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Fetal survival during gestation implies that tolerance mechanisms suppress the maternal 
immune response to paternally inherited alloantigens. Here we show that the inhibitory 
T cell costimulatory molecule, programmed death ligand 1 (PDL1), has an important role 
in conferring fetomaternal tolerance in an allogeneic pregnancy model. Blockade of PDL1 
signaling during murine pregnancy resulted in increased rejection rates of allogeneic 
concepti but not syngeneic concepti. Fetal rejection was T cell– but not B cell–dependent 
because PDL1-specific antibody treatment caused fetal rejection in B cell–deficient but not 
in 

 

RAG-1

 

–deficient females. Blockade of PDL1 also resulted in a significant increase in the 
frequency of IFN-

 

�

 

–producing lymphocytes in response to alloantigen in an ELISPOT assay 
and higher IFN-

 

�

 

 levels in placental homogenates by ELISA. Finally, PDL1-deficient females 
exhibited decreased allogeneic fetal survival rates as compared with littermate and 
heterozygote controls and showed evidence of expansion of T helper type 1 immune responses 
in vivo. These results provide the first evidence that PDL1 is involved in fetomaternal tolerance.

 

The exact mechanisms of fetomaternal toler-
ance remain unknown. A role for HLA-G,
Fas-FasL, or TRAIL-TRAIL-R in the apop-
tosis of maternal leukocytes during pregnancy
has been documented in studies in mice and in
humans (1–3). Expression of complement reg-
ulatory protein, crry, in the placenta also pro-
motes fetomaternal tolerance (4). Indoleamine
2,3 dioxygenase (IDO) also has been shown to
protect allogeneic concepti from maternal T
cell–mediated immunity (5, 6). A recent report
by Aluvihare et al. suggests a role for regulatory
T cells in suppression of maternal allogeneic
responses against the fetus (7).

Activation of T lymphocytes requires two
signals, one delivered by the TCR complex
after antigen recognition and one provided
on engagement of costimulatory receptors.
The costimulatory signal can be either posi-

tive or negative; the interplay between these
signals may determine the fate of immune re-
sponses in vivo (8, 9). The inhibitory costim-
ulatory molecule programmed death 1 (PD1)
and its ligands, PDL1 and PDL2, play a role
in regulating immune responses in vivo (8, 9),
including acquired transplantation tolerance
(10–14).

One of the interesting observations related
to the PD1:PDL1/PDL2 pathway is that ex-
pression of the ligands is not restricted to BM-
derived cells but has been reported in parenchy-
mal cells in several tissues (15–18). In human
placenta, PDL1 is expressed by villous syncy-
tiotrophoblasts and cytotrophoblasts, the fetal
cells that lie in close contact with maternal
blood and tissue (17). Tissue expression of
these ligands may play a critical role in regulat-
ing local immune responses in vivo (8, 9). We
now provide the first evidence that PDL1
plays a critical role in fetomaternal tolerance.

 

The online version of this article contains supplemental material.

 

CORRESPONDENCE
Indira Guleria: 
indira.guleria@tch.harvard.edu
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RESULTS AND DISCUSSION
Kinetics of expression of PD1 and PDL1 and PDL2 
at the fetomaternal interface

 

In the first set of experiments, expression of PD1 and its
ligands, PDL1 and PDL2, and CD28/CTLA-4 and their
ligands, B7.1 and B7.2, were assessed in placentas of CBA fe-
males mated with C57BL/6 (B6) males. PDL1 and PDL2 ex-
pression was detected as early as 10.5 days post-conception
(dpc) in all concepti, with a maximal expression for both
ligands at d 13.5 dpc (Fig. 1, A and D), reduced expression at d
16.5 for PDL1 (Fig. 1 C), and lack of expression of PDL2 at
this later time point (Fig. 1 F). PDL2 was expressed throughout
the decidua (Fig. 1 B), whereas PDL1 expression was restricted
to the decidua basalis, which is the maternal component of the
placenta and is next to the trophoblastic giant cells (Fig. 1 A).
This restricted expression suggests a role for PDL1 in regulating
the maternal alloimmune response. Expression of PDL1 was
negligible in the placental sections from syngeneic matings
(CBA x CBA) at all the time points studied (unpublished data).
B7.2 expression was maximal at 13.5 dpc (Fig. 1 C) and was
negligible at 10.5 and 16.5 dpc. PD1, CTLA-4, CD-28, and
B7.1 were not detected at all the time points studied.

 

Effect of blockade of costimulatory pathways on rate 
of spontaneous resorption in CBA x B6 matings

 

To study the role of the PD1 pathway in fetomaternal toler-
ance, we used an established model of allogeneic pregnancy;
CBA x B6 matings (5, 6). The rate of spontaneous resorp-
tion in this model was 18% (

 

n

 

 

 

�

 

 30), confirming published
reports (5, 6). We then used blocking monoclonal antibodies
to PDL1, PDL2, and B7.2 (ligands shown to be expressed in
the placenta, see above) in this allogeneic pregnancy model.
Control IgG-treated mice had a rate of spontaneous resorp-
tion similar to that in the unmanipulated control mice (Fig.
2). In vivo blockade with anti-PDL1 mAb resulted in signif-
icant increase in the rate of spontaneous fetal resorption
(86%, P 

 

�

 

 0.0001 by unpaired 

 

t

 

 test) (Fig. 2 A). However,
blockade with anti-PDL2 or anti-B7.2 antibodies had no ef-
fect on the spontaneous resorption rate (Fig. 2 A). None of
the antibodies affected spontaneous resorption in CBA fe-
males mated with syngeneic (CBA) males (PDL1, Fig. 2 B;
PDL2 and B7.2, unpublished data).

We then assessed fetal survival rates by allowing plugged
females to go to term and counting litter size. Normal litter
size was 5.5 pups/plugged female in untreated controls (Ta-

Figure 1. Kinetics of expression of PDL1/PDL2/B7.2 in placenta of 
CBA mice. Placentas were removed from pregnant CBA (xB6) mice at 10.5, 
13.5, and 16.5 dpc, and cryosections were immunostained for PDL1 (A–C), 
PDL2 (D–F) and B7.2 (G–I) expression. Staining in placentas at 10.5 (A, D, 
and G), 13.5 (B, E, and H), and 16.5 (C, F, and I) dpc is shown. Reddish-

brown staining for PDL1 shown by arrows is in the decidua basalis (db), 
the layer next to the trophoblastic giant cells (tgc). PDL2 and B7.2 reddish-
brown staining depicted by arrows is in the whole decidua (maternal deciduas, 
md). Magnification is 20 for all sections except section (C), where it is 40 
because the staining was faint and difficult to appreciate at 20�.
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ble I). Anti-PDL1 treatment resulted in significant reduction
in the litter size to 1.25 (P 

 

�

 

 0.0001 by unpaired 

 

t

 

 test).
Treatment with anti-PDL2 or anti-B7.2 mAb did not affect
fetal survival rates. As expected, similar numbers of synge-
neic (CBA x CBA) fetuses were delivered at term in mice
treated with anti-PDL1, and survival rates were comparable
with rates observed in control (IgG-treated or unmanipu-
lated) mice (Table I).

Collectively, our data indicate that PDL1 is an important
negative regulator of the maternal alloimmune responses
against fetal antigens in vivo. In some models, PDL1 has
been shown also to interact with a putative receptor other
than PD1 to deliver positive stimulatory signals for T cell ac-
tivation (19–21). Our data clearly show that PDL1 delivers
negative signals to protect from allogeneic fetal destruction
during pregnancy, because blockade of this pathway resulted
in enhanced fetal rejection. However, one of the potential
explanations for our findings is that the anti-PDL1 mAb may

act in an agonistic fashion, delivering an activating signal to
PDL1 on APCs and/or T cells. Therefore, we used PDL1-
deficient mice in an allogeneic mating model. PDL1-defi-
cient animals are on 129/B6 background. We therefore
reversed the mating for this set of experiments; 129/B6 fe-
males were mated with CBA males and followed to term

 

Table I.

 

Effect of anti-PDL1 treatment on fetal survival at term

 

Mating
combination Treatment

Pregnant
females

Decidua
per female

 

CBA x CBA anti-PDL1 8 9.0 

 

�

 

 0.75
anti-PDL2 4 8.2 

 

�

 

 1.25
anti-B7.2 4 8.2 

 

�

 

 0.96
control IgG 4 9.0 

 

�

 

 0.96

CBA x B6 anti-PDL1 12 1.2 

 

�

 

 0.87

 

a

 

anti-PDL2 6 5.8 

 

�

 

 1.6
anti-B7.2 7 5.7 

 

�

 

 1.1
control IgG 10 5.5 

 

�

 

 0.97

 

a

 

P 

 

�

 

 0.0001 by unpaired Student’s 

 

t

 

 test.

 

Table II.

 

Fetal survival at term in PDL1-deficient mice

 

Mating
combination

Pregnant
females

Decidua
per female

 

PDL1

 

���

 

(129/B6) F
x PDL1

 

���

 

(129/B6) M
syngeneic 12 8.0 

 

�

 

 0.95
PDL1

 

���

 

(129/B6) F
x CBA M
allogeneic 9 2.7 

 

�

 

 1.6

 

a

 

PDL1

 

�

 

/

 

�

 

(129/B6) F
x

 

 

 

PDL1

 

�

 

/

 

�

 

(129/B6) M
syngeneic 18 8.9 

 

�

 

 0.7
PDL1

 

�

 

/

 

�

 

(129/B6) F
x

 

 

 

CBA

 

 

 

M
allogeneic 14 8.5 

 

�

 

 0.7
PDL1

 

�

 

/

 

�

 

(129/B6) F
x

 

 

 

PDL1

 

���

 

(129/B6) M
syngeneic 5 8.8 

 

�

 

 0.98
PDL1

 

�

 

/

 

�

 

(129/B6) F
x

 

 

 

CBA

 

 

 

M
allogeneic 6 9.0 

 

�

 

 0.8
CBA F
x PDL1

 

�

 

/

 

�

 

(129/B6) M 4 6.0 

 

�

 

 0.8
CBA F
x PDL1

 

�

 

/

 

�

 

(129/B6) M 5 6.0 

 

�

 

 0.7

 

a

 

P 

 

�

 

 0.0001 by unpaired Student’s 

 

t

 

 test.

Figure 2. Effect of PDL1/PDL2/B7.2 blockade on resorption of 
allogeneic concepti. (A) Pregnant CBA (xB6) females were injected i.p. 
with anti-PDL1, anti-PDL2, and anti-B7.2 antibodies. The percentages of 
resorbing fetuses at day 13.5 of pregnancy in mice treated with anti-PDL1 
(�, red), anti-PDL2 (�, blue), and anti-B7.2 (�, organe). Data in unmanip-
ulated control mice (�, green) and IgG-treated control mice (�, magenta) 
are also shown. Data in the anti-PDL1 group are highly significant 
(P � 0.0001) over other groups. (B) RAG1�/� females on C57BL/6 back-
ground were mated with CBA males and subsequently treated with con-

trol IgG or anti-PDL1 antibodies. In parallel, C57BL/6 females were mated 
with CBA males and subsequently treated with either anti-PDL1 mAb or 
control IgG. Number of embryos resorbing in each group is shown. (�, green) 
B6xCBA control; (�, red) anti-PDL1; (�, blue) RAG-1�/�B6xCBA control; 
(�, pink) anti-PDL1. The lack of effect of anti-PDL1 during syngeneic 
pregnancy for CBA x CBA matings or B6 x B6 matings are shown in A 
(�, blue, control; �, pink, anti-PDL1) and B (�, magenta, control; �, red, 
anti-PDL1), respectively.
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pregnancy. As illustrated in Table II, PDL1-deficient mice
had significant reduction in fetal survival rates as assessed by
the litter size from the plugged females (2.7 

 

�

 

 1.6 vs. 8.5 

 

�

 

0.7 from the heterozygous and 9 

 

�

 

 0.8 from WT littermate;
P 

 

�

 

 0.0001 by unpaired 

 

t

 

 test for both). Again, fetal resorp-
tion was observed in allogeneic and not in syngeneic (B6 x
B6) mating, thereby confirming that fetal resorption was in
response to male alloantigens.

Our data in PDL1-deficient mice complement our find-
ings of PDL1 blockade with antibody and provide definitive
proof that PDL1 delivers a negative signal to regulate alloge-
neic T cell responses in fetomaternal tolerance. A regulatory
role for PDL1 in immune response also is supported by a re-
cent report in which PDL1-deficient mice developed severe
experimental autoimmune encephalomyelitis after adoptive
transfer of MOG-specific T cells (22).

 

Role of T cells and complement

 

We next analyzed the cellular infiltrates at the fetomaternal
interface by immunohistochemistry. Infiltration of T cells at
the site of fetal rejection was observed as early as 10.5 dpc in
anti-PDL1 mAb-treated animals (Fig. 3). We detected negli-
gible infiltration of CD3

 

�

 

 T cells in tissue sections prepared
from control IgG-treated mice even though this group has a
spontaneous resorption rate of 

 

�

 

18%. This spontaneous re-
sorption rate could be caused by a difference in kinetics of
recruitment of T cells in this group. There was no infiltra-
tion of T cells in sections from mice that carried syngeneic
fetuses and had been treated with anti-PDL1 mAb (unpub-
lished data). There were also sites of hemorrhage during fetal

rejection in the anti-PDL1–treated group as shown by he-
matoxylin and eosin staining (Fig. 3 C).

We also conducted immunohistological analyses to de-
termine whether innate effector mechanisms involving com-
plement were activated when we blocked the costimulatory
pathways in vivo. Staining with antibodies against C3 re-
vealed that complement was deposited at the maternal–fetal
interface from early gestational times in mice that were car-
rying allogeneic concepti and were exposed to anti-PDL1
mAb. C3 deposition was detected as early as 8.5 dpc and was
maximal at 10.5 dpc (Fig. 3). C3 staining was concentrated
both in the fetal compartment (on trophoblast cells; Fig. 3
D) and in the maternal decidua (Fig. 3 E).

We then mated female RAG-1

 

�

 

/

 

�

 

 mice, which lack T
cells and B cells but have APCs (on C57BL/6 background),
with CBA males and treated them with anti-PDL1 mAb. In
parallel sets of experiments, C57BL/6 females (RAG suffi-
cient) were mated with CBA males and were subsequently
treated with anti-PDL1. All RAG-1

 

�

 

/

 

�

 

 females examined at
13.5 dpc in the anti-PDL1–treated group had normal num-
bers of healthy embryos (Fig. 2 B), whereas in C57BL/6
(RAG sufficient) females anti-PDL1 treatment resulted in
35% fetal resorption (two-tailed P 

 

�

 

 0.0001 by unpaired 

 

t

 

test). A lack of effect of anti-PDL1 mAb in RAG-deficient
females would suggest that maternal T cells and B cells are
essential for rejection of allogeneic concepti to occur in mice
treated with anti-PDL1 mAb. Because RAG-1

 

�

 

/

 

�

 

 mice also
lack B cells, we used B cell–deficient mice (that have T cells
and APCs intact) for allogeneic mating. Anti-PDL1 mAb
caused fetal rejection in four of four B cell–deficient mice;

Figure 3. T cell infiltration and complement deposition in placentas 
of anti-PDL1–treated CBA females. CBA (xB6) females were treated 
with anti-PDL1 at predetermined intervals. Animals were killed, and 
placental sections were stained for T cells (A, B) and complement (D–F). 
A depicts T cells stained with anti-CD3 mAb (reddish-brown staining as 
shown by arrows), and C (whole area depicted) shows a site of hemorrhage 

during fetal rejection in anti-PDL1–treated group. Arrows show comple-
ment deposition in the fetal (D) and maternal (E) part of the placenta. Lack 
of staining by isotype control is shown in B for T cells and in F for comple-
ment. Magnification is 20 for all the sections except C, where it is 10 (to 
show the whole area undergoing hemorrhage).
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the percentage of resorbed embryos was 35–40%, similar to
that obtained in the WT C57BL/6 x CBA mating combina-
tion with anti-PDL1 mAb treatment. Again, in syngeneic
(B6 x B6) mating, anti-PDL1 treatment did not cause re-
sorption (Fig. 2 B). Our results clearly show that T cells and
not B cells or APCs are required for anti-PDL1–mediated
fetal rejection.

 

Role of IDO in anti-PDL1–mediated fetal rejection

 

Inhibition of IDO recently was shown to result in fetal re-
jection in the CBA x B6 allogeneic pregnancy model (5, 6).
To test whether anti-PDL1 mAb may function by enhanc-
ing IDO expression, as has been reported for CTLA4Ig (23),
we investigated the expression of IDO at the maternal–fetal
interface by immunohistochemistry. A similar degree of
IDO expression was detected in the trophoblastic giant cells
of placenta from control and anti-PDL1 treated mice (un-
published data), indicating that anti-PDL1 treatment has no
effect on IDO expression.

 

Effect of PDL1 on Th1 cells

 

We then studied the peripheral immune response of
anti-PDL1–treated mice. Splenocytes (responder cells) from
pregnant CBA females were cultured in the presence of irra-
diated stimulator cells from CBA or B6 males. Using
ELISPOT analysis, we detected a high frequency of IFN-�–
producing cells in response to stimulator cells from B6 (allo-
geneic) males as opposed to CBA males with anti-PDL1
mAb treatment (Fig. 4 A), indicating that there is expansion
of alloreactive Th1 cells in vivo. Th2 cytokines were not de-

tected in either control or anti-PDL1 treated mice. In a
parallel study, splenocytes (responder cells) from pregnant
PDL1-deficient mice (on 129/B6 background) were cul-
tured in the presence of irradiated stimulator cells from CBA
(allogeneic) mice. ELISPOT studies again revealed high fre-
quency of IFN-�–producing alloreactive cells in PDL1-defi-
cient mice (Fig. 4 B). Splenocytes from WT littermate con-
trols (129 x B6) had minimal IFN-�–producing cells in
response to allogeneic (CBA) stimulators (Fig. 4 B).

We next examined the expression of IFN-� locally at the
site of fetal rejection in the placenta by analysis of placental
homogenates by ELISA (24). We found higher levels of
IFN-� in placental homogenates from anti-PDL1–treated
mice (Fig. 4 C) and from PDL1-deficient mice as compared
with appropriate controls (Fig. 4 D).

The balance of Th1/Th2 cytokines has been suggested to
be crucial for outcome of a healthy pregnancy (25, 26).
Therefore, expansion of Th1 effector cells by anti-PDL1 mAb
treatment and in PDL1-deficient mice could be a major con-
tributing factor to enhanced fetal rejection in our model.

In conclusion, our data provide definitive proof for a
critical role of PDL1 in promoting fetomaternal tolerance.
The data show that blocking or genetically deleting this co-
stimulatory molecule promotes fetal rejection by expansion
of alloreactive Th1 cells. Thus, PDL1 may contribute to fe-
tomaternal tolerance by limiting the expansion of alloreac-
tive T cells (13, 27), possibly by cell cycle arrest (28), by
increasing apoptosis of T cells (13, 29, 30), or by active reg-
ulation of the alloimmune response by a subpopulation of
CD4�CD25� T cells (13, 31). Further studies are necessary

Figure 4. Expansion of Th1 cells in spleen and placenta of anti-
PDL1–treated and PDL1-deficient mice. (A) The frequency of IFN-�–
producing cells from splenocytes of anti-PDL1–treated animals was mea-
sured by ELISPOT from a mixed leukocyte reaction in which splenocytes 
(responder cells) from pregnant CBA mice were cultured in the presence of 
allogeneic (C57BL/6) stimulators (n � 4–6; P � 0.05). (B) The frequency of 
IFN-�–producing cells from splenocytes of PDL1-deficient mice was mea-

sured by ELISPOT in a similar fashion (n � 4–6 mice per group; P � 0.05 as 
compared with PDL1�/� WT littermate controls). (C) IFN-� was measured 
in the placental homogenates by ELISA from anti-PDL1–treated mice (n � 
7; P � 0.05 compared with control group). (D) IFN-� in placental homog-
enates of PDL1-deficient mice is also shown (n � 6–9 mice per group;
P � 0.0001 compared with WT PDL1�/� littermates).
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to define the exact mechanisms of the interplay between
PDL1, effector T cells, and regulatory T cells in vivo. Our
studies have important implications for understanding physi-
ologic mechanisms that promote fetomaternal and transplan-
tation tolerance.

MATERIAL AND METHODS
Mice. CBA/CaJ, C57BL/6, RAG-1�/�, and B-deficient mice on C57BL/6
background were obtained from Jackson ImmunoResearch Laboratories. Insti-
tutional guidelines for animal care and experimental procedures were followed.

Timed matings and resorption rates. Virgin female CBA/CaJ mice
(aged 8–10 wk) were mated with C57BL/6 (allogeneic) or CBA/CaJ (syn-
geneic) males (aged 6–12 wk). Females were inspected daily for vaginal
plugs; sighting a vaginal plug was designated as d 0.5 of pregnancy. Plugged
females were monitored until parturition, and the number of pups born was
recorded, or mice were killed at predetermined intervals (10.5, 13.5, 16.5
dpc) to examine the number of implantation and resorbing sites. The rate of
resorption was calculated by counting the number of resorbing versus
healthy embryos on d 13.5. RAG-1�/� and B cell–deficient mice on
C57BL/6 background were mated with CBA males to set up allogeneic
matings. B6 x B6 matings served as syngeneic controls in this group.

Treatment protocol. Pregnant females were injected i.p. 6.5, 8.5, 10.5,
and 12.5 dpc with the blocking anti-mouse PDL1 mAb (MIH6) at dosages
of 500 	g, 500 	g, 250 	g, and 250 	g, respectively. In parallel sets of ex-
periments, groups of mice were injected with anti-PDL2 (TY25) (32) or
anti-B7.2 (GL1) (33) antibodies with the same dosages and regimen.

Histology. At predetermined intervals, placentas were removed for histo-
logical analysis and immunostaining. Placentas were embedded in Tissue
Tek OCT (Sakura Finetek) compound and frozen in liquid nitrogen. He-
matoxylin and eosin staining was done at different time-point placentas. Im-
munohistochemistry was performed on frozen tissue sections with antibod-
ies to PD1 (J 43), PDL1 (MIH6), PDL2 (TY25), B7.1 (1G10), B7.2
(2D10), CTLA4 (4F10), CD3 (145-2C11) and complement (CI: 11H9) us-
ing avidin-biotin technique (Vector Laboratories). For cryosections, staining
for IDO was adapted from Baban et al. (34).

Detection of cytokines in placental homogenates. Placentas from
anti-PDL1 and control groups were taken 13.5 dpc and homogenized in 1
ml PBS with 1% Triton X-100 or PBS alone, a technique described earlier
by our group (24). The homogenate was analyzed for IFN-�, IL-4, IL-5,
and IL-10 using matched antibody pairs (BD Biosciences) by ELISA. Cyto-
kines were analyzed in placentas from PDL1-deficient and WT littermate
controls in a similar manner.

ELISPOT analysis. Splenocytes from CBA (xB6) pregnant mice, which
had been treated with anti-PDL1 or not treated, were obtained as single-
cell suspensions and used as responder cells. Irradiated (3,000 rad) spleno-
cytes from male C57BL/6 and CBA/CaJ mice were used as stimulator cells.
The ELISPOT assay was adapted to measure IFN-�– and IL-4–secreting
cells, as previously described (27, 35, 36). In another set of experiments,
splenocytes from PDL1-deficient mice were used as responder cells to per-
form similar ELISPOT analysis. Splenocytes from pregnant PDL1-deficient
mice (on 129/B6 background) (xCBA) were used as responder cells, and
splenocytes from CBA males were used as stimulators.

Generation of PDL1–deficient mice. To confirm the role of PDL1 in
fetomaternal tolerance, we generated PDL1-deficient mice. A targeting vec-
tor was constructed using an 8-kb genomic fragment containing exons 2 and
3 of the PDL-1 gene (Fig. S1, available at http://www.jem.org/cgi/content/
full/jem.20050019/DC1). A 0.8-kb sequence involving exons 2 and 3
was deleted and replaced by pMC-1 neo, the targeting vector was linearized

and electroporated into embryonic stem cells, and the PDL-1�/� embryonic
stem cell clones were selected in media containing G418 and ganciclovir.
Correct targeting was assessed by Southern blotting (Fig. S2, available at
http://www.jem.org/cgi/content/full/jem.20050019/DC1), and chimeric
mice were derived by blastocyst injection. Offspring were screened by PCR
using primers 5
-GAATGAACAAACGAGCGAGAA-3
 and 5
-GCAGC-
GCATCGCCTTCTATC-3
 to detect KO allele and primers 5
-TCACG-
GCTCCAAAGGACTTGT-3
 and 5
-CCGCACCACCGTAGCTG-3
 to
detect WT allele. PDL1 mice were backcrossed to the C57/BL6 strain and
maintained in our facility for experimental use.

Online supplemental material. Fig. S1 shows the genomic organization
of the PDL1 gene and the structure of the PDL1 targeting vector. Fig. S2
shows the deletion of PDL1 exons 2 and 3 in the KO allele by Southern
blot. Genomic digestion with EcoRI yields 11kb fragment in the WT allele
and a 7-kb fragment in the KO allele. Online supplemental material is avail-
able at http://www.jem.org/cgi/content/full/jem.20050019/DC1.
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