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There is little evidence addressing the role of CpG methylation in transcriptional control of genes that do
not contain CpG islands. This is reflected in the ongoing debate about whether CpG methylation merely
suppresses retroelements or if it also plays a role in developmental and tissue-specific gene regulation. The
genes of the 3-globin locus are an important model of mammalian developmental gene regulation and do not
contain CpG islands. We have analyzed the methylation status of regions in the murine (3-like globin locus in
uncultured primitive and definitive erythroblasts and other cultured primary and transformed cell types. A
large (~20-kb) domain is hypomethylated only in primitive erythroid cells; it extends from the region just past
the locus control region to before 3-major and encompasses the embryonic genes Ey, Bhl, and 3h0. Even
retrotransposons in this region are hypomethylated in primitive erythroid cells. The existence of this large
developmentally regulated domain of hypomethylation supports a mechanistic role for DNA methylation in

developmental regulation of globin genes.

Chromatin structure is a central control point in eukaryotic
transcriptional regulation; it determines where transcription is
initiated and what DNA is transcribed. Transcription initiation
is stably suppressed in large portions of the genome: retroele-
ments are constitutively suppressed, and genes are suppressed
in tissue-specific patterns by very similar mechanisms. The
chromatin makeup of a region of DNA, termed its “epigeno-
type,” is a complex assortment of proteins and chemical mod-
ifications that differs between and even within specific cell
types. Cytosine methylation, histone modification, histone vari-
ants, and nonhistone chromatin proteins have interacting roles
in relatively stable chromatin structures. Dense cytosine meth-
ylation is associated with suppression of transcription initiation
(reviewed in reference 16), and it appears to inhibit but not
prevent transcription once initiated (20).

In mammals, DNA methylation occurs predominantly at
CpG dinucleotides. Clusters of CpGs are rare in the mamma-
lian genome outside of CpG islands, which are defined as
regions of generally 200 to 500 bp with an unusually high
frequency of CpGs. Many CpG islands are associated with
gene promoters (30). Hypermethylation of CpG islands is
rare in untransformed cells and more common in trans-
formed cells; regardless of cell type, it is associated with
transcriptional suppression of the methylated gene. The re-
lationship between CpG methylation and expression of
genes without CpG island promoters, such as those at the
B-globin locus, is less clear.

Outside of CpG islands, the frequency of CpG dinucleotides
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is lower than expected from genomic CG content, and roughly
80% of CpG sites outside of CpG islands are methylated (5).
There have been no reports of large (multikilobase) regions of
hypomethylated CpG dinucleotides in the mammalian ge-
nome. A large proportion of CpG methylation occurs at ret-
roelements that are invariably hypermethylated (35). Although
it has been supposed that CpG methylation is also associated
with developmental and tissue-specific silencing of genes, there
are limited examples of developmental changes in methylation
patterns at specific genes (7, 10).

The mammalian B-globin locus has been studied as a model
of developmentally regulated transcription in a multigene lo-
cus; developmental globin “switching” is also of great interest,
because a ready means of reversing the fetal-to-adult switch in
the human B-globin locus would provide a treatment for the
devastating hemoglobinopathies B-thalassemia and sickle cell
disease. Like other mammalian B-globin loci, the murine
B-globin locus is so structured that genes share a common
transcriptional orientation and are arranged roughly in their
developmental order of expression. The developmental switch
in globin gene transcription occurs concomitantly with changes
in the anatomic site of erythropoiesis and in the type of eryth-
rocyte (Fig. 1). In mice and most other mammals (excluding
humans and other higher primates), there is a single switch
that occurs when primitive erythropoiesis in the embryonic
yolk sac is replaced by definitive erythropoiesis in the fetal
liver. Nucleated primitive red cells produced in the yolk sac of
murine embryos express high levels of the embryonic globins gy
and BH1 and very low levels of the fetal/adult-stage globins,
B-major and B-minor (27). In fetal liver-derived definitive
erythroblasts, 3-major and B-minor are expressed at high levels
and the embryonic globins are silent, a condition maintained
into adulthood after erythropoiesis shifts to the bone marrow,
where definitive erythrocytes are produced throughout postna-
tal life. Unlike humans, who switch from <y to 8 when eryth-
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FIG. 1. Changes in levels of B-like globin mRNAs during develop-
ment. Note that the embryonic genes gy and Bhl are expressed in
primitive erythroid cells generated in the yolk sac during early embry-
onic development, with transcripts undetectable by E16.5. Data are
adapted from reference 33.

ropoiesis moves from fetal liver to bone marrow, there are no
adult-specific B-like globin genes expressed in murine bone
marrow. However, there is a shift in the ratio of B-major to
B-minor expression between fetal liver-derived (60% (-major,
40% B-minor) and bone marrow-derived (80% B-major, 20%
B-minor) definitive erythrocytes (34).

Several lines of evidence have long suggested that cytosine
methylation plays a role in B-like globin regulation, but a clear
picture of its function is still lacking. Drugs capable of modi-
fying DNA methylation can induce y-globin expression in ba-
boons, in transgenic mice carrying the human B-globin locus
YAC, and in patients with hemoglobinopathies (2, 3, 17, 19,
26). Mutation of MBD2, a protein that binds regions of CpG
methylation and suppresses transcription, increases expression
of y-globin from the human B-globin locus YAC in transgenic
mice (29). Southern blot analysis of DNA digested with meth-
ylation-sensitive restriction enzymes showed a general corre-
lation between DNA hypomethylation in or close to the pro-
moter of an active B-like globin gene and its transcription in
primary human erythroblasts (21, 25, 32); however, a very
limited number of CpG dinucleotides could be assessed by this
method, leaving the picture incomplete.

We have carried out a detailed analysis of the patterns of
CpG methylation associated with developmental regulation of
the murine B-like globin locus, using bisulfite allelic sequenc-
ing of DNA from primitive and definitive mouse erythroblasts.
The study reveals a surprisingly large hypomethylated domain
that surrounds the expressed embryonic genes in primitive
cells. Retroelements that are found within this domain are also
hypomethylated in primitive erythrocytes. This adds to mount-
ing evidence that the primitive erythrocytes regulate globins
very differently than definitive erythrocytes. A variety of stud-
ies now suggest that primitive erythrocytes are a fundamentally
different lineage than definitive erythrocytes, and globin regu-
latory mechanisms may reflect this lineage divergence (re-
viewed in reference 22). These findings demonstrate a pattern
of CpG methylation in the murine B-globin locus that is con-
sistent with a mechanistic role in the developmentally regu-
lated gene expression program.

MoL. CELL. BIOL.

MATERIALS AND METHODS

Cells. Circulating primitive red blood cells and whole fetal livers were col-
lected from embryonic day 11.5 (E11.5) and E14.5 CD-1 strain mouse embryos,
respectively. E11.5 circulating cells are virtually pure primitive erythrocytes.
Whole fetal liver is reported to be 80 to 92% erythroid cells (14). This was
confirmed by flow cytometry using anti-Ter-119-stained cells. Erythroblasts from
fetal liver were either not further purified or purified with anti-Ter-119 magnetic
microbeads (Miltenyi Corp., Auburn, CA) (see Fig. 3A, below). Erythroblasts
from all adult bone marrow samples (and some fetal livers) were purified with
anti-Ter-119 magnetic microbeads to =94% purity, as determined by flow cy-
tometry. Animal experimentation was under the auspices of a protocol approved
by the Dartmouth IACUC and was compliant with all relevant regulations of the
NIH Office of Laboratory Animal Welfare.

R1 embryonic stem (ES) cells were grown on mouse embryonic fibroblast
(MEF) feeders in Dulbecco’s modified Eagle’s medium supplemented with 15%
fetal bovine serum, 1,000 units/ml ESGRO (Chemicon International, Termecula,
CA), 1% L-glutamine, 1% penicillin-streptomycin, and 14 mM B-mercaptoethanol.
MEFs derived from E14.5 CD-1 embryos and mouse erythroleukemia (MEL)
cells were grown in Dulbecco’s modified Eagle’s medium with 10% fetal bovine
serum, 1% L-glutamine, and 1% penicillin-streptomycin.

Bisulfite conversion was performed as described elsewhere (28). In brief, 2 to
3 ng of genomic DNA in 20 ul of water was denatured with a 20-min incubation
at 37°C after the addition of 2.2 ul 3 M NaOH. A 208-pl volume of 6.24 M
urea—4 M bisulfite and 12 pl of 10 mM hydroquinone were added prior to
incubating for 4 h at 55°C. The reaction mixture was desalted with Promega
Wizard DNA CleanUp columns per the manufacturer’s instructions. DNA was
desulfonated by addition of a 1/10 volume of 3 M NaOH and left at 37°C for 20
min, followed by ethanol precipitation. Sequences of interest were amplified by
nested or seminested PCR (see Table S2 in the supplemental material) with 200
M deoxynucleoside triphosphates, 100 uM of each primer, 3 mM MgCl,, 50
mM KCl, 0.01% Triton X-100, and 10 mM Tris, pH 9, and cycled at 94°C for 2
min, five times at 94°C for 1 min, 50°C for 2 min, and 72°C for 1 min 30 s, 35 times
at 94°C for 30 s, 50°C for 2 min, and 72°C for 1 min 30 s, and finally at 72°C for
6 min. PCR products were gel purified and TA cloned with the Promega T-easy
kit. Plasmids were purified with a QiaQuick spin miniprep kit and submitted to
the Dartmouth College Molecular Biology Core Facility for sequencing.

Reverse transcription-PCR (RT-PCR) studies. cDNA was reversed tran-
scribed from total cellular RNA isolated from circulating cells of E10.5 yolk sacs
and Ter-119-positive bone marrow cells with QIAGEN RNeasy columns with
additional DNase treatment. Template concentrations were equalized using
primers to murine B-actin. PCR was carried out in a 20-pl volume with 2 U of
Taq, 15 mM MgCl,, 1 uM primer, and 200 uM deoxynucleoside triphosphates.
After incubating at 95°C for 2 min, reactions were amplified for 35 cycles (95°C
for 45 s, 58 to 62°C for 1 min, and 72°C for 45 s). Products were separated on a
2% agarose gel stained with ethidium bromide and recorded with a Bio-Rad
GelDoc photo documentation system.

RESULTS

Our general strategy for studying the DNA methylation sta-
tus of the globin locus is to isolate cells of interest and perform
bisulfite allelic sequencing on regions of interest within the
globin locus. Allelic sequencing allows one to assess the pat-
tern of CpG methylation in a given region: when sufficient
numbers of alleles are sequenced, both average density and
extent of variation between alleles are readily apparent. By
sampling multiple alleles from each of several regions, we
assembled a picture of methylation state in the region as a
whole. For convenience of presentation, hypermethylation is
defined as 67% or more methylated CpGs in the total of all
CpGs in all alleles of an amplicon; intermediate methylation is
defined as 33 to 66% methylated; hypomethylation is defined
as 32% or less.

Promoter methylation status. Because CpG methylation
near the start site of transcription is most likely to reflect
transcription state and/or potential, we initially analyzed meth-
ylation at the promoters of the gy, Bhl, B-major, and B-minor
genes in ES cells, primitive erythroblasts from embryonic cir-
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FIG. 2. CpG methylation of murine B-like globin genes in cultured cells. Top, scaled map of the murine B-like globin locus. Vertical lines
demarcate segments assayed. Open ovals, transcribed genes; filled ovals, pseudogenes; numbered filled ovals, DNase-hypersensitive sites in the
LCR. Below, each horizontal row of blocks represents one bisulfite-treated clone of the indicated segment; vertical columns denote specific CpG

sites. Open box, unmethylated; filled box, methylated.

culation, definitive erythrocytes from the fetal liver and bone
marrow, MEL cells, and MEF cells. This provides a develop-
mental range of cells that either express B-like globins (prim-
itive and definitive erythroblasts and MEL), can differentiate
into globin-expressing cells (ES), or never express any globin
genes (MEFs). All are primary cells except for MEL cells.
Each promoter was studied across 300 to 600 bp around the
transcriptional start site (Fig. 2, segments 6, 11, 15, 16, and 19).

ES and MEF cells do not express B-like globins, and in these
cells all four of the promoters were hypermethylated (Fig. 2).
In MEL cells, which can express high levels of B-major and
B-minor when induced to differentiate, the promoters of both
genes were hypomethylated, while the promoters of the em-
bryonic genes €y and Bhl (which are not expressed in MEL
cells) were hypermethylated.

Primary primitive erythroid cells were isolated from the cir-
culation of E11.5 embryos. Definitive erythroid cells from fetal
livers (E14.5) or adult bone marrow were generally purified by
selection for the pan-erythroid Ter-119 antigen, and purity was
validated by flow cytometry analysis for Ter-119 expression
(Fig. 3A). In primary erythroid cells, hypomethylation of the
embryonic gene promoters is fully correlated with expression
(Fig. 3B). The €y (segment 6) and BH1 (segment 11) promot-
ers are hypomethylated (4 to 8% methylation) in yolk sac-
derived circulating primitive red cells and hypermethylated in
definitive red cell precursors from either fetal liver or bone
marrow (gy, >71%; BH1, >68%). Surprisingly the B-major
and B-minor promoters do not follow this simple pattern. In
primitive cells where both are expressed at relatively low levels,
the B-major promoter (segment 15) has 26% methylation and
the B-minor promoter (segment 19) is 58% methylated. In-
spection of the allelic pattern, however, shows that for the

B-major promoter in particular, there is high interallelic vari-
ation, with some alleles fully methylated and others completely
unmethylated. In definitive cells where both are highly ex-
pressed, the B-major promoter is hypomethylated (less than
5% methylated) and the B-minor promoter continues to be
moderately methylated (33% to 47% methylated). Despite hy-
pomethylation of the B-major promoter in definitive cells, hy-
pomethylation does not extend into the 5’ untranslated region
of the transcribed portion of B-major. The CpGs at positions
+114 and +117 relative to the B-major transcriptional start
(segment 16) are amplified along with the promoter and are
moderately methylated (fetal liver, 35%) or hypermethylated
(bone marrow, 87%).

Methylation patterns of nonrepetitive sequence outside the
promoters reveal a domain of hypomethylation. The consis-
tency of promoter hypomethylation in the embryonic gene
promoters in primitive cells and the variability of promoter
methylation of the adult genes in both primitive and definitive
cells suggested that the embryonic and fetal/adult globin genes
could also have different methylation states associated with
nonpromoter sequences. Therefore, we expanded the methyl-
ation survey of primary erythroid cells to include several non-
promoter regions: the €y coding region (segment 7), the coding
region of the weakly expressed embryonic gene BHO (segment
9), the region between the BhO and Bhl embryonic genes
(segment 10), the region 5’ of BH2 (segment 12; an unex-
pressed gene homologous to the embryonic globin genes) (9),
the intergenic region upstream of B-major (segment 14), the
B-major coding region (segment 17), and the region just 3’ to
B-major between B-major and B-minor (segment 18) (Fig. 3B).

This extended survey of CpG methylation across the murine
B-globin locus reveals a domain pattern of methylation, with
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developmental variation. Primitive red cells exhibit a strikingly
different methylation pattern than definitive red cells, while
there are minimal differences between definitive cells from
fetal liver and bone marrow (Fig. 3B). In primitive red cells,
which predominantly express €y and Bhl (Bh0, B-major, and
B-minor are expressed at lower levels), not only the promoters
but also the intragenic and surrounding intergenic regions of
the embryonic globins are hypomethylated (segments 7, 9, 10,
and 12). Sequences flanking and within the embryonic globins,
gy and Bhl, are all hypermethylated in definitive erythroblasts.
In contrast, the intergenic regions surrounding B-major are
moderately methylated or hypermethylated in all primary ery-
throid cells (segments 14 and 18). In definitive cells, the gene
body of B-major is variably methylated, with the region near
the 5’ end of the gene moderately methylated or hypermethy-
lated (segment 16) and the region near the 3" end hypomethy-
lated (segment 17).

Repetitive elements in the hypomethylated domain are also
hypomethylated. These results clearly delineate a previously
unreported DNA methylation pattern: a large domain (~20
kb) in which CpG dinucleotides in nonrepetitive sequences are
hypomethylated in a developmentally regulated pattern. To
further probe this novel hypomethylated domain, we analyzed
the methylation status of repetitive elements around the em-
bryonic genes using a PCR primer within the repetitive ele-
ment and a primer in the unique sequence flanking the ele-
ment. In embryonic erythroblasts, a LINE element between gy
and Bhl (segment 8) is hypomethylated in primitive erythro-
blasts (16%) but hypermethylated in definitive erythroblasts
(75%); a similar pattern is seen in a LINE element upstream of
gy (segment 5). However, a similar LINE element between 3hl
and B-major (segment 13) (Fig. 2B) is hypermethylated in both
primitive (76%) and definitive (90%) erythroblasts and ap-
pears to form the 3’ boundary of this hypomethylated domain
in primitive erythroblasts.

The LCR is not part of the hypomethylated domain. The
locus control region (LCR) is a group of transcriptional en-
hancers that together form an important regulatory element in
the B-globin locus; it lies upstream of the embryonic hypo-
methylated region delineated by these studies. In order to deter-
mine whether the LCR is hypomethylated and to define the 5’
boundary of the hypomethylated region, we assessed the meth-
ylation status in primitive and definitive cells of hypersensitive
site 2 (HS2) of the LCR as well as repetitive and unique
elements around HS1, -2, and -3. HS2 was hypomethylated or
moderately methylated in all samples (segment 3). Repetitive
elements within the LCR were hypermethylated in both prim-
itive and definitive erythroblasts (segments 2 and 4), and the
unique segment 1, which is within the LCR but not a hyper-
sensitive site, was hypermethylated in all samples. This result
indicates that the LCR is not part of the embryonic hypo-
methylated domain and contains the 5’ boundary of this do-
main at or around HS1 of the LCR.
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FIG. 4. Nongenic transcription within the hypomethylated domain.
The map shows the sites of primers used to assay by RT-PCR. Num-
bered sites are at regions noted in Fig. 3B. G is a lane with genomic
DNA; the + or — RT lanes denote whether reverse transcriptase was
in the reaction mixture to produce cDNA and control for contamina-
tion with genomic DNA.

Nongenic transcription within the hypomethylated domain.
It has been shown that hypomethylation of repetitive elements
is associated with their transcriptional activation (11, 12). This
raises the possibility that the repetitive elements in the prim-
itive cell hypomethylated domain are transcribed. RT-PCR of
unfractionated RNA was utilized to investigate this possibility
(Fig. 4). The LINE 1 element that is just downstream of gy (site
8) is clearly transcribed in the region known to be hypomethy-
lated but a short Sine element is not, and the LINE 1 element
that is hypermethylated and appears to be the boundary of the
region of the hypomethylated domain is not transcribed in
primitive cells. The same sites were assayed in definitive cells
from bone marrow, but no evidence for nongenic transcription
was seen (data not shown).

DISCUSSION

We find that hypomethylation of CpGs defines a large do-
main within the multigenic B-globin locus that encompasses
the embryonic genes in primitive erythroid cells. Outside of
this domain, CpG hypomethylation is consistently found only
at the promoter of the B-major gene in primitive or definitive
erythroid cells and in HS2 and possibly other hypersensitive
sites of the LCR. Remarkably, the hypomethylated domain
includes repetitive elements that are members of families
present in thousands of copies dispersed throughout the ge-
nome; these retroelements have been generally assumed to be
hypermethylated in all genomic contexts in normal primary
cells.

Transcription alone is not sufficient to determine hypo-

FIG. 3. Methylation status of CpGs surveyed in primary erythroid cells. (A) Top: isolation method and erythroid purity of samples. Bottom:
representative FACScan for Ter-119 expression on Ter-119-sorted cells. (B) Organization of data similar to that in Fig. 2. Assayed segments are
numbered for reference in the text. Sites marked with a # are Line elements, and the site with a A is a Sine element. The asterisks denote
polymorphic CpGs, and unboxed sites in the column did not have that CpG.
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methylation of the promoter or transcribed region. Although
transcription of B-major and B-minor is a minority of total
B-like globin transcription in primitive cells, they generate
roughly 5% of the total 3-like globin transcription and, there-
fore, they clearly are transcribed genes in primitive cells. De-
spite this transcription, the B-minor promoter is hypermeth-
ylated in primitive cells and the gene body of B-major is
hypermethylated in primitive cells. In definitive cells, where
B-major and B-minor are among the most highly transcribed
genes, both the B-minor promoter and the 3-major gene body
have intermediate levels of methylation. In association with the
hypomethylation of extragenic elements in the primitive cells,
the intermediate to high levels of methylation of the 8-minor
promoters and B-major transcribed regions suggest that the
hypomethylation of CpGs in the embryonic domain is part of
the overall transcriptional regulation of the embryonic genes,
rather than the result of transcription. These results support
the possibility that CpG methylation plays a role in develop-
mental globin switching.

The methylation status of the LCR has not been previously
assayed in any system. Our limited analysis indicates that at
least HS2 and possibly other HSs are hypomethylated in either
primitive or definitive cells, but the regions between the hy-
persensitive sites, whether unique sequences or repetitive ele-
ments, are hypermethylated in both primitive and definitive
cells. Clearly, the LCR is not part of the hypomethylated do-
main around the embryonic region in primitive cells, and if it
plays a role in establishing that hypomethylated domain, it is
not simply as a source from which hypomethylation can spread
into the rest of the locus.

The role of CpG methylation in normal processes of devel-
opmental gene regulation remains in doubt. There is no ques-
tion that hypermethylation is associated with the silent tran-
scriptional state; the molecular basis for this was demonstrated
when CpG methylation was shown to recruit histone deacety-
lase activity (13, 24). Experimental reduction of methylation is
associated with transcriptional activation of retroelements (8,
11, 12), demonstrating that one role of methylation is to sup-
press their transcription. In cancer cells, CpG islands may
become hypermethylated, but this most likely represents a
pathological extension to cellular genes of the mechanisms that
repress retrotransposons. There is, however, some evidence
that CpG methylation is part of the normal regulatory appa-
ratus of the maspin gene, which contains a CpG island (4, 7),
and the interleukin-4 gene, which does not have a CpG island
(10). Our findings suggest that CpG methylation participates in
the regulation of an entire domain containing multiple genes
and repeat elements, even in the absence of CpG islands any-
where in the multigenic B-globin locus.

We observed hypomethylation of retrotransposon elements
in the embryonic domain of the B-like globin locus. Retro-
transposons are genomic parasites that typically remain meth-
ylated in somatic cells; this state is maintained even when the
retrotransposon is part of a transcribed region (D. I. K. Martin,
unpublished data). It has been proposed that the primary role
of CpG methylation is to suppress the activity of retroelements
(35) that can create both genetic and epigenetic instabilities
when active. It is thus remarkable that multiple retrotrans-
posons are hypomethylated as part of the embryonic B-like
globin domain; the developmentally regulated demethylation

MoL. CELL. BIOL.

of these elements suggests that they have been functionally
incorporated into the domain and is further evidence that CpG
methylation is part of the regulatory apparatus in this do-
main. Our data (Fig. 4) show that there is some intergenic
RNA generated that includes a hypomethylated LINE 1
element. This RNA is generated only in primitive cells and
is not seen in definitive cells, associating the production of
this RNA with hypomethylation but not establishing a causal
relationship between hypomethylation and transcription of
this element.

The repetitive elements analyzed in and around the hypo-
methylated domain are highly similar in sequence to other mem-
bers of their respective families, members that are highly meth-
ylated when found elsewhere in the genome. This point is
illustrated by the LINE elements in segments 4 and 5 that sit
on either side of the 5’ boundary of the hypomethylated do-
main in primitive cells. These elements are extremely similar:
both are members of the L1_Mm family, contain the same part
of that element (ORF2), are roughly the same length (1,643 or
1,786 bases), and are 92% or 93% identical to the family
consensus and 92% identical to each other over 1 kb. Yet, one
is methylated and the other is not. This finding indicates that
the sequence structure of the repetitive elements that are hypo-
methylated in the primitive domain is unlikely to explain their
unusual epigenetic state.

Several studies have examined the relationship between his-
tone modifications and gene expression in the murine B-like
globin locus in primitive and definitive red cells (1, 6, 15). The
results of these studies are similar to those we report here, if
CpG hypomethylation is equated with those histone modifica-
tions associated with active transcription. The region of the
B-like globin locus spanning the embryonic genes €y and BH1
to just downstream of the unexpressed BH3 pseudogene is
enriched in acetylated histone H3 and in H4 and H3 methyl-
ated at lysine 4 in primitive cells (15). The same region is
depleted of such modifications in definitive red cells (1); this is
similar to the domain of DNA hypomethylation we observed
proximal to the embryonic genes in primitive cells. As with
DNA hypomethylation, there is no broad region of expression-
associated histone modifications around the fetal/adult genes
in definitive cell precursors. The promoters, coding regions,
and regions very close to B-major and B-minor are enriched in
acetylated H3 and methylated H3 at lysine 4 in both primitive
and definitive cells, but most of the region between these two
genes is not enriched for these epigenetic markers of active
genes (1, 6, 15).

It has been difficult to determine if a given chromatin mod-
ification directly (mechanistically) affects transcription or, al-
ternatively, if the modified chromatin structure is a conse-
quence of other changes. Our studies have the same limitation.
While it is possible that the process of transcription causes
changes in chromatin structure, transcription itself neither re-
sults in nor requires hypomethylation (although transcription
initiation is inhibited by CpG methylation and associated mod-
ifications). Active transcription of coding regions and down-
stream sequences may create or help to maintain the acetyla-
tion state of local histones, but the large DNA hypomethylated
domain in primitive erythrocytes extends well beyond the
genes and so cannot be attributed to transcription of the genes
themselves.
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FIG. 5. Model of interaction of methyl binding domain complexes
around embryonic genes. Top, in primitive cells the lack of methylation
across the domain blocks recruitment of MBD complexes. Bottom,
methylation of the domain in definitive cells permits recruitment of
MBD complexes, which contribute to gene silencing of the embryonic
genes. Expressed genes are shown as hatched ovals.

Most studies of mammalian DNA methylation have focused
on CpG island genes, which in comparison to the rest of the
genome have a high density of CpG dinucleotides. The mam-
malian B-like globin loci do not contain any CpG islands. The
influence of low-density CpG methylation on transcription re-
mains uncertain, but it is clear that transcription of at least
some non-CpG island genes is influenced by DNA methyl-
ation. The interleukin-4 gene, which like the B-globin locus has
a low density of CpG dinucleotides, is regulated at least in part
by the MBD2 methyl-DNA binding protein (10). MeCP2 will
bind to a single methylated CpG in vitro (18, 23), providing a
mechanistic basis for the view that even isolated CpGs can
affect epigenetic regulation through recruitment of methyl-
cytosine binding proteins, which can themselves recruit other
proteins, like histone deacetylases. In addition, repetitive ele-
ments, which clearly are suppressed by methylation, do not
usually contain CpG islands. We suggest that a limited num-
ber of methylated CpGs over a broad region could recruit
methyl-C binding proteins and thereby participate in the
silencing of the embryonic genes in definitive cells, as dia-
grammed in Fig. 5.

It has been proposed that the transition from fractional to
global genome methylation occurred close to or at the origin of
the vertebrate subphylum (31). Given this, it is interesting to
speculate that the hypomethylated domain observed over the
embryonic globins described within predates the origin of ver-
tebrates. This idea is supported by the concept that primitive
red cells are the original lineage of red cells and have been
supplanted by definitive red cells: cells of the primitive type
are nowhere observed in adult vertebrates, but we speculate
that they were used exclusively by some progenitor of this
subphylum.
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