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Computational design and characterization of a
temperature-sensitive plasmid replicon for gram
positive thermophiles
Daniel G Olson1,3 and Lee R Lynd1,2,3*

Abstract

Background: Temperature-sensitive (Ts) plasmids are useful tools for genetic engineering, but there are currently none
compatible with the gram positive, thermophilic, obligate anaerobe, Clostridium thermocellum. Traditional mutagenesis
techniques yield Ts mutants at a low frequency, and therefore requires the development of high-throughput screening
protocols, which are also not available for this organism. Recently there has been progress in the development of
computer algorithms which can predict Ts mutations. Most plasmids currently used for genetic modification of C.
thermocellum are based on the replicon of plasmid pNW33N, which replicates using the RepB replication protein. To
address this problem, we set out to create a Ts plasmid by mutating the gene coding for the RepB replication protein
using an algorithm designed by Varadarajan et al. (1996) for predicting Ts mutants based on the amino-acid sequence
of the protein.

Results: A library of 34 mutant plasmids was designed, synthesized and screened, resulting in 6 mutants which
exhibited a Ts phenotype. Of these 6, the one with the most temperature-sensitive phenotype (M166A) was compared
with the original plasmid. It exhibited lower stability at 48°C and was completely unable to replicate at 55°C.

Conclusions: The plasmid described in this work could be useful in future efforts to genetically engineer C.
thermocellum, and the method used to generate this plasmid may be useful for others trying to make Ts plasmids.

Keywords: Temperature sensitive, Rolling circle, Plasmid, Clostridium thermocellum, Gram positive, Thermophile

Introduction
Thermophilic bacteria such as Clostridium thermocellum
show many promising features for industrial biotechnol-
ogy and biofuel production [1,2]. For many years, a lack of
genetic tools impeded progress in engineering these
organisms [2]. Recently, however, several key tools relevant
to engineering C. thermocellum have become available, in-
cluding two antibiotic resistance markers, the pyrF uracil
auxotrophic marker that can be used for both positive and
negative selection [3,4], and the hpt and tdk markers that
can be used for negative selection [5]. Positive and nega-
tive selection mechanisms can be combined to create a
maker recycle system, which allows a theoretically unlim-
ited number of cumulative mutations [5,6]. The use of

auxotrophic markers, however, is strain-specific, and the
benefit of Ts plasmids is that they have the potential to
work in a wider range of strains.
Although Ts plasmids have been developed for many

organisms [7-12], there are very few that are compatible
with the 45°C-62°C growth range of C. thermocellum [13].
The traditional method of creating temperature-sensitive
plasmids is to randomly mutate plasmid DNA (usually with
hydroxylamine or error-prone PCR), transform the result-
ing library into the target organism and replica plate at dif-
ferent temperatures to screen for mutated plasmids that
form colonies at a low temperature that permits replication,
but not at a higher temperature where replication fails
[7-9,14]. To ensure a high probability of finding the desired
mutant, high transformation efficiency and a replica plating
protocol are necessary to allow the screening of thousands
of colonies. Neither of these techniques, however, is well
developed for C. thermocellum.
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Currently plasmids pMU102 and pMU770 (Figure 1) are
being used for genetic engineering of C. thermocellum
[3,4]. These plasmids are based off of the Bacillus shuttle
vector pNW33N [15], and are believed to replicate by the
rolling circle method [16]. A key feature of rolling-circle
plasmids is the replication protein, Rep. The repB gene
from pNW33N (and pMU102 and pMU770) is identical
to that of pUB110, a plasmid first isolated from thermo-
philic bacilli [17], which has been studied extensively as a
model system for this type of plasmid [18].
Recent advances in understanding of protein folding have

suggested that it may be possible to predict mutations that
could cause a protein to be unstable at elevated tempera-
tures. Hydrophilic amino acids and hydrophobic amino
acids tend to associate with themselves. Since proteins are
typically found in an aqueous environment, the hydropho-
bic amino acids are found buried in the core of the protein
and play an important role in protein stability. It is possible
to predict these buried, hydrophobic, amino acid residues
solely from the amino acid sequence [19]. This technique
has been successfully used to make Ts proteins in a variety
of organisms [20]. We applied this technique to alter the
stability of the RepB protein encoded by plasmids
pMU102 and pMU770. The objective of this research was
to alter the thermostability of a plasmid that functions in
the 45°C-62°C growth range of C. thermocellum.

Results and discussion
Initial screen
A 34-member library of plasmids with mutated repB genes
was designed, synthesized in the pMU770 plasmid back-
bone, and each member was individually transformed into
C. thermocellum. Transformations were allowed to recover

in liquid culture at 48°C in the absence of selection, and
then each resulting strain was inoculated into liquid culture
at both 48°C and 58°C in the presence of thiamphenicol to
screen for differences in growth. The growth results are
shown in Table 1 and Figure 2C. Growth at 48°C, but not
at 58°C was considered an indication of temperature-
sensitivity and the 6 mutants with this phenotype, I51E,
M166A, I289W, I289L, I289Y and I320T, were chosen for
further analysis.

Change from pMU770 backbone to pMU102 backbone
At this point we decided to reconstruct the 6 mutants
exhibiting at Ts phenotype in the pMU770 plasmid back-
bone in the pMU102 plasmid backbone. The pMU770
backbone contains a 522 bp region from the C. thermocel-
lum glyceraldehyde 3-phosphate dehydrogenase (gapDH)
locus (which is used as a strong promoter for the cat
gene). Unfortunately this region of homology is large
enough to allow for unintended integration onto the
chromosome [5], which could interfere with subsequent
analysis. Measurement of the copy number of plasmids
pMU102 and pMU770 showed that under most conditions
pMU770 showed a copy number of ~1 (Figure 3). Since it
is difficult for plasmids at this copy number to be stably
maintained, it suggests that pMU770 may have been main-
tained by chromosomal integration instead.
Since the pMU102 plasmid backbone does not have

any homology to the C. thermocellum chromosome, all 6
Ts mutants were reconstructed in this backbone and the
resulting 6 plasmids (102-I51E, 102-M166A, 102-I289W,
102-I289L, 102-I289Y and 102-I320T) were individually
transformed into C. thermocellum.

Figure 1 Diagram of plasmids pMU102 and pMU770. Yellow arrows indicate coding sequences, green arrows indicate promoters, red arrows
indicate terminators, and grey arrows indicate replication origins. The E. coli origin of replication is derived from plasmid pUC19. The C. thermocellum
origin of replication, repB replication gene, and cat antibiotic resistance gene are derived from plasmid pNW33N. The gapDH promoter is derived from
C. thermocellum genomic DNA. The rrnB and T7 terminators were synthesized based on publicly available sequence data.
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Characterization of growth kinetics and plasmid copy
number
The growth of plasmid-containing cultures was measured
by changes in optical density at 600 nm (OD600). In the ab-
sence of selection, the wild type strain (no plasmid) had the

highest specific growth rate, although the 102-I51E mutant
exhibited a similar growth rate at temperatures above 55°C.
In the presence of selection, cultures containing the 102-
M166A and 102-I289W mutant plasmids had lower spe-
cific growth rates than those containing plasmid pMU102
(Figure 4). The plasmid copy number (PCN) of cultures
grown without selection was measured by qPCR. Several
of the plasmids showed lower copy number at elevated
temperatures compared with the pMU102 control plasmid
(Figure 5). Of all the plasmids tested in the absence of se-
lective pressure, unmodified pMU102 was the most stable,
maintaining a PCN> 1 at temperatures up to 59°C while
102-M166A was the least stable, maintaining a PCN >1
only at 48°C (Figure 5).
Growth rate in the presence of antibiotic selection can be

used to determine the metabolic burden of plasmid main-
tenance. The plasmid exhibiting the highest metabolic bur-
den was plasmid 102-M166A, which exhibited a μMax of
0.30± 0.02 compared with 0.42± 0.01 for pMU102 when
both were grown at 57°C, a reduction of 29% (Figure 4).
The next-largest metabolic burden was plasmid 102-
I289W. Interestingly, both of these plasmids also exhibited
lower copy number at a given temperature (Figure 5).
Growth rate (μ) in the absence of antibiotic selection can

be used to determine the rate at which a plasmid is cured
by comparing the growth rate of the plasmid-containing
strain with the plasmid-free strain. Most plasmids exhibited
plasmid curing behavior similar to plasmid pMU102 with
the notable exception of 102-I51E (Figure 4). At some tem-
peratures, the strain containing plasmid 102-I51E grew al-
most as fast as the no-plasmid control, suggesting that the
plasmid was cured much more rapidly than pMU102. This
plasmid also exhibited particularly low copy number at a
given temperature (Figure 5). The difference in growth kin-
etics of the strain containing this plasmid suggests that it
may have achieved temperature-sensitivity by a mechanism
different from the other strains tested, and will be an inter-
esting candidate for future mechanistic studies.

Plasmid curing
To directly measure plasmid curing, strains containing plas-
mids pMU102 and 102-M166A were grown overnight in the
absence of selection at either 48°C or 55°C and plasmid cur-
ing was measured by colony forming unit (CFU) counts on
selective and non-selective media (Figure 6).

The CFU counts were transformed using the following
formula for plasmid stability ratio (PSR)

PSR ¼
log10 CFUantibiotic; final timepoint

� �

�log10 CFUantibiotic; initial timepoint
� �

log10 CFUno antibiotic; final timepoint
� �

�log10 CFUno antibiotic; initial timepoint
� �

Table 1 Initial library of RepB mutants

Amino acid residue Growth

Name Position Old New 48 °C 58 °C

770-M8C 8 Met Cys - -

770-M8E 8 Met Glu - -

770-M8G 8 Met Gly - -

770-M8Y 8 Met Tyr - -

770-I51E 51 Ile Glu + -

770-I51W 51 Ile Trp - -

770-I51L 51 Ile Leu + +

770-I51C 51 Ile Gln - -

770-V83A 83 Val Ala + +

770-V83L 83 Val Leu - -

770-V83R 83 Val Arg - -

770-F124W 124 Phe Trp +/− -

770-F124S 124 Phe Ser - -

770-F124G 124 Phe Gly - -

770-G148M 148 Gly Met - -

770-G148P 148 Gly Pro - -

770-G148T 148 Gly Thr - -

770-G148Y 148 Gly Tyr - -

770-M166A 166 Met Ala + -

770-M166H 166 Met His - -

770-M166G 166 Met Gly - -

770-L187A 187 Leu Ala - -

770-L187R 187 Leu Arg - -

770-L187T 187 Leu Thr - -

770-W211 D 211 Trp Asp - -

770-W211T 211 Trp Thr - -

770-W211V 211 Trp Val - -

770-I289W 289 Ile Trp + -

770-I289L 289 Ile Leu + +/−

770-I289Y 289 Ile Tyr + -

770-I289 D 289 Ile Asp - -

770-I320T 320 Ile Thr + -

770-I320F 320 Ile Phe + +

770-I320Y 320 Ile Tyr + +

Mutants of the repB gene were synthesized that contained a single codon
substitution. Growth was determined by optical density measurements in a
microplate reader. Measurements were performed in triplicate. ‘+’ indicates
growth in all trials, ‘-‘ indicates no growth in all trials, ‘+/−‘ indicates growth in
some (but not all) trials.
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Where PSR=1 indicates that the plasmid replicates sta-
bly, 0<PSR< 1 indicates that the plasmid does not repli-
cate stably, PSR=0 indicates that the plasmid does not
replicate at all (however any existing copies of the plasmid
are maintained at their initial level in the population), and
PSR< 0 indicates that the plasmid does not replicate at
all (and existing copies of the plasmid are removed from
the population, possibly by cell death). Plasmid pMU102
is relatively stable (PSR = 0.9 ±0.16) at 48°C, although
the stability decreases at 55°C (PSR = 0.6 ±0.14). Plasmid
102-M166A is somewhat unstable at 48°C (PSR = 0.6
±0.11) and completely unable to replicate at 55°C (PSR =
−0.1 ±0.08). Comparing the PSR of plasmids pMU102
and 102-M166A at 48°C shows that the M166A muta-
tion caused a general decrease in plasmid stability of
about 1/3. If this had been the only reason for plasmid
instability, we would have expected to see a PSR for 102-
M166A of about 0.4. Instead we see at PSR of about 0,
which suggests that this additional instability is specific-
ally temperature-dependent.

Effect of amino acid substitutions
Chakshusmathi et al. suggest two approaches for gener-
ating a temperature-sensitive protein [20]:

1. Introduce Asp (poorly tolerated at buried positions,
because it is small, rigid, and charged) at two
predicted buried sites. If the resulting mutants are
inactive, then examine the remaining 18 mutants at
each position for Ts behavior.

2. Introduce positively charged, polar, small and large
hydrophobic residues (Lys, Ser, Ala, and Trp) at four
predicted buried sites.

In this work, approach 2 was followed, but modified to
include all amino acids (instead of just Lys, Ser, Ala, and
Trp) and ten predicted buried sites were chosen instead of
four. These modifications were chosen to maximize library
diversity while minimizing cost. In the 34-member library,
two mutants had Asp substitutions: W211 D and I289 D. In
both cases the mutant protein was inactivated at both 48°C

Figure 2 RepB sites chosen for mutagenesis. Panel A represents the output of the PredBur program used to select sites for mutagenesis. Sites
were chosen by the PredBur average hydrophobicity algorithm (black) or the PredBur hydrophobic moment algorithm (red). The PredBur score
indicates the probability of burial of the residue. Higher PredBur values suggest a higher likelihood of the given residue being buried and thus a
higher likelihood that mutation of that residue will result in a Ts plasmid. Panel B shows the 10 sites that were selected for mutagenesis (triangles)
as well as annotation of putative catalytic domains (green ovals) [27] and a putative DNA binding region (red arrow) [28]. Panel C shows the
results of the initial screen for temperature sensitivity for mutations in the pMU770 backbone. A black outline indicates the number of mutants
generated at each site (3 or 4). Blue bars indicate the number of mutants able to confer thiamphenicol resistance at 48 °C and orange bars
indicate the number of mutants able to confer thiamphenicol resistance at 58 °C. The difference between the blue bars and the orange bars
indicates the number of temperature-sensitive mutants at each site.
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and 58°C. At site 211, two other substitutions were tested:
Thr and Val. Both of these substitutions also resulted in in-
active proteins, althoughThr and Val are very different from
Trp suggesting that substitution with a more-similar amino
acid such as Tyr or Phe may allow for Ts behavior [21]. At
site 289, all substitutions except for Asp resulted in a Ts
mutant, which suggests that this site is conducive for the
generation of Ts mutants. The PredBur algorithm identifies
buried residues on the basis of average hydrophobicity and
hydrophobic moment. Average hydrophobicity is used to
identify buried residues that are not part of an ordered sec-
ondary structure, whereas hydrophobic moment is used to
identify buried residues that are part of a secondary struc-
ture (i.e. one face of an α-helix or β-sheet). Site 289 was
identified based on the hydrophobic moment calculation
(Figure 2, panel A; Additional file 1: S1 text), suggesting that
it may be part of a secondary structure that plays a key role
in RepB structure. 22 of 34 mutants eliminated the ability of
the plasmid to confer antibiotic resistance at either 48°C or
58°C (Figure 2), suggesting that the PredBur algorithm is
able to identify destabilizing mutations with a high degree
of reliability.

Conclusions
In conclusion, a new Ts plasmid was developed for use
in C. thermocellum using computational techniques that
greatly reduced the size of the library that needed to be

screened. Although random mutagenesis and screening
techniques often require analysis of thousands of mutant
plasmids [10], the mutant library generated with the Pre-
dBur program yielded 6 Ts plasmids out of 34 mutants,
an improvement of over two orders of magnitude. Plas-
mid 102-M166A was the most temperature-sensitive,
and exhibited a complete inability to replicate at 55°C.
This plasmid adds yet another tool that should facilitate
genetic engineering of this organism, and other gram-
positive thermophiles. Furthermore, the strategy used to
design this plasmid may prove useful for designing Ts
plasmids for use with organisms that are distantly-related
or have different growth temperatures.

Materials and methods
Strains and media
C. thermocellum strain DSM 1313 (WT) was grown in
modified DSM 122 broth [3] with the addition of 50 mM
3-(N-morpholino) propanesulfonic acid (MOPS) sodium
salt and 3 g/L trisodium citrate (Na3-C6H5O7�2 H2O).
All manipulations were carried out inside an anaerobic
chamber (Coy Laboratory Products Inc.) with an atmos-
phere of 85% nitrogen, 10% carbon dioxide, 5% hydro-
gen, and <5 ppm oxygen. Unless otherwise noted, cells
were grown at 55°C using 5 g/L cellobiose as the primary
carbon source. Transformation was performed by elec-
troporation using a Bio-Rad Gene Pulser, using a 1.5 ms
square pulse with a field strength of 13 kV/cm following
the transformation protocol of Olson et al. [3].

Library design
Our initial library of 34 mutants was designed as follows:

1. The PredBur algorithm [19] was used to predict sites
in the amino acid sequence of RepB likely to contain
buried amino acid residues.

2. Ten sites were chosen as targets for directed
mutagenesis (Figure 2). Sites were selected based on
high scores in the average hydrophobicity (>90%
probability of being buried) or hydrophobic moment
(>80% probability of being buried) calculations. In
regions where several residues were predicted to be
buried, only one site was chosen.

3. For each of these 10 sites, a SlonoMax SINGLE
library (Sloning Biotechnology GmbH, Puchheim,
Germany) was created comprising 3–4 mutants of
the repB gene, from the pMU770 plasmid (Figure 2).
Each mutant repB gene incorporated the most-frequent
codon used by C. thermocellum for a given amino acid,
although the choice of amino acid substitution was
random.

The final library contained 34 members.

Figure 3 Plasmid copy number for plasmids pMU102 and
pMU770. Copy number of cultures containing either plasmid pMU102
or pMU770 over a range of different thiamphenicol concentrations.
Black squares represent plasmid pMU102. Red circles represent plasmid
pMU770. In some cases error bars are obscured by the data point
marker. Error bars represent one standard deviation, n= 3.
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Specific growth rate measurements
Freezer stocks were diluted 1:100 with growth media,
then grown overnight with and without selection at a
range of temperatures from 48°C to 62°C. Optical density
measurements were performed in a Powerwave XS pla-
tereader [4] (BioTek Corporation, Winooski, VT) oper-
ated within the anaerobic chamber and specially
modified by the manufacturer to allow incubation up to

68°C. OD600 readings were taken at 3-min intervals, then
corrected for blank values and uniformly scaled to a
1 cm pathlength and log-transformed. Maximum specific
growth rate (μMax) was determined by finding the max-
imum slope of log-transformed OD600 data using linear
regression over a sliding 1 h window (20 data points).
Data analysis was performed with the Gen5 software
program (BioTek Corporation).

Figure 4 Growth kinetics of plasmid-containing strains. Maximum specific growth rate (μMax) was measured in the presence and absence of
thiamphenicol at a range of temperatures for 6 strains of C. thermocellum containing potential temperature-sensitive plasmids and 2 control strains
(plasmid pMU102 and no-plasmid). A solid black line indicates μMax in the absence of thiamphenicol. A solid red line indicates μMax in the presence
of thiamphenicol. The dashed black line represents μMax of the no-plasmid control in the absence of thiamphenicol. The dashed red line represents
the μMax of the positive control plasmid pMU102 in the presence of thiamphenicol. Error bars represent a standard deviation, n= 4.
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Plasmids
Plasmids pMU102 and pMU770 were kindly supplied by
Mascoma Corporation (Lebanon, NH). Plasmid pMU770
is derived from pMU102 with the following modifica-
tions: ampicillin resistance is provided by the bla gene
from the pUC19 plasmid (Invitrogen Corporation), the
cat gene from plasmid pMU102 was moved from its ori-
ginal location downstream of the repB gene and placed

downstream of a 525 bp sequence thought to contain the
C. thermocellum glyceraldehyde dehydrogenase (gapDH)
promoter. This PgapDH-cat cassette is flanked upstream by
the E. coli rrnB terminator and downstream by the T7 ter-
minator to prevent unintended transcriptional readthrough
(Figure 1).

Reconstruction of Ts mutations in pMU102 backbone
The most promising candidates from the original 34-
member library, consisting of 6 mutants, were recon-
structed in the pMU102 backbone using the QuickChange
II Site-Directed mutagenesis kit (Agilent Technologies,
Inc., Santa Clara, CA). Plasmids were maintained in
Escherichia coli TOP10 cells (Invitrogen Corporation,
Carlsbad, CA) and prepared using QIAGEN Plasmid Mini
kit (QIAGEN Inc., Valencia, CA). All 6 mutant plasmids
were individually transformed into C. thermocellum. The
resulting strains were grown at 51°C with 6 μg/ml thiam-
phenicol to make freezer stocks.

Plasmid copy number measurements
Total DNA was prepared from 500–1000 μl of C. ther-
mocellum cell culture grown to stationary phase using a
ZR Fungal/Bacterial DNA Miniprep kit (Zymo Research
Corporation, Irvine, CA). A Precellys 24 bead basher
(Bertin Technologies, Montigny-le-Bretonneux, France)
was used for the cell lysis step. An on-column digestion
with the AvaI restriction enzyme (New England Biolabs,
Ipswitch, MA) was performed to eliminate erroneous
PCN measurements due to supercoiling [22] and to
avoid size-bias during DNA extraction. After extraction,
the resulting purified DNA was stored at −20°C for fur-
ther analysis.

Figure 6 Rate of plasmid curing. Colony forming units (CFUs)
were measured with and without thiamphenicol both at the
beginning and end of growth in the absence of selection at 48 °C
and 55 °C. These values were used to calculate the plasmid stability
ratio (described in the text). A plasmid stability ratio of 1 implies
stable replication. A plasmid stability ratio of 0 implies no replication.
Error bars represent one standard deviation, n = 3.

Figure 5 Plasmid copy number vs. temperature. Panel A shows the plasmid copy number in the inoculum. Panel B shows the endpoint copy
number after ~7 generations of growth at a range of temperatures from 48 °C to 62 °C in media without antibiotic selection. Copy number was
measured by qPCR. Error bars in both panels represent one standard deviation, n = 3.
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Plasmid copy number was measured using quantitative
PCR (qPCR) [23-25], by comparing the ratio of the cat
gene, which exists in single copy on the plasmid to the celS
gene, which exists in single copy on the C. thermocellum
chromosome [3]. All samples were measured in at least
triplicate. Quantitative PCR was performed using iQ SYBR
Green Supermix (Bio-Rad Corporation) in a CFX96 qPCR
machine (Bio-Rad Corporation) with an annealing
temperature of 50°C and other cycling parameters as sug-
gested by the iQ SYBR Green Supermix datasheet. Data
analysis was performed using Bio-Rad CFX manager soft-
ware, version 2.1. For each sample, Cq was determined
using the regression method. Copy number was determined
using the ΔΔCq method with celS as the reference gene and
automatic correction for primer amplification efficiency
[26]. Primers XO7706 (5’-TCTCTGGTATTTGGA
CTCC-3’) and XO7707 (5’- CAGGTATAGGTGTTTTGG
G-3’) were used to amplify a 117 bp region of the cat gene.
Primers XO7712 (5’- CTCATCCGTCAATAGAAGAG-3’)
and XO7713 (5’- TAAACAGCCTGTATAGCACG-3’) were
used to amplify a 139 bp region of the celS gene. Primers
for the celS gene were searched against the C. thermocellum
chromosome for uniqueness using the BLAST algorithm.
For XO7712, the next-highest BLAST hit had an expect-
ation value of 371 and for XO7713, the next-highest
BLAST hit had an expectation value of 24. Additional con-
firmation of the uniqueness of primers was that melt
curves showed a unique melting temperature of 76.0°C for
the cat gene amplicon and 81.5°C for the celS gene ampli-
con. During the optimization of the PCR protocol, the
resulting PCR products were run on a 2% agarose gel and
a single band was observed for each amplicon (data not
shown). A control plasmid, pDGO-28, was synthesized
with a single copy of the cat qPCR target and a single copy
of the celS target using the miniGENE service from IDT
(Integrated DNA Technologies, Inc., Coralville, IA) [24].
Primer amplification efficiency was measured using 9 10-
fold serial dilutions of AvaI-linearized pDGO-28 plasmid.
The amplification efficiency of the XO7706-XO7707 pri-
mer pair (cat gene) was 100.8%. The amplification effi-
ciency of the XO7712-XO7713 primer pair (celS gene) was
97.1%. The average Cq of the celS gene was 19.12, and the
average Cq of the cat gene no template control (NTC) was
31.09, resulting in a limit of detection of 2.5x10-4 for meas-
uring plasmid copy number.

Plasmid curing measurement
To measure plasmid curing, plasmid-containing cultures
were grown at 48°C in the presence of 6 μg/ml thiam-
phenicol to an OD600> 0.5 and plated on both selective
(3 μg/ml thiamphenicol) and non-selective media and
incubated at 48°C to measure the number of CFUs ini-
tially present. Then they were diluted 1:1000 into fresh
media without selection and incubated at either 48°C or

55°C until OD600> 0.5 and then plated again on both se-
lective (3 μg/ml thiamphenicol) and non-selective media
and incubated at 48°C to measure the change in CFUs.

Additional file

Additional file 1. S1 text. Output from the PredBur algorithm. Text
output of the PredBur program showing the sites in the amino acid
sequence of the RepB replication protein most likely to contain buried
amino acid residues.
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