pro-neoplastic gene signature in Id4-/- mice. Loss of
Akt1 also leads to increased apoptosis and general growth
retardation that affect the size of organs [69]. We specu-
late that the smaller genital tract and prostate in Id4-/-
could be in part due to decreased Akt expression.

Based on sequence homology and interaction studies,
Id4 could still function as a dominant negative inhibitor of
bHLH transcription factor of the E2A (TCF3) family. How-
ever, its interactions with non-bHLH proteins could be the
key to understand its pro-differentiation vs. inhibitor of
differentiation functions. For example, in response to
BMP4, 1d4 stabilizes RUNX2 and promotes osteoblast dif-
ferentiation [16]. A similar mechanism can be envisioned
in the prostate where Id4 could stabilize transcription fac-
tors involved in prostate development such as the Homeo-
box (Hox cluster, and Nkx3.1) and Forkhead box genes
(Fox Al and A2) in response to secreted signaling mole-
cules (Wnts, Fgfs, BMPs/TGE[5/Activins) [70]. These com-
plex interactions and cross-regulation could promote I1d4
dependent prostate morphoregulatory gene signature es-
sential for normal prostate development. Id4 could also
regulate the correct timing of prostate epithelial cell differ-
entiation, in a mechanism similar to neural differentiation
[71] through complex interplay involving transcription
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factors (bHLH and non-bHLH) and response to signals
from the surrounding mesenchyme.

Conclusions

The Id4-/- knockout presents a complex prostate pheno-
type. Loss of Id4 results in altered prostate development
but also leads to or promotes some PIN like lesions that
are supported both by morphological and specific
marker studies. At least three potential Id4-/- dependent
mechanisms can be conceptualized (Figure 7): First, the
altered androgen-receptor — Id4 interaction pathway in
which Id4 is required to promote androgen dependent
differentiation program. This mechanism is supported
by the Id4 dependent Nkx3.1 expression as shown in
normal prostate epithelial cells, Chromatin immuno-
precipitation studies, androgen sensitive prostate cancer
cell lines and similarities of the prostate phenotype with
PEARKO mice. Second, a stem cell hypothesis wherein
Id4 is required to maintain or influence the timing of
differentiation of a specific stem cell population, and
third, basal cell expansion in which epithelial differenti-
ation is blocked due to persistent Sox9 expression. Alter-
ation in any of these pathways could result in abnormal
prostate and reproductive tract development and may
establish gene expression signatures that favor (PTEN,
NKX3.1, Id1, Myc) or restrain (Akt) development of
prostate gland and pre-cancerous lesions.

Materials and methods

Animals

All animal studies were conducted in accordance with fed-
eral guidelines and approved by the Institutional Animal
Care and Use Committee, Geisel Medical School at Dart-
mouth. The mice were sedated using a lethal dose of
tribromoethanol (TBE) followed by terminal perfusion
with 10% acetate buffered formalin. The reproductive tract
including prostates from 6-8 weeks old Id4-/-, Id4+/-
and Id4+/+ mice were obtained from Dr. Mark A. Israel
(Norris Cotton Cancer Center, Lebanon, NH, USA). The
Id4-/- mice were generated by targeted replacement of the
endogenous Id4 locus with the green fluorescent protein
(GFP) coding sequence [13]. The tissues were fixed in
buffered formalin and paraffin embedded.

Histological analysis

Five micron sections were used for all histological and
immuno-histochemical analysis. The sections were
stained with hematoxylin and eosin using standard pro-
cedures. The H&E sections from knockout, heterozygous
and wild type mice were examined by veterinary pathol-
ogists (Dr. Thomas Graham, DVM, PhD, and Dr. Ebony
Gilbreath, DVM, PhD, Department of Pathobiology,
School of Veterinary Medicine, Tuskegee University,
Tuskegee, AL, USA). All the sections were performed
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from proximal to distal region with ventral prostate as
the most proximal region.

Immuno-histological analysis

Slides were processed through standard protocols. Fol-
lowing antigen retrieval (autoclave in 0.01 M sodium cit-
rate buffer pH 6.0 at 121C/20 psi for 30 min), the
peroxidase activity was blocked in 3% H,O, and non-
specific binding sites blocked in 10% Goat serum. The
blocked sections were incubated overnight at 4°C with
either of the following antibodies: Androgen receptor
(Rabbit mAb, Cell Signaling, cat#153P), Akt (11E7,
Rabbit mAB, Cell Signaling, cat# 4685), phospho Akt
(ser473, Rabbit pAb, Cell Signaling, cat# 9271), Pten
(Rabbit mAb, Cell Signaling, cat#9559), Myc (Rabbit
mADb, Cell Signaling, cat#5605X), NKX3.1 (mouse mAb,
Thermo Scientific, cat#16906), Sox9 (Rabbit pAb, Novus
biological, NB-100-2202), Id4 (Rabbit pAb, Aviva,
ARP38058-T100), Id1 (Rabbit mAb, cat# BCH-1#195-
14), Ki67 (Rabbit polyclonal, AbCam, #ab15580)

followed by incubation with secondary antibody (goat
anti-rabbit (#32260) or goat anti-mouse (#32230) -HRP,
Thermo Scientific) for 1 hour. The slides were stained
with DAB for 2 min, counterstained with hematoxylin
and mounted with Immuno-mount (Thermo Scientific),
examined and photo-micrographs taken using the Zeiss
microscope with an AxioVision version 4.8 imaging sys-
tem. All the antibodies were mono-reactive, that is a sin-
gle reactive band was observed in western blot using
total cell lysate from prostate cancer cell lines LNCaP,
DU1545 and PC3. Non-specific binding of the secondary
antibodies was evaluated using respective normal IgGs
(data not shown).

TUNEL assay

The terminal deoxynucleotidyl transferase-mediated
deoxyuridine triphosphate (dUTP) nick end labeling
(TUNEL) assay was used to detect fragmented DNA as
marker for apoptosis in FFPE tissue sections using TACS
2 TdT-DAB apoptosis detection kit (Trevigen). The
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slides were counterstained in hematoxylin and mounted
with Immuno-mount (Thermo Scientific).

Id4 over-expression and silencing in prostate cancer cell
lines

The prostate cancer cell lines LNCaP, DU145 and PC3 were
purchased from ATCC and cultured as per ATCC recom-
mendations. Human Id4 was over-expressed in DU145 cells
as previously described [35]. Id4 was stably silenced in
LNCaP cells using a gene specific ShRNA retroviral vector
(Open Biosystems #RHS1764-97196818). Successful Id4
over-expression and gene silencing was confirmed by qRT-
PCR and Western blot analysis.

Western blot analysis

Total cellular protein was prepared from cultured prostate
cancer cell lines using M-PER (Thermo Scientific). 30ug
of total protein was size fractionated on 4-20% SDS-
polyacrylamide gel (Novex) and subsequently blotted onto
a nitrocellulose membrane (Whatman). The blotted nitro-
cellulose membrane was subjected to western blot analysis
using protein specific antibodies as mentioned above.
After washing with 1x PBS with 0.5% Tween 20, the mem-
branes were incubated with a horseradish peroxidase
(HRP) coupled secondary antibody against rabbit or
mouse IgG and visualized using the Super Signal West
Dura Extended Duration Substrate (Thermo Scientific) on
Fuji Film LAS-3000 Imager.

Chromatin immuno-precipitation (ChlIP) assay
Formalin-fixed paraffin-embedded (FFPE) samples from
wild type and Id4 knockout mice were used for ChIP based
analysis of androgen receptor binding on the mouse
Nkx3.1 promoter. For this analysis, 40 pm thick FFPE sec-
tions with more that 75% prostatic ducts were used from
Id4-/- and WT mice. Genomic DNA was isolated from
these sections by the method of Fanelli et al., [72] except
that tissue samples were de-paraffinized with xylene instead
of histolemon. The chromatin extracted from tissue sam-
ples was sheared (Covaris S220), subjected to immuno-
precipitation with either androgen receptor (Millipore, #06-
680), mouse IgG (Active motif # 102302) or RNA poll
(Millipore, #05-623) antibodies, reverse cross linked and
subjected to qRT- PCR [72]. The androgen receptor bind-
ing site (AAA TTA TGG ATG TTC TTT TAA GTC TT)
in the first intron of mouse Nkx3.1 [40] (311 bp from start
of first intron) was quantitated by real time PCR (BioRad
CEX96) using forward (5'GCC CAC TCT TAA GTT CCC
TT) and reverse (5'CAT GAA AAG TGG TTG GGG CC)
primers (130 bp amplicon).

LNCaP and LNCaP-I1d4 cells cultured in 10% Fetal bo-
vine serum were used to analyze androgen receptor
binding on consensus ARE sites in NKX3.1 promoter
using primer pairs described previously [73] with EZ
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CHiP kit (Millipore). The reagents for PolA CHiP on
GAPDH were included in the EZ CHIiP kit as internal
standards.

Data and statistical analysis

The NIH Image ] [74] was used for counting, calculation
of area and diameter of H&E stained prostatic ducts (for
description see respective figure legends). Quantitative real
time data was analyzed using the AACt method: the Ct
values of IgG were used to first calculate ACt. Following
this normalization step, the AACt was then calculated with
ACt of wild type set to 1. Within group Student’s ¢-test
was used for evaluating the statistical differences between
groups. One-way ANOVA and Dunnett’s multiple tests
were used to test for differences between more than two
groups.
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