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The initiation of the immune response at the cellular level relies on specific recognition molecules to rapidly
signal viral infection via interferon (IFN) regulatory factor 3 (IRF-3)-dependent pathways. The absence of
IRF-3 would be expected to render such pathways inoperative and thereby significantly affect viral infection.
Unexpectedly, a previous study found no significant change in herpes simplex virus (HSV) pathogenesis in
IRF-3�/� mice following intravenous HSV type 1 (HSV-1) challenge (K. Honda, H. Yanai, H. Negishi, M.
Asagiri, M. Sato, T. Mizutani, N. Shimada, Y. Ohba, A. Takaoka, N. Yoshida, and T. Taniguchi, Nature
434:772–777, 2005). In contrast, the present study demonstrated that IRF-3�/� mice are significantly more
susceptible to HSV infection via the corneal and intracranial routes. Following corneal infection with 2 � 106

PFU of HSV-1 strain McKrae, 50% of wild-type mice survived, compared to 10% of IRF-3-deficient mice.
Significantly increased viral replication and inflammatory cytokine production were observed in brain tissues
of IRF-3�/� mice compared to control mice, with a concomitant deficit in production of both IFN-� and IFN-�.
These data demonstrate a critical role for IRF-3 in control of central nervous system infection following HSV-1
challenge. Furthermore, this work underscores the necessity to evaluate multiple routes of infection and animal
models in order to fully determine the role of host resistance factors in pathogenesis.

Herpes simplex virus type I (HSV-1) is a ubiquitous patho-
gen of the Alphaherpesvirus family with high seroprevalence in
the adult human population (70). Possessing two distinct
phases, HSV-1 causes a life-long infection, with an initial lytic
stage followed by a shift to latency following trafficking to
sensory neurons (68). Periodically, reactivation from latency
occurs and is associated with numerous diseases, ranging from
the common cold sore to ocular herpetic stromal keratitis
(HSK), a leading cause of infectious blindness (28, 52). Reac-
tivation events as well as primary infections are also associated
with herpes simplex encephalitis (HSE), a rare but life-threat-
ening consequence of infection of the central nervous system
(CNS) (67). Through recurrent infection in adults or maternal
transmission to neonates, HSV-1 infects the brain and causes
acute inflammation and significant pathological damage, re-
sulting in nearly 70% lethality if untreated (30, 67). In devel-
oped countries, HSV remains among the most common causes
of viral encephalitis (64).

Studies in mouse models and clinical studies have under-
scored the importance of the immune response, especially type
I interferon (IFN), in protection of the host from encephalitis
(10, 14, 18, 25, 29, 64, 74). In response to viral infection, type
I IFN initiates a signaling cascade to stimulate the immune
system and provide a first-line defense against invading patho-

gens (54). Consisting of IFN-� and several forms of IFN-�,
newly synthesized type I IFN binds a receptor (IFNAR) and
signals via the JAK/STAT pathway to induce an antiviral state
through production of numerous interferon-stimulated genes
(ISGs) (22, 26, 57). In the absence of type I IFN signaling, mice
are very susceptible to disseminated peripheral HSV-1 infec-
tion, leading to increased viral replication and increased mor-
tality in vivo (32, 34, 50–51).

In the CNS, type I IFN plays a critical role in control of viral
infection. While peripheral tissues rely on plasmacytoid den-
dritic cells (pDCs) as the major IFN-producing cells, the brain
is largely devoid of this cell type (2, 3, 58). Instead, the CNS
relies on resident cells, including neurons, to produce and
respond to type I IFN (13). In the absence of type I IFN
receptors, mice are very susceptible to encephalitis caused by a
variety of viral pathogens (12, 18, 25). Mice and humans with
defects in type I IFN signaling were also found to be more
susceptible to HSE than control groups (16). Together, these
studies signal the importance of IFN signaling following CNS
infection. Recent studies, however, have focused on the im-
portance of type I IFN induction in limiting viral encephalitis.
In particular, inborn disorders of IFN production, as well as
Toll-like receptor 3 (TLR-3) mutations, render individuals
highly susceptible to HSE (7, 74). These data suggest that
recognition pathways producing type I IFN in the CNS are as
important as downstream IFN signaling in controlling virus-
induced encephalitis.

Work on pathogen-associated molecular patterns (PAMPs)
has revealed two major recognition pathways that lead to type
I IFN production (4). The toll-like receptor (TLR) pathways
sample the extracellular milieu via receptors on the cell surface
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and within endosomes (15, 21, 41). In contrast, the RIG-I like
receptor (RLR) pathways utilize a variety of sensors to recog-
nize nucleic acid PAMPs within the cytosol of infected cells
(20, 62, 72). Each pathway utilizes a variety of adaptors and
signaling molecules to induce type I IFN production (27, 63,
71), yet both pathways converge onto three common signaling
molecules: interferon regulatory factor 3 (IRF-3), IRF-7, and
NF-�B (56). Following activation via the upstream recognition
pathways, these signaling components bind the IFN-� pro-
moter to form the “IFN enhancesome” (73). The IFN-� ini-
tially produced acts upon the IFN-�� receptor (IFNAR) in
both autocrine and paracrine manners. This leads to the in-
duction of ISGs and the type I IFN cascade.

While NF-�B is activated via independent adaptors, IRF-3
and IRF-7 were initially thought to be interchangeable (56).
The formation of IRF-3/IRF-7 homodimers or heterodimers
was necessary for binding specific regions of the IFN-� pro-
moter and production of type I IFN (22, 23). Examination of
cells and animals deficient in IRF-3 or IRF-7, however, re-
vealed distinct roles for the two signaling components. In the
absence of IRF-3, mice challenged with HSV-1 showed re-
duced serum IFN-� production but unchanged IFN-� levels,
and the mice survived intravenous challenge (24). In contrast,
IRF-7 deficiency resulted in reduced serum IFN-� levels and a
corresponding increase in mortality following HSV-1 intrave-
nous infection. Therefore, IRF-7 was believed to compensate
for the loss of IRF-3 and was dubbed “the master regulator” of
type I IFN-dependent immune responses (24). This study,
however, also indicated that the impact of IRF-3 and IRF-7 on
HSV-1 replication may not be so clear. For example, replica-
tion of HSV-1 in IRF-3- or IRF-7-deficient mouse fibroblasts
was unaffected relative to that in wild-type (WT) cells (24).
Several studies have postulated that this may be due to tight
control of IRF-3 activation by HSV during infection so that
IRF-3-deficiency has little effect. For example, in the absence
of viral gene expression, UV-inactivated HSV-1 induces IRF-3
activation and IFN induction to a greater extent than live virus
(9, 33, 49). Viral genes, including those for ICP0, virion host
shutoff protein, ICP34.5, and ICP27, have all been implicated
in directly or indirectly targeting IRF-3 (17, 33, 42–44, 47, 48,
60, 65).

Recent studies from this laboratory demonstrated a signifi-
cant increase in viral replication in immune cells in the absence
of IRF-3 (45). The loss of IRF-3 resulted in increased viral
replication in bone marrow-derived dendritic cells (BMDCs)
and macrophages due to delayed and deficient type I IFN
production. In the current study, the role of IRF-3 in vivo was
examined. Utilizing two routes of infection, via the cornea and
through direct intracranial (i.c.) inoculation, several aspects of
HSV-1 infection were evaluated, including viral replication,
viral tropism, lethality, and cytokine production. The study
confirmed previous results showing no significant impact of
IRF-3 on replication in peripheral tissues (24). In contrast to
previous studies, loss of IRF-3 had a significant impact on viral
replication, lethality, and cytokine production in the brain fol-
lowing both corneal and intracranial routes of infection. To-
gether, the results demonstrate that IRF-3 is a pivotal deter-
minant of the immune response and contributes to the
outcome of HSV infection of the central nervous system.

MATERIALS AND METHODS

Cells, virus, and mice. Vero cells were used for production and determination
of viral stock titers as previously described (53). The HSV-1 wild-type strains
were strain 17 (HSV-1 17) and strain McKrae (HSV-1 McKrae) (6, 69). Mock-
treated animals were inoculated with uninfected Vero cell lysates prepared in
parallel to viral stocks. The mouse strains used were control C57B6 mice as WT
mice and C57B6 IRF-3-deficient (IRF-3�/�) mice (56) of either gender. Mice
were housed in the Washington University School of Medicine barrier facility
and infected in the Washington University School of Medicine biohazard facility.
Mice were infected at between 6 and 8 weeks of age. Mice were euthanized, if
necessary, in accordance with Federal and University policies.

Animal infection procedures. For corneal infection, mice were anesthetized
intraperitoneally with ketamine (87 mg/kg of body weight) and xylazine (13
mg/kg). Corneas were bilaterally scarified with a 25-gauge syringe needle, and
virus was inoculated by adding 2 � 106 PFU HSV-1 per eye in a volume of 5 �l.
Mice were sacrificed at specified times postinfection for tissue harvest or ob-
served daily for 21 days to evaluate survival.

For intracranial (i.c.) infections, mice were anesthetized as described above,
injected intracranially with 100 PFU or 1 � 106 PFU of HSV 17, or mock
infected in a volume of 20 �l Dulbecco modified Eagle medium (DMEM) using
a Hamilton syringe with a 26-gauge needle. Mice were sacrificed at specific times
postinfection for tissue harvest or observed until day 21 postinfection to evaluate
survival.

Tissue titers. Following in vivo cornea infection, the following tissues were
harvested and titers determined as previously described (53): corneal swabs,
periocular skin, trigeminal ganglia, brain, and brain stem. Briefly, tissues were
harvested and stored at �80°C until processing. Tissues were mechanically dis-
rupted and sonicated, and titers were determined via standard plaque assay on
Vero cells.

Histological analysis. WT and IRF-3�/� mice were infected and harvested at
days 3 and 5 postinfection as described above. Briefly, mice were sacrificed and
whole brains were harvested into 4 ml of 10% formalin solution for fixation.
Paraffin-embedded brains were then sectioned sagitally and every 10th section
stained using an anti-HSV-1 rabbit polyclonal antibody (Dako, Denmark); stain-
ing was detected with streptavidin-horseradish peroxidase (HRP) and diamino-
benzidine (DAB) followed by a hematoxylin counterstain. Each section was
divided into five regions (olfactory bulb, central brain, mid-brain, cerebellum,
and brain stem) and scored as either positive or negative for HSV antigen
staining in a masked fashion. Total positive regions were then divided by total
sections counted to obtain percent antigen-positive regions.

Bead-based cytokine analysis. Brains and brain stems were isolated and as-
sayed following corneal and intracranial infections. A single brain or brain stem
was harvested from mice and mechanically disrupted in 1 ml of phosphate-
buffered saline (PBS). Samples were then sonicated on ice twice for 30 s and
centrifuged for 4 min at 515 � g at 4°C. Supernatants were transferred to a 1.5-ml
Eppendorf tube and spun in a minicentrifuge for 5 min at 7,500 rpm at 4°C.
Supernatants were then transferred to new tube and diluted 1:1 with serum
sample diluent (BioPlex mouse Serum sample kit; Bio-Rad, Hercules, CA). The
samples were then stored at �80°C until assayed. The BioPlex assay (Bio-Rad)
was preformed as described in the kit protocol. Briefly, equivalent amounts of
protein, as measured by Bradford assay, were added to each well of a multiplex
mouse cytokine BioPlex array. Cytokine concentrations were determined by
comparison to a standard curve provided by Bio-Rad, and the results are re-
ported as pg/ml/�g protein. The results shown are the averages from two exper-
iments, with each experiment using three or more mice per data point.

IFN ELISA. Following a high-dose intracranial infection, brains were har-
vested at 12, 18, and 48 h postinfection. The brains were mechanically disrupted
and sonicated two times in 1 ml PBS. Brain samples were then spun at 515 � g
in a tabletop centrifuge. The supernatant were then harvested and spun at 7,500
rpm in a minicentrifuge for 10 min. The clarified supernatants were harvested
and stored at �80°C until processing by enzyme-linked immunosorbent assay
(ELISA). For both IFN-� and IFN-� ELISA, 100 �l of sample was assayed per
the kit protocol (PBL InterferonSource, Piscataway, NJ). Protein levels were
normalized via Bradford assay, and the results were expressed pg/ml/�g protein.

Real time reverse transcription-PCR (RT-PCR) of brain tissue. At the indi-
cated time postinfection, brains were harvested into 2 ml of solution D (4 M
guanidine thiocyanate, 25 ml of sodium citrate, 0.5% sarcosyl, 0.1 M 2-mercap-
toethanol) (8) and stored at �80°C. Total RNA was harvested as previously
described (50) and resuspended in a small volume of nuclease-free water. cDNA
was generated using the iScript cDNA synthesis kit as per the kit protocol
(Bio-Rad). PCR mixtures were prepared with iQ SYBR green supermix (Bio-
Rad), 5% acetamide, primers (IDT, Coralville, IA), and 2 �l cDNA. Each PCR
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was performed in duplicate, and each infection condition was replicated in at
least four mice from three independent experiments. Actin primer sequences
5�-TGGTACGACCAGAGGCATACAG (forward) and 5�-CCAACTGGGACG
ACATGGAG (reverse) and IFN-� primer sequences 5�-CAGCTCCAAGAAA
GGACGAAC and 5�-GGCAGTGTAACTCTTCTGCAT (reverse) were used.

Statistics. Statistical calculations were done by Student’s t test and are relative
to the WT control group unless otherwise stated. Statistical analysis of survival
curves utilized the log rank test.

RESULTS

IRF-3�/� mice have no defect in controlling HSV-1 replica-
tion in the cornea and trigeminal ganglia following peripheral
infection. Following ocular challenge with HSV-1 McKrae,
examination of corneal eye swabs from IRF-3�/� and WT mice
demonstrated no significant change in viral replication follow-
ing infection (Fig. 1A). Similarly, the periocular skin and tri-
geminal ganglia titers also showed no major change in viral
replication (Fig. 1B and data not shown). There was, however,
a slight trend for higher replication in the IRF-3�/� mice.
Similar results were observed in these tissues utilizing another,
less virulent lab strain, HSV-1 17 (data not shown). The data
together supported the previous findings by Honda et al. and
suggest that IRF-3-mediated pathways play only a minor role
in controlling HSV-1 during peripheral infection (24).

IRF-3�/� mice show increased mortality following cornea
infection and an associated increase in viral replication in the
brain stem. Previous reports had demonstrated reduced viru-

lence and limited CNS penetration following peripheral infec-
tion with HSV-1 strain 17 in the C57/BL6 mouse background
strain due to a variety of factors (36–38). A similar result,
including limited CNS titers and no lethality in either group,
was observed following cornea infection with HSV-1 17 (data
not shown). Therefore, to evaluate CNS infection and lethality
in IRF-3�/� mice following cornea challenge, infection with
the neurovirulent McKrae strain was utilized and resulted in
approximately 50% survival in WT mice yet less than 10%
survival in IRF-3�/� mice (P � 0.05) (Fig. 2A). Throughout
these studies, no differences in susceptibility between male and
female mice were noted. Evaluating viral titers, IRF-3�/�

brain stems were found to have a statistically significant in-
crease in viral replication compared to wild-type controls fol-
lowing corneal challenge (Fig. 2B). Although the differences
were not statistically significant, whole-brain titers from IRF-
3�/� mice were also increased compared to those from con-
trols (Fig. 2C). Together, these data suggest that IRF-3�/�

mice have a deficit in their ability to control lethal brain infec-
tion.

Loss of IRF-3 results in increased viral replication and
increased mortality following intracranial HSV-1 infection.
The cornea model of HSV-1 infection mimics the physiological
course of eye disease seen in humans and permits evaluation of
viral replication in peripheral tissues. However, many factors
can affect the ability of the virus to replicate in peripheral
tissues and also affect its ability to enter the brain and replicate
therein. Therefore, while not strictly speaking physiologically
relevant, direct intracerebral infection was used to bypass the
impact of IRF3 in peripheral tissues and isolate its role in
protection of the CNS. One hundred PFU of HSV-1 was in-
oculated directly into the brain to evaluate the role of IRF-3 in
replication and survival following viral challenge. HSV-1 strain
17 was utilized as the background strain for these experiments
since HSV-1 McKrae is too virulent in the i.c. model (the 50%
lethal dose [LD50] is �10 PFU). Following infection, there was
a significant increase in lethality of HSV in the IRF-3�/� mice
compared to the controls (Fig. 3A). While over 60% of the WT
mice survived i.c. injection, fewer than 20% of the IRF-3�/�

mice survived the same challenge. Correspondingly, beginning
at day 3 and continuing at day 5, IRF-3�/� brains permitted a
10- to 100-fold increase in viral replication compared to con-
trol mice (Fig. 3B). These results suggest that IRF-3-mediated
pathways are important in controlling HSV-1 replication in
brain tissues following direct intracranial injection.

IRF-3�/� mice have increased and altered antigen staining
following i.c. challenge with HSV-1. WT and IRF-3�/� mice
were infected intracranially with 100 PFU of HSV-1 strain 17
and harvested at days 3 and 5 postinfection. Total antigen-
positive regions were then assessed as described in Materials
and Methods (Fig. 4). In general, IRF-3�/� mice displayed a
higher percentage of antigen-positive regions than WT mice.
The central brain region (cerebral cortex, hippocampus, sep-
tum, thalamus, and hypothalamus) was the site of inoculation
and displayed a consistent and high percentage of antigen-
positive regions at both days 3 and 5 in both WT and IRF-3�/�

mice. In contrast, the mid-brain, cerebellum, and brain stem
displayed little antigen staining (�10%) in either WT or IRF-
3�/� mice at day 3 (Fig. 4A). By day 5, however, IRF-3�/�

mice displayed a significant increase in antigen-positive sec-

FIG. 1. Loss of IRF-3 has minimal impact on HSV-1 replication in
peripheral tissues following cornea infection. WT and IRF-3�/� mice
were infected with 2 � 106 PFU HSV-1 McKrae per eye. Cornea swabs
and trigeminal ganglia were harvested and titers determined at the
specified days. The graphs represent averages and standard deviations
for several mice at each time point from two independent experiments
(n � 6).
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tions compared to WT mice in mid-brain, cerebellum, and
brain stem (Fig. 4A). In addition to increased antigen-positive
regions, IRF-3�/� mice displayed a distinct antigen staining
pattern compared to WT mice (Fig. 4B and C). IRF-3�/� brain
sections showed generalized antigen-positive lesions with dif-
fuse areas appearing uniformly stained. In contrast, HSV stain-
ing of WT lesions showed focal staining in cells with neuronal
morphology. This altered staining was consistent in each IRF-

3�/� antigen-positive region examined and suggest increased
antigen production and spread in IRF-3�/� brains compared
to control brains. Together, the increase in antigen production
and distribution correlates with the previously observed in-
creased viral titers in IRF-3�/� brains (Fig. 2 and 3).

IRF-3�/� mice produce increased amounts of inflammatory
cytokines following direct intracranial infection. In addition to
HSV-1 replication, several studies have implicated inflamma-
tory cytokines as contributing to increased lethality following
CNS infection (35, 36). To assess inflammatory cytokine pro-
duction in IRF-3�/� mice, total brain homogenates were pre-
pared and cytokines were assayed by a bead-based multiplex
array following i.c. infection with 100 PFU of HSV-1 strain 17
or mock treatment (Fig. 5). In both the IRF-3�/� and WT
brains, cytokine samples taken on day 3 showed minimal in-
duction of cytokines, with little or no variation between the
virus-infected and mock-treated groups. At day 5, however,
there was a significant increase in several inflammatory cyto-
kines in infected IRF-3�/� brains compared to WT brains.
IRF-3�/� brains showed a 3.5-fold increase in interleukin-1�
(IL-1�), a 4.6-fold increase in tumor necrosis factor alpha
(TNF-�), and a 5.8-fold increase in IL-6 levels compared to
infected WT brains. This trend also extended to IL-12 (7.1

FIG. 2. IRF-3�/� mice have decreased survival and increased viral
replication in brain tissues following HSV-1 McKrae cornea infection.
(A) Survival plot following infection of WT and IRF-3�/� mice with
2 � 106 PFU HSV-1 McKrae per eye. Survival experiments were
conducted independently of the other experiments and represent the
sum of multiple experiments (n 	 21). (B and C) Brains and brain
stems were harvested and titers determined at the specified days fol-
lowing infection of WT and IRF-3�/� mice with 2 � 106 PFU HSV-1
McKrae per eye. The graphs represent the averages and standard
deviations for several mice from two independent experiments (n � 5).
The dotted line represents the limit of detection for this assay. **, P �
0.01.

FIG. 3. IRF-3�/� mice have reduced survival and increased viral
titers in the brain following HSV-1 intracranial infection. (A) Survival
plot of IRF-3�/� and WT mice following intracranial (i.c.) infection
with 100 PFU HSV-1 17. Survival experiments were conducted inde-
pendent of the other experiments and represents the sum of two
experiments (n � 31). (B) Viral titers in whole brain tissue harvested
at the specified days. Data represent the averages and standard devi-
ations for several mice from two independent experiments (n � 9).
The dotted line represents the limit of detection for this assay. *, P �
0.05; **, P � 0.01.
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fold), IL-10 (3.6 fold), and several chemokines, including
MCP-1, Rantes, and MIP1�. In contrast, one cytokine (KC)
demonstrated similar levels of production in the WT and IRF-
3�/� groups. In addition, several (IL-5, IL-13, and granulocyte-
macrophage colony-stimulating factor [GM-CSF]) were glo-
bally upregulated in both WT and IRF-3�/� mice following
virus or mock infection, suggesting that injection of virus-free
cell extract or the mechanical damage of injection alone was
sufficient to induce their expression (data not shown). To-
gether, the data suggest that in response to HSV-1 infection,
IRF-3�/� mice produce a stronger inflammatory response as
measured by cytokine production. The timing of this increase
in inflammatory cytokines, on day 5, also coincided with the
lethality seen in this model of infection.

IRF-3�/� mice have increased cytokine expression in the
brain stem following peripheral infection. Having shown in-
creased cytokine expression in brains following direct intracra-
nial injection, it was of interest to observe changes in cytokine
levels following peripheral infection. Examination of the brain
stem revealed increased production of several cytokines in the
IRF-3�/� mice compared to control mice (Fig. 6). While main-
taining similar levels at day 3, several cytokines, including IL-6,
IL-12, and IFN-
, had increased expression at both days 5 and
7 in IRF-3-deficient mice. IL-10, MCP-1, and G-CSF levels
were increased only on day 7 (data not shown). The increased
cytokine production at this late time corresponded with the
peak in lethality seen following corneal infection, consistent
with the idea that inflammation contributes to the increased
mortality in IRF-3�/� mice.

IRF-3-deficient mice have a deficit in type I IFN production.
Previous work demonstrated a deficit in the production of
IFN-� following infection of IRF-3�/� bone marrow-derived
dendritic cells compared to control cells (45). The current
experiments sought to determine whether IRF-3-deficient
mice displayed a similar IFN-� production deficit in brain
tissues following i.c. infection. WT and IRF-3�/� mice were
challenged with a high dose of HSV-1, and brains were har-
vested at 12 and 18 h postinfection. At both 12 and 18 h
postinfection there was a statistically significant difference in
IFN-� protein levels in IRF-3�/� mice compared to WT con-
trol mice (Fig. 7A). At 12 h postinfection, WT mice produced
nearly 3.5-fold more IFN-� than IRF-3�/� mice, and they
produced 2.2-fold more IFN-� at 18 h postinfection. The 12-
and 18-h results therefore recapitulated the results previously
reported for BMDCs (45), consistent with the idea that IRF-
3�/� mice permit increased viral replication and show in-
creased susceptibility to infection.

Previous studies in vivo showed no change in serum IFN-�
levels relative to those in control mice following intravenous
infection of IRF-3�/� mice with HSV-1 (24). The authors
concluded that IRF-7 was primarily responsible for IFN-� pro-
duction in vivo. To further assess that idea in this work, brain
samples were assayed by ELISA for IFN-� (Fig. 7B). The data
showed a defect in IFN-� production in IRF-3�/� mice com-
pared to WT control mice at all time points tested. At 12 h
postinfection, WT mice have nearly 5-fold more IFN-� than
IRF-3-deficient brains, in which IFN-� remained at minimal
levels. However, by 18 h, IFN-� production from IRF-3�/�

brains was significantly above background levels, suggesting an
IRF-3-independent response to viral challenge, consistent with

FIG. 4. IRF-3�/� brain sections have increased antigen staining fol-
lowing intracranial HSV-1 infection. Following i.c. infection with 100 PFU
HSV-1 strain 17, brains were harvested on days 3 and 5 postinfection,
formalin fixed, sectioned sagitally, and stained with a polyclonal anti-HSV
antibody. Sections were divided into five regions (olfactory bulb, central
brain, mid-brain cerebellum, and pons/medulla/brain stem) and scored as
either positive or negative for HSV antigen staining in a masked fashion.
(A) Following scoring, total antigen-positive regions were then divided by
total sections counted in order to calculate a percentage of antigen-
positive regions for day 3 and day 5. (B and C) Representative anti-HSV-1
peroxidase staining images from the central brain regions of WT and
IRF-3�/� mice. *, P � 0.05; **, P � 0.01.
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FIG. 5. IRF-3�/� mice show increased inflammatory cytokine production following intracranial infection with HSV-1. Following i.c. infection
with 100 PFU HSV-1 17, brains were harvested on days 3 and 5 postinfection, processed, and assayed via a bead-based cytokine assay (BioPlex;
Bio-Rad). The results shown are the averages and standard deviations for four to six mouse brains per group per time point. Statistical calculations
were based on infected WT and infected IRF-3�/� mice. *, P � 0.05.
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a role for IRF-7. While this IFN-� production is still notably
deficient compared to that in WT mice, it does suggest that
IRF-3�/� mice are capable of inducing the type I IFN cascade.
Together, the results confirm a deficit and delay in the induc-
tion of type I IFN in IRF-3�/� mice in vivo.

The previous results demonstrated a significant difference
between IRF-3�/� and WT mice in terms of type I IFN pro-
duction. However, those experiments required a higher dose of
HSV-1; attempts with a lower dose had failed to detect IFN
within the linear range of the ELISA. Therefore, following i.c.
infection with 100 PFU of HSV-1, WT and IRF-3�/� brains
were removed, the olfactory bulb and brain stem discarded,
and RNA harvested from the remaining brain for analysis at
18 h postinfection. The results demonstrated a statistically
significant decrease in fold expression of IFN-� RNA in IRF-
3�/� mice compared to controls (Fig. 7C). The WT brains
averaged a 3.4-fold increase in IFN-� transcript compared to
mock samples, while in contrast, IRF-3�/� brains averaged a
1.9-fold increase. These results, coupled with the type I IFN
ELISA results following high-dose infection, demonstrate an
immediate deficiency in type I IFN production in the brains of
IRF-3�/� mice.

DISCUSSION

The data in this study show that IRF-3 plays a critical role in
the control of HSV-1 CNS infection. A deficient IFN response
most likely permitted HSV-1 to establish a foothold for infec-
tion, resulting in increased viral replication and antigen

staining in IRF-3�/� brains. Concomitant with increased
viral replication, the immune system induced an increased
inflammatory cytokine response in IRF-3-deficient mice, and
these factors combined to result in significantly increased le-
thality. Together, these results highlight the importance of the
IRF-3-dependent immune response in preventing lethal CNS
infection following HSV-1 challenge. Similar to previous re-
ports on immune cells (45), IRF-3�/� mice had reduced type I
IFN production in the brain following HSV-1 challenge, and
delayed or reduced type I IFN production has broad implica-
tions for susceptibility to viral infection of the CNS. Deficient
type I IFN production in brains contributes to encephalitis in
a variety of RNA virus infections, including West Nile virus,
Semliki virus, and mouse hepatitis virus (11, 12, 18, 25). The
results also correspond with genetic studies in humans dem-
onstrating a deficiency in TLR signaling, specifically TLR-3,
which results in increased susceptibility to HSE (7, 74). While
TLR-3 is dispensable for protection of mice from viral infec-
tion, IRF-3 is apparently required for protection. IRF-3 is
downstream of TLR-3 in the signaling pathway, and these
findings emphasize the importance of this type I IFN induction
pathway in controlling HSE in vivo (59).

In addition to controlling viral replication, the inflammatory
response to CNS infection is also thought to contribute to
lethality following HSV-1 challenge. Indeed, the inflammatory
response is both protective and harmful to the host during
HSE. Deletion or inhibition of parts of the inflammatory re-
sponse results in the host succumbing to HSV-1 infection (5,
38, 59). In contrast, antagonizing other inflammatory elements

FIG. 6. IRF-3�/� mice show increased inflammatory cytokine production following peripheral infection. Following ocular infection with 1 �
106 PFU HSV-1 McKrae per eye, brains were harvested on days 3 and 5 postinfection, processed, and assayed via a bead-based cytokine assay
(BioPlex; Bio-Rad). The results shown are the averages and standard deviations for four to six mouse brain stems per group per time point. *, P �
0.05; **, P � 0.01; ***, P � 0.001.
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has positive results in terms of morbidity and mortality (35, 36,
46). In the absence of type I IFN signaling, several viruses have
been reported to induce increased CNS inflammation in addi-
tion to increased viral replication (25, 61). A similar pattern
emerges in these studies, as IRF-3�/� mice have increased
inflammatory cytokine production in the brains following i.c.
and corneal infection. The increase in inflammatory cytokine
production in IRF-3�/� mice preceded the major peak in le-
thality in both models. These data cannot definitively show

whether increased inflammatory cytokine production, in-
creased viral replication, or a combination of both results in
the increased mortality seen in IRF-3�/� mice, although on-
going studies in this laboratory will help to distinguish these
possibilities.

Previous work with other viruses has suggested an alteration
in viral distribution or viral tropism in the context of defective
or antagonized type I IFN signaling (19, 25, 55). In this study,
assessment of viral antigen distribution revealed that while
initially limited to the central brain region, HSV-1 was distrib-
uted in the brain stem, cerebellum, and mid-brain in both WT
and IRF-3�/� mice by day 5 following i.c. infection. In each
region, IRF-3�/� brains exhibited a higher percentage of an-
tigen-positive regions, but the overall location of the virus was
similar in the WT and IRF-3�/� mice. There was, however, a
distinct antigen staining pattern in IRF-3�/� and WT brain
sections. IRF-3�/� mice showed lesions with uniform antigen-
positive regions, while WT lesions showed HSV-1 staining foci
in cells with neuronal morphology. This observation is consis-
tent with the hypothesis that IRF-3�/� mice permit initial
uncontrolled viral replication resulting in wide, uniform anti-
gen staining. The data also suggest a possible shift in cell
tropism within the CNS of IRF-3�/� mice; microglia, astro-
cytes, and other glial cells have been shown to respond to type
I IFN and may be more susceptible to HSV-1 infection in the
absence of IRF-3 (1, 25, 39, 40, 66).

The data presented in this study demonstrate a more com-
plex role for IRF-3 than previously shown (24). There is con-
sistency between the previous study and the current data ex-
amining replication in corneas, trigeminal ganglia, and
periocular skin (data not shown), but there are also some sharp
distinctions when considering the current observation of in-
creased lethality and brain titers. A possible explanation is the
nature of the immune response in the CNS. In peripheral
tissues, the type I IFN response is driven primarily by plasma-
cytoid dendritic cells in an IRF-7-dependent manner; high
levels of IFN-� are produced, which can compensate for the
loss of IRF-3-dependent pathways (31). This model is sup-
ported by the previous intravenous challenge data (24) and by
data in this study. However, in the brain, examination of type
I IFN production revealed a deficit in IRF-3�/� brains com-
pared to control brains, providing a mechanism for increased
HSV-1 replication and suggesting a CNS-specific necessity for
IRF-3. While peripheral tissues primarily utilize type I IFN
production by plasmacytoid dendritic cells (pDCs), the brain is
largely devoid of this cell type (2, 3, 58). Instead, the CNS relies
on resident cells to produce and respond to type I IFN (13). In
the absence of IRF-3, the CNS fails to produce an immediate
type I IFN response, and HSV-1 establishes a foothold for
infection. Augmented viral replication follows, which leads to
increased cytokine production and increased lethality. In the
periphery, the loss of IRF-3 affects local production of type I
IFN as demonstrated by reduced IFN-� (24, 56). However,
infiltration by immune cells and IRF-7-mediated production of
IFN-� likely rescues the type I IFN cascade and prevents the
virus from establishing a foothold in peripheral tissues. This
exogenous IFN production by infiltrating cells is not available
in the CNS, as few pDCs are found in the brain and type I IFN
has not been shown to pass through the blood-brain barrier
(13, 14). Therefore, the CNS requires local production of type

FIG. 7. IRF-3�/� mice have a deficit in type I IFN production
following intracranial infection with HSV-1. WT and IRF-3�/� mice
were infected i.c. with 1 � 106 PFU HSV-1 strain 17. (A and B) Whole
brain tissue was harvested at the specified times, processed, and ana-
lyzed for IFN-� (A) and IFN-� (B) by ELISA (PBL Laboratories). The
results shown represent the averages and standard deviations for 10 to
14 mice per group per time point from two separate experiments.
(C) Following infection with 100 PFU HSV-1 strain 17, brain tissue,
excluding brain stem and olfactory bulb, was harvested for RNA at
18 h postinfection. Samples were assayed by real-time RT-PCR, and
results are expressed as fold expression over that for mock-infected
samples. The results shown are the average fold expression and stan-
dard deviation from six or seven mice per group per time point from
two separate experiments. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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I IFN, and IRF-3 is critical for a timely and efficient response.
In the absence of IRF-3, the virus gains its foothold, and the
result is increased susceptibility to HSV-1 CNS infection.

Taken together, these data demonstrate a critical role for
IRF-3 in the brain following HSV-1 challenge. The results
demonstrate a major delineation between the peripheral and
CNS innate immune responses. The data also underscore the
importance of testing multiple infection models and measuring
multiple parameters to fully ascertain the roles of host resis-
tance factors in viral infection. Ongoing experiments in our
laboratory seek to evaluate changes in viral tropism and in-
flammatory infiltrates in the brains of IRF-3�/� mice. Further
experiments will determine the precise pathways and mole-
cules responsible for HSV-1 recognition. Several candidates
involved in the early recognition pathways have been impli-
cated, and cells and mice lacking these components are being
evaluated both in vitro and in vivo.
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