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Myeloid-Derived Suppressor Cells in Murine Retrovirus-Induced AIDS
Inhibit T- and B-Cell Responses In Vitro That Are Used To Define the
Immunodeficiency

Kathy A. Green,a W. James Cook,a William R. Greena,b

Department of Microbiology and Immunologya and Norris Cotton Cancer Center,b Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA

Myeloid-derived suppressor cells (MDSCs) have been characterized in several disease settings, especially in many tumor systems.
Compared to their involvement in tumor microenvironments, however, MDSCs have been less well studied in their responses to
infectious disease processes, in particular to retroviruses that induce immunodeficiency. Here, we demonstrate for the first time
the development of a highly immunosuppressive MDSC population that is dependent on infection by the LP-BM5 retrovirus,
which causes murine acquired immunodeficiency. These MDSCs express a cell surface marker signature (CD11b� Gr-1� Ly6C�)
characteristic of monocyte-type MDSCs. Such MDSCs profoundly inhibit immune responsiveness by a cell dose- and substan-
tially inducible nitric oxide synthase (iNOS)-dependent mechanism that is independent of arginase activity, PD-1–PD-L1 ex-
pression, and interleukin 10 (IL-10) production. These MDSCs display levels of immunosuppressive function in parallel with the
extent of disease in LP-BM5-infected wild-type (w.t.) versus knockout mouse strains that are differentially susceptible to patho-
genesis. These MDSCs suppressed not only T-cell but also B-cell responses, which are an understudied target for MDSC inhibi-
tion. The MDSC immunosuppression of B-cell responses was confirmed by the use of purified B responder cells, multiple B-cell
stimuli, and independent assays measuring B-cell expansion. Retroviral load measurements indicated that the suppressive
Ly6Glow/� Ly6C� CD11b�-enriched MDSC subset was positive for LP-BM5, albeit at a significantly lower level than that of non-
fractionated splenocytes from LP-BM5-infected mice. These results, including the strong direct MDSC inhibition of B-cell re-
sponsiveness, are novel for murine retrovirus-induced immunosuppression and, as this broadly suppressive function mirrors
that of the LP-BM5-induced disease syndrome, support a possible pathogenic effector role for these retrovirus-induced MDSCs.

Host control of the extent of pathogenesis clearly reflects the
interplay among protective immune responses, immuno-

pathologic responses, and immune regulatory systems. Immuno-
regulatory responses include both those mechanisms predestined
to fine-tune the elimination or control of disease and those con-
trol mechanisms inappropriately expanded, altered, or induced by
the disease that promote pathogenesis. For example, overzealous
negative immune regulation is a frequent confounding aspect of
host attempts to mount effective antitumor responses. Within the
confines of the tumor microenvironment, neoplastic cells employ
a variety of strategies for downregulating antitumor immunity,
including using enhanced negative regulatory cells and molecules.
In infectious diseases, pathogens also attempt to evade the gener-
ation and/or effector phases of protective immunity by not only
altering their display of recognition molecules or epitopes but also
by disrupting immunoregulatory mechanisms. Especially insidi-
ous are viruses which directly infect immune cells and/or other-
wise co-opt normal host molecular and cellular immune interac-
tions to promote their own replication, spread, or persistence.
While in most cases this hijacking of immune players only indi-
rectly promotes increased viral pathogenesis by decreasing host
responsiveness, it is possible that misdirected immunoregulatory
systems could directly serve as the effector cells and/or molecules
proximally causing disease.

Retroviruses are proficient in co-opting various immunoregula-
tory mechanisms. Human immunodeficiency virus type 1 (HIV-1)
and simian immunodeficiency virus (SIV) have been shown to cause
the premature expression of PD-1 on effector T cells. This early ex-
pression of PD-1 can push antiviral CD8� cytolytic T lymphocyte
(CTL) effectors to an inappropriately early downregulation, akin to

the normal T-cell contraction phase, which normally occurs at the
latter stages of viral clearance (1–6). With murine Friend retrovirus
(FV), altered expression of PD-1 and Tim-3 has been reported to
have various effects on retroviral load and pathogenesis (7, 8). In
some viral infections, the cumulative effects of such dysregulated
control mechanisms are sufficient, especially when combined with a
high viral load, to cause CD8� CTL “exhaustion” or lead to a rela-
tively “function-less” T-cell phenotype (1, 4, 5, 9–11). Viral infections
can also alter immunoregulatory cells, such as CD4� FoxP3� T-reg-
ulatory (Treg) cells, a major control point of antitumor immunity
and autoimmunity (reviewed in reference 12) (12–21). For example,
FV-induced pathogenesis, including the induction of erythroleuke-
mias, is prominently associated with increased numbers of CD4�

Treg cells, which negatively modulate the FV-specific CD8� T-cell
response (22–25). Early postinfection (p.i.) depletion of these Treg
cells can enhance the peak acute CD8� T-cell response and decrease
viral load to levels that do not lead to subsequent CD8� T-cell loss of
function. Alternatively, if delayed, Treg cell depletion can modulate
the chronic phase of FV infection to help restore downregulated FV-
specific CD8� T-cell function (22, 25). In the LP-BM5 murine retro-
virus system studied here, an early report provided evidence in sup-
port of a direct role of CD4� Treg cells, based on their expression of
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CD25 and other assessed markers but not including FoxP3, in medi-
ating LP-BM5 pathogenesis (26). However, subsequent reports have
supported other functions of CD4� FoxP3� Treg cells in LP-BM5
infection, including their limitation (along with PD-1–PD-L1) of a
protective CD8� CTL response (27, 28).

Another immune regulatory cell type that has been well studied
over the last decade is the myeloid-derived suppressor cell
(MDSC) (reviewed in references 29–32). Like CD4� FoxP3� Treg
cells, MDSCs are viewed as primarily acting in a negative fashion
with respect to protective T-cell immune responses, particularly
in various tumor microenvironments. In addition, there is a small
but growing literature providing evidence that MDSC regulatory
control can limit autoimmune disease processes (33–39). Al-
though their ultimate definition is based on their (immature)
myeloid derivation and their suppressive function, MDSCs have a
generally accepted surface phenotype of positivity for Gr-1 and
CD11b in murine systems. Although murine MDSC populations
are typically heterogeneous, there are two phenotypically distin-
guishable MDSC subsets. Using monoclonal antibodies (MAbs)
to separate the specificities that anti-Gr-1 recognizes, the granu-
locytic/polymorphonuclear leukocyte-like MDSC subset is
Ly6G�/high Ly6C�/low, whereas the monocytic MDSC subset is
Ly6G�/low Ly6C�/high (reviewed in references 30–32). Based pri-
marily on studies of a broad spectrum of tumor microenviron-
ments, MDSCs have been differentially characterized with respect
to not only these cell surface phenotypes but also to the mecha-
nisms by which they cause suppression, including arginase, induc-
ible nitric oxide synthase (iNOS)-nitric oxide (NO), other oxygen
and nitrogen reactive species, and other mechanisms (reviewed in
references 29–32 and 40–45). The focus of study on tumor systems
has also led to an emphasis on T-cell responses as the standard
cellular targets for MDSC suppression. Although some reviews of
the MDSCs have indicated that B-cell (and some other) responses
can be sensitive to MDSC regulation, the primary literature on
B-cell targeting by MDSCs has been clearly limited. However, be-
cause MDSC inhibition of not only antigen and/or tumor-specific
T-cell responses but also of broad non-major histocompatibility
complex (MHC)-restricted responses to polyclonal activators and
mitogens has been widely reported, it seems plausible that funda-
mental B-cell responsiveness might also be susceptible to MDSC
regulation.

MDSCs have been less well studied in infectious diseases. There
have been reports on MDSC and MDSC-like cell involvement in,
and there is evidence of suppressive activity by MDSC-associated
inhibitory mechanisms for, bacterial (46, 47), yeast/fungal (48),
protozoan parasitic (49, 50), and helminthic (51, 52) infections.
However, in cases such as Helicobacter pylori and parasitic infec-
tions, MDSC involvement was implicated due to the observed
immunosuppressive environment and presence of arginase, lead-
ing to needed reconsideration, since some microbes produce
arginase (53, 54). For viral infections, the studies of MDSC func-
tion have also been limited. MDSC involvement has been reported
for influenza A virus (55) and in murine models of chronic hepa-
titis B virus (56) and for both vesicular stomatitis virus (57)- and
certain herpes simplex virus 1-engineered strains (58), the latter
two of which are active in modulating experimental tumor sys-
tems. But, little has been reported about the presence or function
of MDSC populations in the context of retroviral infections and
ensuing diseases such as acquired immunodeficiency. To our
knowledge, the first report providing evidence for the develop-

ment of MDSC in HIV-infected individuals was just published
(59).

After infection with the LP-BM5 retrovirus isolate, certain in-
bred strains of mice, such as the highly susceptible C57BL/6 (B6)
strain, develop a disease syndrome which includes immunodefi-
ciency. The LP-BM5 retroviral isolate consists of a pathogenic
defective murine retrovirus (BM5def) that requires replication-
competent ecotropic helper viruses (BM5eco) for its entry into
cells and spread in vivo. Beginning at approximately 6 weeks
postinfection (w.p.i.), a profound immunodeficiency is readily
apparent, including severely dampened T- and B-cell responses,
leading to the full array of disease features (60–68). Consequently,
there is an increased susceptibility to disease progression and
sometimes death when exposed to environmental pathogens that
normally cause limited infections. At later time points, LP-BM5-
infected immunodeficient B6 mice develop B-cell lymphomas.
Because these features of LP-BM5-induced disease are similar to
many of those seen in HIV-infected individuals, this syndrome
has been designated murine AIDS (MAIDS).

The mechanism of LP-BM5 retroviral pathogenesis is not com-
pletely understood. Inoculation of LP-BM5 into B6 mice genetically
deficient in, or subjected to prior in vivo antibody depletion of, either
CD4� T cells or B cells leads to infection but not to virus-induced
disease (61, 69). We determined that CD154-CD40 interactions are
necessary for both the induction and the progression of LP-BM5
pathogenesis. In vivo treatment with �-CD154 (CD40 ligand) mono-
clonal antibody (MAb) either at the initiation of or 3 to 4 weeks after
infection of B6 mice leads to substantial inhibition of standard
MAIDS parameters, including splenomegaly, hypergammaglobu-
linemia, and B-cell and T-cell immunodeficiencies (70, 71). In con-
firmation, we and others have reported that, although both strains
develop considerable retroviral load, B6 CD154 (72) and CD40 (72,
73) knockout (k.o.) mice are resistant to LP-BM5-induced disease. By
reciprocal adoptive transfer experiments, we directly demonstrated
that CD4� T cells and B cells are necessary, respectively, for the req-
uisite CD154 and CD40 expression for LP-BM5-induced pathogen-
esis (72). Our lab (74) has also reported that LP-BM5-induced disease
depends on CD154-CD40 ligation-induced recruitment of cytoplas-
mic tumor necrosis factor receptor-associated factor (TRAF) pro-
teins to TRAF binding sites of the CD40 cytoplasmic tail domain
(75–77), specifically on CD40-TRAF 6 signaling (74) but not via the
classic upregulation of CD80/CD86 (78).

In agreement with the strict requirement for their expression of
CD154, our studies with separated CD4� T cells have confirmed
an essential role for “pathogenic” CD4� T cells (27, 79). We have
also demonstrated that a previously unrecognized alternative �1
Nucleotide (NT) retroviral gag open reading frame (ORF) of the
BM5def genome is strictly required for LP-BM5-induced patho-
genesis (80). However, these and other studies have not fully re-
vealed the proximal cellular and molecular mechanisms of LP-
BM5-induced pathogenesis, specifically the immunodeficiency.
During several chronic viral infections, including HIV/AIDS, nor-
mal immune downregulating mechanisms, such as the PD-1 path-
way and interleukin 10 (IL-10), may limit the magnitude or dura-
tion of antiviral T-cell responses and the viruses are not cleared or
controlled, thus indirectly enhancing retroviral pathogenesis. Our
recent evidence showed that PD-1 expression by CD8� T cells is a
significant cause of the inability of MAIDS-susceptible B6 mice to
normally mount a protective CTL response (28). However, there
is no evidence in support of a direct role for the PD-1–PD-L1 or
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the IL-10 negative regulatory pathway as an effector phase mech-
anism of LP-BM5-induced immunodeficiency. Rather, PD-1, PD-
L1, and IL-10 knockout mice with the susceptible B6 background
all exhibit more, not less, profound pathogenesis after LP-BM5
infection due to a release from normal PD-1–PD-L1 and IL-10
dampening of the pathogenic CD4� T cells (81).

Here, we examine an alternative explanation for the cellular
and molecular effectors of LP-BM5 immunodeficiency: the in-
volvement of retrovirus-induced MDSCs. We identify and char-
acterize retrovirus-induced MDSCs with respect to cell surface
phenotype, the inhibitory activity effective against immune re-
sponses to stimuli used standardly to measure LP-BM5-induced
immunodeficiency, the molecular mechanism(s) of MDSC inhi-
bition, and the correlation between in vivo LP-BM5-induced dis-
ease severity and ex vivo MDSC inhibitory activity.

MATERIALS AND METHODS
Mice. Seven-week-old male C57BL/6 (B6) mice were purchased from the
National Institutes of Health (Bethesda, MD), housed in the Dartmouth
Medical School animal facility, and used when they were approximately 8
to 10 weeks of age. Fully backcrossed-to-B6 IL-10 k.o. and iNOS k.o.
mouse breeding pairs were obtained from the Jackson Laboratory (Bar
Harbor, ME) and were originally derived as described previously (82, 83).
Also backcrossed to the B6 background, PD-1 k.o. breeding pairs, derived
as reported (84), were obtained from Jian Zhang at Rush-Presbyterian-St.
Luke’s Medical Center (Chicago, IL), and PD-L1 k.o. breeding pairs, de-
rived as described previously (85), were obtained from Randolph Noelle
(Dartmouth Medical School).

Cell purification. For experimental suppressor cell populations,
splenocyte suspensions from either three or four LP-BM5-infected mice
(5 w.p.i.) were pooled and labeled with �-Ly6G-coupled paramagnetic
beads, with subsequent MACS column (Miltenyi Biotec, Auburn, CA)
purification according to the manufacturer’s protocol. The flow-through
from the first separation was labeled with �-CD11b-coupled paramag-
netic beads and subjected to column purification, yielding a positively
selected cell population which was �75% CD11b� Ly6C�. Purified re-
sponder B-cell populations were obtained by incubation of spleen cell
suspensions from three or four noninfected B6 mice with �-CD19 beads
to positively select for CD19� B cells, with �95% CD19� enrichment as
detected by flow cytometric analyses.

LP-BM5 virus inoculations. LP-BM5 was prepared in our lab as de-
scribed previously (62). To produce LP-BM5 virus stocks, G6 cells, gen-
erously provided originally by Janet Hartley and Herbert Morse (NIH) as
a cloned cell line from SC-1 cells infected with the LP-BM5 virus prepa-
ration, were used in a coculture with noninfected SC-1 cells. Mice were
infected intraperitoneally with 5 � 104 ecotropic PFU as determined by a
standard retroviral XC plaque assay (86).

[3H]thymidine incorporation proliferation assays. For responder
cells, 5 � 105 uninfected, unfractionated, or CD19�-purified spleen cells
were plated onto 96-well flat-bottom plates along with 1.6 � 105 (unless
otherwise indicated) 5-w.p.i. LP-BM5 splenocytes which were either un-
fractionated, Ly6G� enriched, or Ly6G� depleted and CD11b� enriched.
All the wells were plated in triplicate with medium containing 5% fetal calf
serum (FCS), L-glutamine, antibiotics, and a final concentration of either
10 �g/ml lipopolysaccharide (LPS), 50 �g/ml �-CD40 plus 10 ng/ml IL-4,
or 2 �g/ml concanavalin A (ConA). To test blocking of suppression,
Ly6G�-depleted CD11b� -enriched suppressor cells were pretreated for 1
h at room temperature before the start of the coculture with 0.5 to 1.0 mM
either the NOS inhibitor NG-monomethyl-L-arginine (L-NMMA), the
negative-control enantiomer NG-monomethyl-D-arginine (D-NMMA)
(A. G. Scientific, San Diego, CA), or the arginase inhibitor N�-hydroxy-
nor-L-arginine (nor-NOHA) (Cayman, Ann Arbor, MI). After 66 h, all
wells were pulsed with 1 mCi [3H]thymidine (PerkinElmer, Waltham,
MA) and harvested 6 h later for assessment of thymidine incorporation by

scintillation counting (PerkinElmer, Waltham, MA). Data for B- and T-
cell responder cell stimulation are expressed as either raw cpm incorpo-
ration (Fig. 1A only) or the percent inhibition of the control response (all
other figures). For the percent inhibition calculation, the percent residual
responsiveness (R) was calculated first as R � (cpm of cocultured re-
sponder cells and experimental suppressor cells)/(cpm of cocultured re-
sponder cells and control noninfected suppressor cells) � 100%. Then,
with the percent control responsiveness (C) defined as the cpm of cocul-
tured responder cells and control suppressor cells and designated as
100%, the percent inhibition of the control response (I) was defined as I �
C � R or simplified to I � 100% � R. Standard deviations (SD) of the
means were determined for triplicate wells and were statistically com-
pared by the two-tailed two-sample equal-variance Student t test.

CFSE dilution proliferation assays. Naïve responder splenocytes
were labeled with 5 �M carboxyfluorescein succinimidyl ester (CFSE)
(CellTrace CFSE proliferation kit; Molecular Probes, Eugene, OR) in
phosphate-buffered saline (PBS)-0.5% bovine serum albumin (BSA) for
10 min at 37°C, followed by the addition of cold RPMI-10% fetal bovine
serum (FBS) and incubation for 5 min on ice. After three cold RPMI-10%
FCS washes, cell cultures were set up in the same manner as that for the
[3H]thymidine incorporation proliferation assays. On culture day 4, wells
were stained with monoclonal antibody (MAb) �-CD19-PerCP, �-CD8-
PerCP, or �-CD4-APC (BioLegend, San Diego, CA) and were analyzed on
a FACSCalibur flow cytometer (BD Bioscience, San Jose, CA). We deter-
mined the percentages of CD19� (or CD4� or CD8�) cells divided and
proliferation indices by using the FlowJo software proliferation platform
(Tree Star Inc., Ashland, OR).

Flow cytometry and IFN-� production. For extracellular staining,
5 � 105 spleen cells were incubated with fluorescein isothiocyanate
(FITC)-, phycoerythrin (PE)-, allophycocyanin (APC)-, or Cy-Chrome-
conjugated antibodies, followed by direct immunofluorescence quanti-
fied by log amplification (FACSCalibur flow cytometer; BD Bioscience).
To detect the expression of the following murine antigens, the indicated
MAbs were employed: CD4 (RM4-5), CD8 (53-6.7), CD19 (6D5), CD11b
(M1/70), Fc�R III/II receptors (2.4G2), CD11c (HL3), Ly6G (1A8), Ly6C
(HK1.4), Gr-1 (RB6-8C5), F4/80 (BM8), and the TLR4-MD2 complex
(MTS510) (BioLegend). Appropriate FITC-, PE-, peridinin chlorophyll
protein (PerCP)-, or APC-conjugated Ig isotypes of irrelevant specificity
were used to control for each experimental MAb. For gamma interferon
(IFN-	) quantification, naïve responder cells, at a responder-to-suppres-
sor (R/S) ratio of 3:1 of either uninfected control cells or Ly6G�-depleted
CD11b�-enriched MDSCs, were stimulated with 10 �g/ml of plate-
bound anti-CD3(145-2C11) and 1 �g/ml of soluble anti-CD28(37.51) for
3 days. Spleen cells (1 � 106) were then harvested and incubated for 5 h
with complete medium, 10 �g/ml IL-2, and 10 �g/ml of brefeldin A (BFA)
(Sigma). After washing with PBS, extracellular staining for cell surface
markers was first performed as described above; then, as described previ-
ously (28), the cells were fixed in 2% formaldehyde and permeabilized
with 0.5% saponin, followed by intracellular staining with the APC–
IFN-� MAb (XMG1.2). All stained cells were analyzed on a FACSCalibur
flow cytometer using CellQuest software (BD Bioscience).

RNA isolation and real-time quantitative RT-PCR. Viral loads were
determined separately for the LP-BM5 retroviral component genomes,
BM5def, and BM5eco, as described previously (87). Briefly, total RNA was
isolated from nonfractionated or purified spleen cells from uninfected or 5- to
7-w.p.i. LP-BM5 mice using Tri-Reagent (RT111; Molecular Research Cen-
ter, Cincinnati, OH). Following reverse transcription of cDNA (Bio-Rad
iScript cDNA synthesis kit), quantitative reverse transcriptase (qRT)-PCR
was performed using iQ SYBR green supermix and iCycler software (Bio-
Rad, Hercules, CA). Error bars (Fig. 9) represent standard deviations of
the mean for each group as calculated according to manufacturer (Applied
Biosystems) instructions (http://www3.appliedbiosystems.com/cms/groups
/mcb_support/documents/generaldocuments/cms_040980.pdf). Statistical
comparisons were made by the Student t test by comparing the means for
replicate threshold cycle (CT) values for each group.
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Infectious center assay. In vitro infectious center assays, adapted from
a variation of the standard XC cell plaque assay (86), were performed as
described previously (28). Briefly, seeded SC-1 cells were infected by co-
culture with a series of dilutions of unfractionated or the indicated puri-
fied cellular subsets from 5 w.p.i. LP-BM5 B6 mice and incubated for 5
days. Uninfected spleen cells were also plated as a negative control. After
irradiation of the SC-1 monolayer with UV light, the cultures were over-
laid with XC cells, and plaques were developed 3 days later for enumera-
tion by 2% methylene blue staining.

RESULTS
Broadly suppressive activity develops after LP-BM5 retrovirus
infection, and the level of suppression of T-cell and B-cell re-
sponsiveness correlates with the mouse strain dependency of
LP-BM5-induced immunodeficiency. Because LP-BM5 retrovi-
rus infection-dependent MAIDS features a profound immunode-
ficiency of both T-cell and B-cell reactivity in susceptible strains of
mice, such as prototypic B6 mice (88–93), we considered whether
suppressive cells developed during infection. In an attempt to mir-
ror the very strong immunodeficiency associated with LP-BM5-
induced MAIDS, we utilized first the very same fundamental and
broad immune responses that we and others have established as
routine measures of the degree of unresponsiveness of MAIDS:

the in vitro proliferative responses to the T-cell mitogen ConA and
the B-cell mitogen LPS (61, 73, 79, 81, 88). As shown in the rep-
resentative experiment in Fig. 1A, spleen cells from noninfected
mice demonstrated no significant inhibition of these in vitro mi-
togenic responses, as measured by [3H]thymidine incorporation
following in vitro coculture of normal B6 responder spleen cells
and spleen cells also from noninfected B6 mice as a source of
control “suppressor” cell populations. In contrast, when the po-
tential suppressive population was obtained from B6 mice previ-
ously infected with LP-BM5, significant suppression was consis-
tently observed. This suppression was exerted on both the B-cell
and T-cell proliferative responses, compared to either no suppres-
sor cell addition (P � 0.019 and 0.034, respectively) or addition of
spleen cells from noninfected B6 mice as a control source of sup-
pressor cells (P � 0.011 and 0.003, respectively). Over several
additional early experiments (5/5), we further tested for suppres-
sive effects by normalizing the decreased responses observed when
spleen cells from infected mice were added to the control response
to that when equal numbers of cells from noninfected B6 mice were
employed as a source of suppressor cells (see Materials and Methods).
Thus, the percent inhibition was calculated and ranged from about
40% of the B-cell response to LPS to approximately 25% of the T-cell

FIG 1 Unfractionated spleen cells obtained from 5-w.p.i. LP-BM5 C57BL/6 mice inhibit in vitro B- and T-cell proliferation. (A) Naïve B6 responder (R) spleen
cells only or mixed with spleen cells from uninfected (control) or 5-w.p.i. LP-BM5 mice (to test their potential as suppressor[s]) at a responder-to-suppressor
(R/S) ratio of 3:1 were stimulated for 3 days with the B-cell mitogen LPS or the T-cell mitogen ConA (see Materials and Methods). After scintillation counting,
[3H]thymidine incorporation is expressed as raw counts per minute (cpm). The presented pattern of results is representative of one additional experiment. (B)
cpm values are converted to the percentage of inhibition of the control response as the standard form of presentation for the subsequent figures (see Materials
and Methods). (C) Spleen cells from 5-w.p.i. LP-BM5 B6 mice (a pool of 3) were evaluated for MAIDS by the standard disease parameters, including
immunodeficiency as measured by the ability to respond to LPS or ConA stimulation. Shown are the averages � the SD of the percentage of inhibition of the
control response for panels A and B (five experiments) and panel C (two experiments). Significance levels: *, P 
 0.05; **, P 
 0.01; ***, P 
 0.001; and ****,
P 
 0.0001.
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response to ConA, albeit with some variations among the experi-
ments (Fig. 1B). Utilizing the same in vitro responses as are standard
for the definition of LP-BM5-induced immunodeficiency, these re-
sults collectively demonstrated an LP-BM5 infection-dependent de-
velopment of cell-mediated immunosuppression.

In parallel with these findings, LP-BM5-induced pathogenesis
was obvious (e.g., spleen weights and serum IgG2a and IgM levels
were significantly greater [P � 0.0008, 0.00007, and 0.03, respec-
tively]) at 5 w.p.i. when our panel of MAIDS disease parameters
was measured ex vivo (data not shown). However, compared to
the typical 8- to 10-w.p.i. assessments, the levels of disease were
only partial (70–72, 81). Particularly relevant to the focus here on
MDSC activity, immunosuppression of LPS- and ConA-induced
B- and T-cell responsiveness, respectively, was inhibited (P �
0.00009 and 0.0002, respectively) about 50% at this middle time
point (Fig. 1C). Thus, the extent of MAIDS disease in vivo was
roughly congruent with the measured suppression from the in
vitro cell admixtures of normal responder cells and suppressors
obtained from infected mice (Fig. 1A and B).

We previously found that mice with the B6 background and
genetically deficient for either PD-1 or IL-10 expression exhibit
increased LP-BM5 pathogenesis, including immunodeficiency,
based on exaggerated extent of disease, an earlier time course of
disease, and/or a higher level of disease at a reduced viral inocu-
lum, all compared to the prototypically susceptible B6 strain (81).
These effects appear to be due to the dampening effect that PD-1,
especially, and IL-10 normally mediate in wild-type (w.t.) B6 mice
on the pathogenic CD4� T-cell effector response that is required
for LP-BM5-induced initiation and early progression of MAIDS
(27, 28, 94). As depicted in the representative experiments in Fig.
2, when LP-BM5-infected B6.IL-10�/� or B6.PD-1�/� mice were
used as a source of suppressor cells, we demonstrated increased
suppression of B-cell and T-cell mitogenic responses. This in-
creased suppression was observed at both a standard fixed (3:1)
responder-to-suppressor cell ratio (Fig. 2A) and over the course of
a titration of suppressor population cell numbers (Fig. 2B). In-
deed, the suppressive populations from infected IL-10�/� and

PD-1�/� mice were many (�4)-fold more suppressive, based on
the lesser number of cells required to achieve a similar level of
suppression, than suppressor cells from infected w.t. B6 mice (Fig.
2B). The relatively greater inhibition by suppressor cells from in-
fected PD-1�/� than from infected IL-10�/� mice was consistent
with our results demonstrating the degree of LP-BM5-induced
pathogenesis in B6 mice as PD-1�/� � IL-10�/� � w.t. (81), in
the context of these molecules downregulating the pathogenic
CD4� T-cell response (28).

LP-BM5-induced splenic suppressor cell function is en-
hanced in a Ly6G�/low Ly6C� CD11b�-enriched monocytic
MDSC population. Previous findings by our (81) and another
laboratory (95) indicated that CD11b� (CD4� CD8� CD19�)
macrophage/myeloid-like cells expand among spleen cells in LP-
BM5-infected B6 mice and more so in B6.PD-1�/� and B6.IL-
10�/� mice (81). Further, because the timing and degree of this
expansion correlate with the level of retroviral pathogenesis (81),
we considered whether the observed cell-mediated immunosup-
pression (Fig. 1 and 2) might be due to retrovirus-induced MDSC
function. Based on preliminary flow cytometric analyses (later
confirmed; see below and Fig. 6) and the literature on MDSC
phenotypic marker expression (reviewed in references 30–32), we
devised a two-step cell enrichment approach: (i) depletion of
Ly6G� neutrophils and granulocytic cells (Ly6G�-enriched
spleen cell subset) and (ii) positive selection of the flow-through
Ly6G�-depleted population for CD11b� expression (Ly6G�-de-
pleted CD11b�-enriched spleen cell subset). Compared to the
nonfractionated splenic population studied so far, these two en-
riched subpopulations (cell surface phenotypes are described be-
low; see also Fig. 6) had dramatically different suppressive func-
tions (Fig. 3). Over several experiments, the Ly6G�-enriched
spleen cell subset did not exhibit detectable and/or certainly not
enhanced inhibition of either the B-cell response to LPS (Fig. 3A)
or the T-cell response to ConA (data not shown). This lack of
Ly6G� suppressor activity was observed even when this subset was
obtained from the highly suppressive B6 knockout donor mouse
strains IL-10�/�, PD-1�/� (as per above), and PD-L1�/�

FIG 2 The extent of suppression by spleen cells from LP-BM5-infected mice correlates with the published degree of LP-BM5-induced disease exhibited by the
indicated mouse strain of origin for the suppressor cells. (A) A [3H]thymidine incorporation assay was used to assess the B- and T-cell proliferation during a 3-day
culture of responder cells mixed with nonfractionated spleen cells from the indicated strains of 5-w.p.i. LP-BM5-infected mice. The presented pattern of results
is representative of two additional experiments. (B) R/S titrations (with decreasing numbers of suppressor cells) are included, and the presented pattern of results
is representative of one additional experiment. Significance levels: *, P 
 0.05; **, P 
 0.01; ***, P 
 0.001; and ****, P 
 0.0001.
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(Fig. 3A). In sharp contrast, the alternative CD11b� cell subset
obtained after the initial Ly6G� depletion (the “doubly enriched”
Ly6G�-depleted CD11b�-enriched spleen cell subset) possessed
significantly (P � 0.008) increased suppressive activity compared
to that of nonfractionated spleen cells from infected wild-type B6
mice (Fig. 3A). As expected, the suppressive activity of nonfrac-
tionated B6.IL-10�/�, B6.PD-1�/�, and B6.PD-L1�/� infected
spleen cells was already approaching 100% inhibition. Because of
this strong activity, suppressor cell titrations were required to
demonstrate the statistically significant enrichment of suppressive
ability of the doubly enriched subset to diminish the LPS and
ConA responses (for representatives of such titrations, see Fig. 3B
[PD-1�/� suppressors]; similar data are not shown for IL-10�/�

and PD-L1�/� suppressors). These results strongly indicate that a
monocytic MDSC population was responsible for the observed in
vitro immunosuppression, with the amount of suppression ob-
served for B6 knockout strains varying to a degree that paralleled
the extent of retroviral pathogenesis in vivo, including the loss of
both B-cell and T-cell responsiveness (81).

In that the ability of MDSC populations to suppress B-cell
reactivity has been relatively understudied, attempts were

made to confirm monocytic MDSC inhibition of B-cell func-
tion. First, an alternative B-cell proliferative stimulus, agonis-
tic anti-CD40 MAb plus soluble IL-4, was used (96–98). As
shown by the representative data in Fig. 3C, the unfractionated
and especially the Ly6G�-depleted CD11b�-enriched MDSC
populations from both infected w.t. B6 and PD-1�/� mice with
the B6 background demonstrated strong suppression of the
anti-CD40 –IL-4 response in a cell number- and mouse strain-
dependent manner that was consistent with our results above.
Thus, MDSC suppression of B-cell proliferation appeared not
to be dependent on the particular stimulus used to activate the
B-cell compartment.

Second, to avoid the possibility of MDSC inhibition of another
cell type within the responder cell population, which then in turn
served as a terminal effector cell to suppress B-cell responsiveness,
we obtained highly purified (�98%) B cells for use as responder
cells to B-cell stimuli (Fig. 4). Again, only monocytic MDSC inhi-
bition was observed, and the extent of inhibition did not substan-
tially vary regardless of whether nonfractionated or purified B-cell
responder cells were employed. These results argue for the direct
MDSC inhibition of B-cell responsiveness.

FIG 3 Suppression of in vitro B-cell proliferation is greatly enhanced by Ly6G�-depleted CD11b�-enriched spleen cells from 5-w.p.i. LP-BM5 mice with the B6
background. (A) By using the [3H]thymidine incorporation assay to measure suppression, spleen cells from 5-w.p.i. LP-BM5 w.t., IL-10�/�, PD-1�/�, and
PD-L1�/� mice with the B6 background were depleted of Ly6G� cells, followed by subsequent �-CD11b-positive selection of the remaining cells (see Materials
and Methods). This pattern of results for B-cell stimulation is representative of one additional experiment in which the suppression levels by purified spleen cells
from the complete panel of infected knockout strains were directly compared and of seven additional experiments for these same comparisons between
uninfected control spleen cells and purified spleens cells from LP-BM5-infected w.t. B6 mice. (B) R/S titrations (with decreasing numbers of suppressor cells)
were included to assess the B- and T-cell proliferations of responder cells mixed with Ly6G�-depleted CD11b�-enriched spleen cells from 5-w.p.i. LP-BM5 w.t.
and PD-1�/� mice. (C) As an alternative method of B-cell stimulation, the proliferative response to �-CD40 and soluble IL-4 were assessed for suppression by
Ly6G�-depleted CD11b�-enriched splenocytes from LP-BM5-infected w.t. and PD-1�/� mice. The patterns of results shown in panels B and C are each
representative of 1 additional titration experiment. Significance levels: *, P 
 0.05; **, P 
 0.01; ***, P 
 0.001; and ****, P 
 0.0001.
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Third, to avoid any possible misleading and/or confounding
effects when measuring cell proliferation by [3H]thymidine incor-
poration into macromolecular DNA as a sign of cell division, such
as inhibition by “cold”/unlabeled thymidine secreted by cells in
the suppression assay cultures, an independent and direct mea-
sure of cell division was employed: CFSE dye dilution and flow
cytometric analysis (Fig. 5). We first examined MDSC suppres-
sion of B-cell reactivity to either LPS or anti-CD40 MAb–IL-4
stimulation, with specific identification of proliferating B cells by
staining for CD19 expression. Using LP-BM5-infected spleen cells

from w.t. B6 mice as a source of MDSCs, both unfractionated
spleen cells and especially the Ly6G�-depleted CD11b�-enriched
MDSC population inhibited B-cell proliferation (representative
experiment shown in Fig. 5). This substantial inhibition was clear
both visually and quantitatively, based on both the stimulation-
dependent percentages of CD19� B cells that divided and the di-
vision indices compared to the positive-control response observed
with coculture of responder cells with control suppressor cells
from noninfected B6 mice. These results were in keeping with
those in which thymidine incorporation was used as the endpoint
assay and confirmed the suppressive effect on B-cell proliferation.

Parallel experiments were performed with T-cell stimulation
by ConA with similar results (Fig. 6). Thus, gating separately on
CD4� versus CD8� T cells, it was clear that the proliferative re-
sponse to ConA was strongly inhibited by the Ly6G-depleted
CD11b�-enriched MDSCs, with decreases based on the delta of
the percentage of cells divided or the division index ranging from
about 75 to almost 90% (Fig. 6A, uninfected control versus the
far-right panels). In addition, as a representative nonproliferative
functional assay, we assessed IFN-	 production after anti-CD3
and anti-CD28 MAb stimulation (Fig. 6B). IFN-	 production by
intracellular cytokine staining (ICCS) was much more robust for
CD8� T cells, and this response was inhibited by approximately
70% by inclusion of these same monocytic MDSCs.

Cell surface phenotype of LP-BM5 infection-dependent
MDSC populations. Multicolor flow cytometric analyses, starting
with the expanded CD11b� (and predominantly Gr-1�) popula-
tion found in nonfractionated spleen cells from infected versus

FIG 4 The proliferation (as assessed by [3H]thymidine incorporation) of LPS-
stimulated highly purified responder B cells is also profoundly suppressed by
Ly6G�-depleted CD11b�-enriched splenocytes obtained from 5-w.p.i. LP-
BM5 mice. This pattern of results is representative of one additional experi-
ment in which stimulation was provided by �-CD40 and soluble IL-4.

FIG 5 Spleen cells from 5-w.p.i. LP-BM5 B6 mice inhibit B-cell proliferation as alternatively assessed by flow cytometry. CFSE-labeled B6 responder cells were
cultured for 72 h for LPS stimulation and 96 h for �-CD40 and IL-4 stimulation in the presence of either nonfractionated splenic suppressor cells from uninfected
mice or nonfractionated or Ly6G�-depleted CD11b�-enriched cells obtained from 5-w.p.i. LP-BM5 mice. At the termination of incubation, the cells were
stained with �-CD19 fluorochrome-conjugated MAb, and the CFSE dilution was assessed by FACS. The percentages of CD19� cells divided and proliferation
indices were obtained with the FlowJo proliferation platform (see Materials and Methods), with the � values obtained by subtracting the medium-stimulated
responder values for the percentages of cells divided or the division index values. The presented pattern of results is representative of one additional experiment
for each type of B-cell stimulation.
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uninfected w.t. B6 mice (Fig. 7A), were employed to extend the
cell surface phenotypic characterization of the suppressive versus
the nonsuppressive populations. These analyses were performed
at approximately 5 weeks after LP-BM5 infection, a postinfection
time point when in vivo immunosuppression by LP-BM5 was
measurable but the disease had not yet made the mice moribund.
Compared to the �-Ly6G-enriched non-suppressive population,
which was largely Gr-1� Ly6G�/high Ly6C� CD11b� (Fig. 7B), the
suppressive monocytic MDSC population was predominantly
Gr-1� Ly6G�/low Ly6C� CD11b� (Fig. 7C). Further examination
of the majority of this cell population by gating on CD11b�

Ly6C� cells revealed that these cells expressed other cell surface
markers that have been associated with monocytic MDSCs (re-
viewed in references 30–32), including Fc	R III/II (99) and TLR4
(100, 101) at about 90% of the gated cells and approximately
one-third displaying the monocytoid/macrophage marker
F4/80 (Fig. 7D). Although the accepted ultimate definition of
MDSC populations is their suppressive function, these cell sur-
face phenotypic characteristics were fully compatible with a
monocytic MDSC signature.

The mechanism of LP-BM5 retrovirus infection-induced
MDSC inhibition of lymphocyte proliferative responses is de-
pendent on the inducible nitric oxide pathway. The mechanisms
by which MDSC inhibition is mediated are varied and depend
on the immunological/pathological condition. However, these
mechanisms prominently include the generation of reactive nitro-
gen species, in particular as generated by inducible nitric oxide

synthetase (iNOS) and the depletion of arginine by arginase (41,
45). To our knowledge, in this LP-BM5 retroviral immunodefi-
ciency system, there has been no information reported on MDSCs
and their mechanism of inhibition. Importantly, however, it is
clear from our results that neither the PD-1–PD-L1 nor the IL-10
pathway of immunomodulation is required mechanistically for
MDSC function in this LP-BM5 system (Fig. 2 and 3). To further
characterize the mechanisms(s) of suppression by the monocytic
MDSCs, we focused on the iNOS and arginase mechanisms by
inhibitor and knockout mouse strain approaches. For both the
LPS (Fig. 7A) and anti-CD40 –IL-4 (Fig. 7C) stimuli of B-cell re-
sponsiveness used, MDSC inhibition of proliferation was statisti-
cally significantly blocked up to 45 to 70% by the NOS-specific
inhibitor L-NMMA compared to the minimal, if any, blocking by
the negative control analogue D-NMMA at an empirically defined
optimal (0.08 to 2.0 mM) inhibitory dose range (representative
experiment is shown in Fig. 8). Over several independent trials
where the specificity of the blocking by L-NMMA (compared to
D-NMMA) was confirmed, an average of 40 to 50% blocking was
observed for stimulation by LPS (Fig. 7B) or anti-CD40 plus IL-4
(Fig. 7D). In contrast, using nor-NOHA, an arginase inhibitor, led
to only 3 to 5% inhibition on average, underscoring the partial but
significant NOS dependency of MDSC inhibition (data not
shown). In addition, in experiments in which these two inhibitors
of NOS versus arginase were used in combination, the blocking
obtained with only L-NMMA (40 to 50%) was not increased (data

FIG 6 Spleen cells from 5-w.p.i. LP-BM5 B6 mice inhibit CD4� and CD8� T-cell proliferation as alternatively assessed by flow cytometry. Responder CD8�

T-cell IFN-	 production is inhibited in vitro by Ly6G�-depleted CD11b�-enriched MDSCs. (A) CFSE-labeled B6 responder cells were cultured for 72 h with
ConA in the presence of either nonfractionated splenic suppressor cells from uninfected mice or nonfractionated or Ly6G�-depleted CD11b�-enriched cells
from 5-w.p.i. LP-BM5-infected mice. At the termination of incubation, the cells were stained with �-CD4 and �-CD8 fluorochrome-conjugated MAbs, and
CFSE dilution was assessed by FACS. The percentages of CD4� and CD8� cells divided and proliferation indices were obtained by the FlowJo proliferation
platform (see Materials and Methods), with the � values obtained by subtracting the medium-stimulated responder values for the percentages of cells divided or
the division index values. The presented pattern of results is representative of two additional experiments. (B) Naïve unfractionated B6 responder cells were
cultured with plate-bound anti-CD3 and soluble anti-CD28 in the presence of splenic control cells from uninfected mice or spleen cells from 5-w.p.i. LP-BM5
mice which were Ly6G� depleted and CD11b� enriched. After 72 h, ICCS was performed (see Materials and Methods) to assess responder cell IFN-	 production
(% denotes the percentage of total CD8� T cells that are IFN-	�).
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not shown). Similarly, only the NOS-specific inhibitor L-NMMA
blocked MDSC suppression of the T-cell response to ConA.

As independent confirmation and to specifically focus on
the role of iNOS, several informative knockout mouse strains
were employed as alternative sources of MDSCs following
LP-BM5 infection. Congruent with the data above, Ly6G�-
depleted CD11b�-enriched suppressor cells, obtained from
5-week LP-BM5-infected w.t. B6 (and B6.PD-1 and B6.PD-L1
knockout; not shown) mice mediated almost complete inhibi-
tion of the response to LPS stimulation (Fig. 8E). However,
parallel use of similarly purified MDSCs obtained from LP-
BM5-infected B6.iNOS k.o. mice consistently and statistically
significantly (P � 0.0001) resulted in only about 50% of this
positive-control amount of inhibition of proliferation. Thus,
by two independent approaches, a substantial fraction of the
monocytic MDSC inhibition was shown to be due to an iNOS-
dependent mechanism.

LP-BM5 retroviral load in nonfractionated versus MDSC-
enriched B6 splenic cell populations and correlation with im-
munosuppressive function. Because the functional MDSC pop-
ulation is expanded upon LP-BM5 infection, it is likely that
LP-BM5 infection/integration into cells may directly and/or
indirectly be related to the development of MDSC immuno-
suppressive activity. As a first approach to testing this hypoth-

esis, the retroviral load was measured using the established
real-time qRT-PCR assays we have developed for separate
quantifications of the LP-BM5 ecotropic versus defective ret-
roviral components (87). As shown in Fig. 9, compared to the
typical levels of BM5eco and BM5def RNA detected after 5
w.p.i. with unfractionated spleen cells, both the nonsuppres-
sive Ly6G�-enriched granulocytic and the highly immunosup-
pressive Ly6G�-depleted CD11b� monocytic cellular subsets
were positive but exhibited significantly lower viral loads.
Thus, by inference, other splenic cell types in the nonfraction-
ated splenic population, which is much less suppressive than
the enriched monocytic MDSC subset, must have substantially
higher viral loads. However, as represented in Fig. 9, and over
several independent experiments, the two enriched subpopu-
lations did not consistently display significantly different levels
of BM5eco or BM5def viral load compared to each other.

Because although when measuring both genomic RNA and
mRNA these qRT-PCR assays do not interrogate the infectious
viral titer, we also employed infectious center assays (Fig. 10).
Three independent experiments indicated again that both the
nonsuppressive Ly6G�-enriched and suppressive Ly6G�-de-
pleted CD11b�-enriched monocytic cellular subsets produced in-
fectious LP-BM5, albeit to a lesser extent than did unfractionated
spleen cells. Although in the experiment depicted there appeared

FIG 7 Spleen cell preparations obtained from 5-w.p.i. LP-BM5 w.t. B6 mice are positive for CD11b� Gr-1�-expressing cells, and enriched spleen cell subsets that
vary in their suppressive abilities have differential expression levels of MDSC-associated cell surface markers. (A) Flow cytometric analyses of uninfected mice
compared to the unfractionated starting spleen cell population obtained from 5-w.p.i. LP-BM5 B6 mice. (B) Cell surface marker expression for the Ly6G�-
enriched cell (nonsuppressive) fraction removed from the starting population of spleen cells shown in panel A. (C) Cell surface marker expression for the doubly
enriched Ly6G�-depleted CD11b�-enriched spleen cell subpopulation (see Materials and Methods). (D) Additional cell surface marker expression for the
Ly6C� CD11b� gate of doubly enriched cells (boxed upper right quadrant of the lower right section in panel C).
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to be more virus production by the suppressive monocytic
MDSCs compared to the Ly6G�-enriched subset, this apparent
difference was not consistently statistically significant. Thus, while
a direct cell-intrinsic effect of retroviral infection/integration can-
not be excluded as necessary for suppressive activity, LP-BM5 vi-
ral load (as assessed by both qRT-PCR and infectious center anal-
ysis) does not appear to be sufficient for the presence of strong
MDSC suppressive function.

DISCUSSION

In this report, we show for the first time, to our knowledge, the
development of functional MDSCs in response to LP-BM5 retro-
virus infection and in parallel with the subsequent retroviral
pathogenesis, including immunodeficiency, in vivo (Fig. 1). This
induced/expanded function of MDSCs is characterized ex vivo by
strong and broad suppression of both T-cell and B-cell responses
as read out by various in vitro lymphocyte proliferation and IFN-	
production assays (Fig. 1–3, 5, and 6). By cell enrichment ap-
proaches capitalizing on differential Ly6G versus Ly6C, and
CD11b, cell surface expression (Fig. 3), the suppressive activity
appears to be wholly due to a monocytic, as opposed to a granu-
locytic/neutrophil, MDSC population that is predominantly
Gr-1� Ly6C� CD11b� CD16/32� (Fc	R III/II�) TLR4� by cell

FIG 8 iNOS plays a role in the suppressive mechanism of LP-BM5-induced
Ly6G�-depleted CD11b�-enriched B6 splenocytes (according to [3H]thymi-
dine incorporation suppression assays). (A) A dose-dependent titration curve
for the ability of the NOS inhibitor L-NMMA or control D-NMMA to inhibit
suppression of LPS or �-CD40- and IL-4-dependent proliferation by Ly6G�-
depleted CD11b�-enriched suppressor cells. The presented pattern of results
is representative of one additional dose response experiment for each type of
B-cell stimulation. (B) The means � SD for the percentage of blockade by 0.5
to 1 mM L-NMMA (versus D-NMMA) of the percentage of inhibition of the
control proliferative response for 4 experiments, all of which utilized Ly6G�-
depleted CD11b�-enriched splenocytes as suppressor cells. (C) The suppres-
sive capability of LP-BM5-infected iNOS�/� Ly6G�-depleted CD11b�-en-
riched splenocytes is compared to that of w.t. mouse splenocytes. This pattern
of results is representative of three additional experiments. Significance levels:
*, P 
 0.05; **, P 
 0.01; and ***, P 
 0.001.

FIG 9 Splenocytes of the indicated subsets were assessed for LP-BM5 retroviral load. In this real-time qRT-PCR assay, expression of the BM5def and BM5eco
viruses was normalized to the expression of -actin (see Materials and Methods). This pattern of results is representative of one additional experiment for
comparisons between all of the cell subsets shown here and for four other experiments comparing uninfected cells to �-Ly6G�-depleted CD11b�-enriched
spleen cells obtained from 5-w.p.i. LP-BM5-infected B6 w.t. mice. *, P 
 0.05, and **, P 
 0.01.

FIG 10 Splenocytes from uninfected control or LP-BM5-infected mice, in-
cluding the indicated subsets, were assessed for infectious LP-BM5 retrovirus.
Infectious center assays were set up as a variation of the standard XC plaque
assay (86) (see Materials and Methods). This pattern of results is representative
of 2 additional experiments. *, P 
 0.05, and **, P 
 0.01.
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surface phenotype (Fig. 7). The molecular mechanism of suppres-
sion was determined to be in significant part dependent on the
iNOS/NO pathway (Fig. 8); what the other suppressive effector
mechanism(s) includes is unclear. Certainly, there is no evidence
for the involvement of arginase, IL-10, or the PD-1–PD-L1 path-
way at the effector suppressor stage we assessed (Fig. 2, 3, and 8).
However, one should not inappropriately conclude that there may
be no role for IL-10 and/or PD-1–PD-L1 in the development of
suppressive MDSCs after LP-BM5 infection. Indeed, our observa-
tion is that the suppressive activity of the monocytic MDSC pop-
ulation obtained from infected PD-1�/�, PD-L1�/�, or IL-10�/�

mice with the B6 background is stronger than for that from in-
fected w.t. B6 mice and in rank order of the published extent of
exaggerated LP-BM5-induced disease in these knockout strains
(PD-1�/� � IL-10�/� � PD-L1 � B6 w.t.) (81) (unpublished
observations). These latter findings suggest that the level of MDSC
function correlates with the degree of LP-BM5 pathogenesis. Be-
yond insights into LP-BM5-caused MAIDS per se, these results
collectively may be important as clear examples of MDSC func-
tion in the relatively understudied area of MDSC activity in infec-
tions, especially retroviral diseases, and with respect to broad im-
munosuppressive MDSC function affecting not only T-cell but
also B-cell responses. In addition to the typical cell dose depen-
dency of MDSC suppression also for inhibition of B-cell respon-
siveness, evidence was provided that argued for a direct inhibition
of B cells by monocytic MDSC suppressor cells (Fig. 4).

Various other aspects of LP-BM5 infection, and what is known
about the cellular and molecular mechanism(s) of LP-BM5 retro-
virus induction of pathogenesis (80, 81, 88, 89, 95, 102–108), are
interesting to consider in light of a possible role for MDSC func-
tion in MAIDS. Our lab and others have documented a critical
role for CD4� T cells in this disease (27, 28, 68, 69, 79). We have
gone on to show that a or the major role played by CD4� T cells is
mediated by their essential upregulation of cell surface CD154 and
interaction with CD40-bearing B cells (72). The ligation of CD40
by CD154 was required for both the initiation and early progres-
sion of LP-BM5-induced pathogenesis, as shown by both the use
of CD154 knockout mice and by early versus delayed anti-CD154
MAb treatment in vivo (70, 71). These and our other studies em-
ploying CD4� T-cell fractionation into subsets, including CD4�

Treg cells, and use of a panel of CD4� T-cell receptor (TCR)
transgenic mouse strains bred onto a Rag�/� background have
provided evidence for the role of pathogenic CD4� T cells in
MAIDS (27, 79). The central role of these pathogenic CD4� T cells
was underscored in studies in which the effects of elimination of
PD-1 expression were compared in different T-cell subsets in an
adoptive transfer/reconstitution model of MAIDS using disease-
resistant B6.TCR��/� (CD4� T-cell-less) recipients (28). In-
fected recipients reconstituted with requisite CD4� T cells from
B6.PD-1�/� donors had a trend toward induction of more retro-
virus-induced pathogenesis compared to reconstitution with
CD4� T cells from w.t. (PD-1�/�) B6 mice. This result was con-
sistent with normal downregulation of the pathogenic CD4� T-
cell response by the PD-1 pathway. Of note, IL-10 also acts in w.t.
B6 mice to diminish the extent of MAIDS (81). Current experi-
mentation seeks to determine if IL-10 also acts at the level of reg-
ulation of the pathogenic CD4� T cell.

We have further shown that LP-BM5-initiated CD4� T-cell
induction of expression of CD154 and CD154 ligation of CD40 on
B cells lead to subsequent signaling via a pathway(s) that is specif-

ically dependent on TRAF6 binding to the cytoplasmic tail of
CD40 (74). The functional consequences of this B-cell signaling
are yet to be fully elucidated, including whether this activation of
B cells is necessary for the development of the MDSC activity
described here. In this scenario, the development of MDSC infec-
tion after LP-BM5 infection would thus be indirectly regulated by
the pathogenic CD4� T cells. Directly relevant to the present data,
the requirement for pathogenic CD4� T-cell CD154 expression
appears to be critical up to only about 4 w.p.i. (71). Thus, the
kinetics of MDSC development seem to be somewhat later than
the window of required CD154-CD40 interactions; we routinely
harvest MDSCs from �5-w.p.i. mice in this LP-BM5 system.
Therefore, in addition or alternatively to indirect effects, it is pos-
sible that another effector function of pathogenic CD4� T cells is
the direct induction/expansion of this inhibitory MDSC popula-
tion. Along similar lines, despite the suppressor cell titration ex-
periments performed here (Fig. 2 and 3) suggesting a greater num-
ber of inhibitory MDSCs from infected PD-1�/�, PD-L1�/�, and
IL-10�/� mice, we cannot rule out the additional possibility that
MDSCs from these donor mice are regulated to be more suppres-
sive on a per cell basis.

In summary, the results presented here strongly support the
LP-BM5 retroviral infection-dependent development of potent
monocytic MDSC-mediated inhibitory activity. This MDSC inhi-
bition is broad, profoundly diminishing the fundamental prolif-
erative and functional responses to polyclonal activators of both T
cells and B cells. In this regard, and considering that the level of
MDSC inhibition mirrors the levels of exaggerated disease in LP-
BM5-infected PD-1�/�, PD-L1�/�, and IL-10�/� (versus w.t. B6)
mice, these results are collectively consistent with the possible role
of such the MDSC as the terminal effector cell mediating at least
the immunodeficiency accompanying LP-BM5 infection of sus-
ceptible B6 mice in vivo. Future studies, including those that more
specifically define the phenotype of the functional MDSC effectors
that suppress the B-cell and/or T-cell responsiveness and their
inhibitory MDSC mechanism(s), will be required before this im-
portant question can be incisively addressed. Based on our novel
findings of the development of MDSCs in response to, or as a
cause of, LP-BM5 retrovirus-induced pathogenesis, including im-
munodeficiency and inhibition of B-cell responsiveness, such
studies may have broad implications for other retroviral diseases.
Indeed, in the very recent first report on MDSCs in the context of
HIV/AIDS, higher percentages of the CD11b� CD14� CD33�

CD15� MDSC subset were observed in HIV-infected individ-
uals than in healthy controls, and evidence was provided to
show partial inhibition of CD8� T-cell proliferative responses
to the mitogen phytohemagglutinin by enriched preparations
of such MDSCs (59).
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ADDENDUM IN PROOF

While the present article was at the proof stage, we became aware
of a second report of the appearance of a population of MDSCs in
the context of HIV/AIDS (A. Qin et al., J. Virol. 87:1477–1490,
2013), further suggesting the extension of our work on MDSCs in
retroviral infections from our mouse study to other retroviral sys-
tems.
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