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The human T-cell lymphotropic virus type 1 (HTLV-1) infects and transforms CD4� lymphocytes and causes
adult T-cell leukemia/lymphoma (ATLL), an aggressive lymphoproliferative disease that is often fatal. Here, we
demonstrate that the HTLV-1 pX splice-variant p30II markedly enhances the transforming potential of Myc
and transcriptionally activates the human cyclin D2 promoter, dependent upon its conserved Myc-responsive
E-box enhancer elements, which are associated with increased S-phase entry and multinucleation. Enhance-
ment of c-Myc transforming activity by HTLV-1 p30II is dependent upon the transcriptional coactivators,
transforming transcriptional activator protein/p434 and TIP60, and it requires TIP60 histone acetyltrans-
ferase (HAT) activity and correlates with the stabilization of HTLV-1 p30II/Myc-TIP60 chromatin-remodeling
complexes. The p30II oncoprotein colocalizes and coimmunoprecipitates with Myc-TIP60 complexes in cul-
tured HTLV-1-infected ATLL patient lymphocytes. Amino acid residues 99 to 154 within HTLV-1 p30II interact
with the TIP60 HAT, and p30II transcriptionally activates numerous cellular genes in a TIP60-dependent or
TIP60-independent manner, as determined by microarray gene expression analyses. Importantly, these results
suggest that p30II functions as a novel retroviral modulator of Myc-TIP60-transforming interactions that may
contribute to adult T-cell leukemogenesis.

The human T-cell lymphotropic virus type-1 (HTLV-1) in-
fects CD4� T cells and causes adult T-cell leukemia/lymphoma
(ATLL), an aggressive lymphoproliferative disease that is of-
ten fatal (59, 61, 65, 83). HTLV-1-infected leukemic lympho-
cytes exhibit deregulated cell cycle progression and character-
istic multinucleation or polyploidy (evidenced by the
appearance of flower-shaped or lobulated nuclei). A conserved
sequence, known as pX, located within the 3� terminus of the
HTLV-1 genome, encodes at least five nonstructural regula-
tory factors, including the viral transactivator Tax and an al-
ternative splice-variant, p30II (or Tax open reading frame II

[ORF II], Tof), which was shown to possess a functional trans-
activation domain (6, 13, 15, 29, 34, 35, 66, 86, 87). The pX
sequence is generally retained in the majority of ATLL patient
isolates, even those containing partially deleted proviruses (33,
68), indicative of its importance for pathogenesis.

The viral Tax protein transcriptionally activates numerous
lymphoproliferative pathways (NF-�B, CREB/ATF, and
p67SRF) (29, 72, 73, 74, 75, 80, 84, 88) and has been shown to
inhibit transcription functions associated with the tumor sup-
pressor p53, which likely contributes to a loss of G1/S-phase
checkpoint control in HTLV-1-infected T cells (8, 46, 58).
Many of the pleiotropic effects of Tax upon cellular signaling
may derive from its aberrant recruitment of the transcriptional
coactivators, p300/CREB-binding protein (p300/CBP) and
p300/CBP-associated factor (P/CAF) (9, 22, 23, 27, 36, 37, 49,
50, 77, 78). Further, Tax interacts with cell cycle modulators,
including D-type cylin-cdk4/6 complexes, retinoblastoma (Rb)
protein, and the human mitotic arrest deficiency type 1
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(hMAD-1) protein (21, 28, 31, 32, 39, 47, 52, 76). Although
HTLV-1 Tax expression markedly promotes G1/S transition
(38, 40, 64), Tax has been demonstrated to inhibit Myc-depen-
dent transactivation and prevent Myc-associated anchorage-
independent cell growth (67). As ATLL patient-derived lym-
phocytes and tumors from HTLV-1 pX transgenic mice are
known to possess deregulated Myc functions, these findings
collectively suggest that other pX-encoded factors may influ-
ence Myc to promote cellular transformation by HTLV-1 (20,
43, 63).

The Myc transcription factor promotes S-phase cell cycle
entry, induces apoptosis or programmed cell death, and causes
neoplastic cellular transformation (2, 3, 7, 12, 19, 41, 51). The
expression of the Myc protooncogene is deregulated in many
solid tumors and hematological malignancies, including ATLL,
diffuse large-cell lymphomas, CD30� anaplastic large-cell lym-
phomas, and Burkitt’s B-cell lymphomas (18, 24, 26, 43, 55,
60). The transforming viruses, HTLV-1 and Epstein Barr virus,
deregulate Myc functions associated with development of
ATLL and Burkitt’s lymphomas, respectively (11, 18, 26, 43,
63, 67). Our preliminary studies indicated that the HTLV-1
accessory protein p30II markedly increases S-phase cell cycle
progression and induces significant polyploidy. As relatively
little is known with respect to the roles of pX-encoded factors
(e.g., p30II, p13II, p12I, and Rexp27) in HTLV-1-associated
pathogenesis (6, 29, 34, 35), we sought to characterize the
molecular mechanism by which p30II promotes Myc-depen-
dent S-phase progression and multinucleation. While others
have proposed that p30II’s transcriptional functions are tar-
geted against the viral LTR to repress HTLV-1 gene expres-
sion (1, 86, 87), the physiological role of p30II in ATLL-devel-
opment remains unclear. Using microarray analyses, we now
demonstrate that numerous cellular genes are transcriptionally
activated by HTLV-1 p30II in a 60-kDa Tat-interacting protein
(TIP60)-dependent or TIP60-independent manner. Nicot et al.
(48) and Younis et al. (85) have shown that p30II binds and
inhibits nuclear export of the doubly spliced Tax/Rex HTLV-1
mRNA, and it is intriguing that p30II might perform diverse
functions to regulate viral gene expression and promote al-
tered cellular growth, as has been noted for Tax, which drives
LTR transactivation and deregulates host lymphoproliferative-
signaling pathways (13, 21, 28, 29, 38, 40, 47, 52, 64, 72–76, 84).
Robek et al. (62) have previously demonstrated that p30II is
dispensable for immortalization and transformation of human
peripheral blood mononuclear cells by an infectious HTLV-1
molecular clone, ACH.p30II, which is defective for p30II pro-
duction; however, the ACH.p30II mutant exhibited an approx-
imately 20 to 50% reduction in transformation efficiency com-
pared to the wild-type ACH.wt (62), suggesting that p30II is
required for the full transforming potential of HTLV-1. Im-
portantly, our findings indicate that HTLV-1 p30II is a novel
retroviral modulator of Myc transcriptional and of transform-
ing activities that may significantly contribute to adult T-cell
leukemogenesis through stabilization of Myc-TIP60 transcrip-
tional interactions.

MATERIALS AND METHODS

Plasmids, transfections, and cell culture. HeLa cells (ATCC CCL-2) were
grown in Dulbecco’s modified Eagle’s medium (DMEM; ATCC) supplemented
with 10% fetal bovine serum (FBS; Atlanta Biologicals), 100 U/ml penicillin, and

100 �g/ml streptomycin sulfate (Invitrogen-Life Technologies) and cultured at
37°C and 5% CO2. 293A fibroblasts (Quantum Biotechnology) were cultured in
ATCC 46-X medium supplemented with sodium bicarbonate (Invitrogen-Life
Technologies), 10% FBS, and 100 U/ml penicillin and 100 �g/ml streptomycin
sulfate. Molt-4 (ATCC CRL-1582), Jurkat E6.1 (ATCC TIB-152) and HTLV-
1-infected MJ[G11] (ATCC CRL-8294) and HuT-102 lymphocytes (ATCC TIB-
162) were grown in RPMI medium (ATCC) supplemented with 20% FBS, 100
U/ml penicillin, 100 �g/ml streptomycin sulfate, and 20 �g/ml gentamicin sulfate
(Sigma Chemical Corp.) and cultured at 10% CO2. Primary HTLV-1-infected
lymphocytes were obtained after informed consent from three ATLL patients
(ATL-1, ATL-2, ATL-3) and were cultured in RPMI medium supplemented with
20% FBS, 50 U/ml hIL-2 (Invitrogen-Life Technologies), 100 U/ml penicillin,
100 �g/ml streptomycin sulfate, and 20 �g/ml gentamicin sulfate. The cytomeg-
alovirus (CMV)-HTLV-1 p30II (hemagglutinin [HA]) expression construct was
kindly provided by G. Franchini (NCI, NIH) and has been reported by Koralnik
et al. (34). pSG5-HTLV-1 p13II (10), which expresses a protein corresponding to
amino acid residues 155 to 241 of HTLV-1 p30II, was provided by V. Ciminale
(University of Padua, Italy) and CMV-HTLV-1 p13II (HA) was provided by C.
Nicot (University of Kansas). In order to generate the human cyclin D2 promot-
er-luciferase reporter construct, sequences encompassing the human cyclin D2
promoter were located in the clone with GenBank accession number U47284;
according to these sequences, a PCR product that contains 1,622 nucleotides
upstream of the ATG start codon was generated. Two closely spaced E-boxes
(5�-CACGTG) are localized within the promoter region which binds Myc/Max/
Mad network components (7). This fragment was cloned into the pGL3-lucif-
erase vector. Both E-box sequences were mutated to 5�-CTCGAG using the
quick change method. The M4-tk-luciferase (M4-tk-luc) reporter plasmid was
reported by Bouchard et al. (7) and Vervoorts et al. (79). The C�F-FLAG-Myc,
C�F-FLAG-TRRAP1261-1579, C�S-TRRAPantisense, and C�S constructs were de-
scribed by McMahon et al. (41). The pOZ-wildtype-TIP60 and pOZ-TIP60�HAT

expression constructs were reported by Ikura et al. (25), and the CMV-
TIP60L497A expression plasmid was reported by Gaughan et al. (17). All trans-
fections were performed using Lipofectamine (Invitrogen-Life Technologies) or
Superfect (QIAGEN) reagents as recommended by the manufacturers.

Cell cycle and fluorescence-activated cell sorter (FACS) analyses. Molt4 and
Jurkat E6.1 lymphocytes were seeded in 100 mm2 tissue culture dishes and
transfected with CMV-HTLV-1 p30II (HA) or an empty C�S vector. After 48 h,
cultures were split and either labeled for 4 h by adding BrdU (BD-Pharmingen)
to the medium or immediately stained using annexin V-(fluorescein isothiocya-
nate [FITC])/propidium iodide (BD-Pharmingen). For cell cycle analyses, trans-
fected BrdU-labeled cells were permeabilized and stained with a FITC-conju-
gated anti-BrdU antibody, and total genomic DNA was stained using 7-AAD
(BD-Pharmingen). Flow cytometry was performed and data were analyzed using
ModFit LT 3.0 software.

Focus formation/transformation assays. Immortalized Werner’s Syndrome
(WRN�/�) fibroblasts (45) were seeded at 6 � 105 cells in 60 mm2 tissue-culture
dishes in DMEM supplemented with 10% FBS and cultured at 37°C under 5%
CO2. Cells were transfected with an empty C�S vector, CMV-HTLV-1 p30II

(HA), C�F-FLAG-Myc, and combinations of CMV-HTLV-1 p30II (HA)/C�F-
FLAG-Myc or C�S/C�F-FLAG-Myc using Superfect reagent. Foci were ob-
served within 2 weeks and quantified by direct counting. Expression of HTLV-1
p30II (HA) was detected by fixing plates with 0.2% glutaraldehyde-1% formal-
dehyde in PBS and immunostaining using a monoclonal antibody against the HA
epitope tag (CA5; Roche Molecular Biochemicals), diluted 1:1,000 in BLOTTO
buffer (50 mM Tris-HCl [pH 8.0], 2 mM CaCl2, 80 mM NaCl, 0.2% [vol/vol]
NP-40, 0.02% [wt/vol] sodium azide, and 5% [wt/vol] nonfat dry milk). HTLV-1
p30II (HA) was visualized by immunofluorescence microscopy. p30II-expressing
fibroblast colonies were isolated and expanded in six-well tissue culture plates in
DMEM supplemented with 10% FBS, 100 U penicillin, and 100 �g/ml strepto-
mycin sulfate.

Immunoprecipitations and chromatin immunoprecipitation assays (ChIPs).
Myc-interacting complexes were immunoprecipitated from transfected Jurkat
E6.1 or HTLV-1-infected MJ[G11] and HuT-102 lymphocytes expressing
HTLV-1 p30II (HA) using a monoclonal anti-HA tag antibody. Immunoprecipi-
tation of endogenous p30II from cultured HTLV-1-infected ATLL patient-de-
rived lymphocytes was performed using a rabbit polyclonal antibody against the
COOH terminus of p30II (anti-HTLV-1 p30II antibody was generously provided
by G. Franchini, NCI, NIH [34]). Briefly, 3 � 106 cells were harvested by
centrifugation and lysed in RIPA buffer (1� PBS, 1% [vol/vol] IGEPAL CA-630,
0.5% sodium deoxycholate, and 0.1% sodium dodecyl sulfate [SDS]) containing
the protease inhibitors bestatin, pepstatin, antipain dihydrochloride, chymosta-
tin, and leupeptin (50 ng/ml each; Roche Molecular Biochemicals) followed by
passage through a 27.5-gauge tuberculin syringe. Immunoprecipitations were
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carried out by incubating precleared extracts with primary antibodies. Ten mi-
croliters of recombinant protein G-agarose (Invitrogen-Life Technologies) was
added, and reactions were incubated with agitation at 4°C overnight. Matrices
were pelleted by centrifugation at 6,500 rpm for 5 min and washed twice with
RIPA buffer. Samples were resuspended in 40 �l 2� SDS-polyacrylamide gel
electrophoresis loading buffer, and bound proteins were resolved by electro-
phoresis through 4 to 15% gradient or 12.5% Tris-glycine SDS-polyacrylamide
gels. Chromatin-immunoprecipitations were performed using a kit from Upstate
Biotechnology. Nucleoprotein complexes were cross-linked in vivo by adding 270
�l formaldehyde to approximately 3 � 106 Molt-4 or HTLV-1-infected MJ[G11]
and HuT-102 lymphocytes in 100 mm2 tissue-culture dishes for 10 min. Cells
were pelleted by centrifugation and resuspended in 200 �l SDS lysis buffer.
Chromatin DNA was fragmented by sonication, and oligonucleosomal-protein
complexes were immunoprecipitated using primary antibodies and 60 �l salmon
sperm DNA/protein A agarose. Precipitated oligonucleosomal-protein com-
plexes were washed, cross-links were reversed, and bound DNA fragments were
amplified by PCR using specific oligonucleotide primer pairs that flank con-
served E-box elements within the human cyclin D2 gene promoter (PRM, 5�-C
CCCTTCCTCCTGGAGTGAAATAC-3� and 5�-CGTGCTCTAACGCATCCT
TGAGTC-3�) or anneal within an untranslated region (UTR, 5�-ATCAGACC
CTATTCTCGGCTCAGG-3� and 5�-CAGTCAGTAAGGCACTTTATTTCCC
C-3�), as described by Vervoorts et al. (79). PCR products were electrophoresed
through a 2% Tris-acetate-EDTA agarose gel and visualized by ethidium bro-
mide staining.

RESULTS

HTLV-1 p30II increases S-phase progression and promotes
polyploidy. The conserved pX domain of HTLV-1 encodes at
least five nonstructural regulatory factors, including the viral
transactivator Tax and an alternative splice variant, p30II (Fig.
1A). The HTLV-1 p30II protein is comprised of 241 amino acid
residues and contains Arg- and Ser/Thr-rich domains (1, 34,
35). RasMol structural prediction analyses (Brookhaven pro-
tein databank) indicate that p30II possesses 4 alpha-helices and
19 beta-sheet regions (Fig. 1B). The alpha-helices likely serve
as interacting or docking sites for cellular factors, whereas the
Ser/Thr-rich domains may provide targets for phosphorylation
by kinases that modulate p30II’s functions or interactions. As
relatively little is known with respect to the functions of
HTLV-1 pX accessory factors, such as p30II, we investigated
whether the p30II protein contributes to lymphoproliferation
in HTLV-1-infected T cells by altering cell cycle regulation. To
determine whether HTLV-1 p30II influences cell cycle progres-
sion and/or apoptosis, Molt-4 and Jurkat E6.1 lymphocytes
were transfected with a CMV-HTLV-1 p30II (HA) expression
construct or an empty C�S vector control, and transfected
cultures were assayed for bromodeoxyuridine (BrdU)-incorpo-
ration/cell cycle progression or programmed cell death using
flow cytometric analyses (Fig. 1C and D and data not shown).
HTLV-1 p30II-expressing cells exhibit markedly increased S-
phase progression and significant polyploidy as determined by
BrdU incorporation and 7-AAD staining of total genomic
DNA (Fig. 1C and D, top left panels). However, p30II did not
induce apoptosis in transfected cells, as determined by annexin
V-FITC/propidium iodide-staining and FACS (Fig. 1C and D,
top right panels). These results suggest that p30II may contrib-
ute to lymphoproliferation and genomic instability in HTLV-
1-infected cells during ATLL by affecting S-phase regulatory
factors, such as Myc and/or E2F (2, 29, 43).

The HTLV-1 p30II protein interacts in Myc-TIP60 immune
complexes in ATLL patient lymphocytes. The p30II protein
was detected in cultured HTLV-1-infected lymphocytes, de-
rived from three different ATLL patients (ATL-1, ATL-2,

ATL-3) diagnosed with clinical acute-stage leukemias, by im-
munofluorescence laser confocal microscopy and immunoblot-
ting (Fig. 2A and B). Three-dimensional Z-stack composite
images for ATL-3 demonstrate that p30II/Myc proteins colo-
calize in the nucleus in all focal planes in HTLV-1-infected
cells (Fig. 2A, right panels). Relative fluorescence intensities
for p30II/Myc-specific signals and DAPI (4�,6�-diamidino-2-
phenylindole) nuclear staining are shown for reference (Fig.
2A, right panels). HTLV-1 p30II is present in Myc-containing
immunoprecipitated complexes in ATLL patient lymphocytes
(Fig. 2B). Intriguingly, immunoprecipitation of Myc revealed
that TIP49 (RUVBL1), TIP48 (RUVBL2) (81), and Max are
present and are bound to Myc, but the TIP60 histone acetyl-
transferase (HAT) was not detected in Myc-containing coim-
mune complexes in uninfected Jurkat E6.1 lymphocytes (Fig.
2B). The NH2 terminus of Myc is essential for Myc-dependent
transformation and apoptosis-inducing functions and contains
two conserved Myc homology domains (Myc box I [MBI] and
MBII, respectively) that interact with cellular factors (2, 3, 7,
41, 42, 51, 81). The transcriptional coactivator, TRRAP/p434,
and the ATPases/helicases, TIP49 (RUVBL1) and TIP48
(RUVBL2), interact with amino acids within MBII (41, 81). To
determine if HTLV-1 p30II interacts with known Myc-binding
partners, we transfected Jurkat E6.1 lymphocytes or HTLV-1-
infected Hut-102 and MJ[G11] lymphocytes with CMV-
HTLV-1 p30II (HA) or an empty C�S vector control and
performed coimmunoprecipitations using a monoclonal an-
ti-HA antibody (CA5; Roche Molecular Diagnostics). As
shown in Fig. 2C, HTLV-1 p30II (HA) coimmunoprecipitates
with Myc, TRRAP, TIP60, and TIP49 (RUVBL1). However,
TIP48 (RUVBL2) and RNA polymerase II were not detected
in anti-HA immunoprecipitates, although both proteins were
detected in control immunoprecipitations using antibodies
against known interacting proteins (Fig. 2C). To further con-
firm these interactions, we reimmunoprecipitated HTLV-1
p30II (HA) from extracts prepared from transfected Jurkat T
cells using antibodies against Myc, TRRAP, TIP60, TIP48, and
TIP49 (Fig. 2C, lower panels). A nonspecific antibody (rabbit
preimmune serum) was included as a negative control. Inter-
estingly, the ATPase/helicase, TIP48, was detected in p30II-
complexes immunoprecipitated with an anti-TIP48 (RUVBL2)
polyclonal antibody (Fig. 2C, lower panels) (81). These data
suggest that HTLV-1 p30II may modulate Myc functions
through interactions with Myc-associated transcriptional coac-
tivators on promoters of responsive genes (14).

HTLV-1 p30II transactivates Myc-responsive E-box ele-
ments within the human cyclin D2 promoter. To investigate
the possibility that HTLV-1 p30II might affect Myc-dependent
transcription, we next cotransfected HeLa cells with a human
cyclin D2 promoter-luciferase reporter construct, containing
two conserved Myc-responsive E-box enhancer elements
(CACGTG), in the presence of increasing amounts of CMV-
HTLV-1 p30II (HA). Results in Fig. 3A demonstrate that
HTLV-1 p30II significantly transactivates the human cyclin D2
promoter. A mutant cyclin D2 promoter, lacking Myc-respon-
sive E-box elements (79), was not transcriptionally activated
by p30II, indicating that p30II-mediated transactivation from
the human cyclin D2 promoter requires the conserved Myc-
responsive E-box enhancer elements (Fig. 3A and B). The
HTLV-1 p30II (HA)-tagged protein was detected in trans-
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fected cells by immunoblotting using a monoclonal anti-HA
antibody (CA5; Roche Molecular Biochemicals) (Fig. 3A).
Intracellular levels of Myc were not altered by HTLV-1
p30II expression (Fig. 3A, lower panels). HTLV-1 p30II also
transcriptionally activates the human cyclin D2 promoter in
transfected 293A fibroblasts in a dose-dependent manner
(Fig. 3C). To confirm that HTLV-1 p30II promotes Myc-
dependent transcription from E-box enhancer elements, we
cotransfected 293A fibroblasts and HeLa cells with a syn-
thetic tk minimal promoter-luciferase reporter construct

(M4-tk-luc) that contains four tandem E-boxes (79). As
shown in Fig. 3D, HTLV-1 p30II transactivates E-box en-
hancer elements within M4-tk-luc, suggesting that p30II pro-
motes S-phase progression through Myc-dependent tran-
scriptional interactions. Interestingly, we observed that
p30II, at the lowest concentration used, induced approxi-
mately 13-fold transactivation from the synthetic M4-tk-luc
promoter, whereas higher concentrations induced lower (5-
to 7-fold) levels of transcriptional activation (Fig. 3D).
These observations are consistent with findings by Zhang et

FIG. 1. HTLV-1 p30II increases S-phase cell cycle progression and promotes polyploidy. (A) Diagram of the HTLV-1 proviral genome and its
translation products. The pX domain is indicated, and the viral transcription factors Tax and p30II are in boldface type (29). (B) A RasMol
structural prediction of the HTLV-1 p30II protein is shown; subdomains (4 alpha-helices; 19 beta-sheets) are represented by different colors and
Connelly/Richards (1.2-Å) radii are indicated in white. (C) Molt-4 lymphocytes were transfected with an empty C�S vector control (3.0 �g), and
S-phase cells were labeled by BrdU incorporation (y axis, upper left). Total DNA content was determined by staining with 7-AAD (x axis, upper
left). Flow cytometry was performed, and relative percentages of cells in various stages of the cell cycle were quantified using ModFit LT 3.0
(aneuploid analysis) software (lower panels). (D) Molt-4 lymphocytes were transfected with CMV-HTLV-1 p30II (HA) (3.0 �g), percentages of
S-phase cells were determined by BrdU-labeling/7-AAD-staining, and cell cycle analyses were performed as described for panel C. Half of each
transfected culture was analyzed by staining with annexin V-(FITC)/propidium iodide, and percentages of apoptotic cells were quantified by FACS
(panels C and D, upper right). Dip, diploid; An, aneuploid.

VOL. 25, 2005 AN HTLV-1 ENHANCER OF Myc-TRANSFORMING POTENTIAL 6181



al. (87) demonstrating that p30II-dependent transactivation
from the HTLV-1 promoter (Tax-responsive elements) oc-
curs maximally at low p30II concentrations and diminishes
with increased p30II expression (87).

Transcriptional activation by HTLV-1 p30II is dependent
upon the TIP60 and TRRAP/p434 coactivators. Frank et al.
reported that Myc interacts with the transcriptional coactiva-

tor/HAT, TIP60 (16), and Patel et al. have recently shown that
c-Myc is a substrate for lysine acetylation by TIP60 and
hGCN5 (56). Myc has also previously been demonstrated to
interact in chromatin-remodeling complexes with the ATM-
related TRRAP/p434 protein (41, 42, 51). Therefore, we tested
whether HTLV-1 p30II-mediated transactivation requires
TIP60 and TRRAP/p434 functions. HeLa cells were cotrans-

FIG. 2. HTLV-1 p30II interacts with Myc-TIP60 complexes in cultured ATLL patient-derived lymphocytes. (A) Immunofluorescence laser
confocal microscopy was performed on HTLV-1-infected ATLL patient-derived T cells (ATL-1, ATL-2, and ATL-3) or Jurkat E6.1 lymphocytes
as a negative control, using a rabbit polyclonal anti-HTLV-1 p30II antibody (34) and a monoclonal anti-Myc antibody (Upstate Biotechnology).
HTLV-1 p30II was detected using a FITC-conjugated anti-rabbit secondary antibody (green), and Myc was detected using a Cy5-conjugated
anti-mouse secondary antibody (blue; Jackson ImmunoResearch Laboratories). A three-dimensional Z-stack composite for ATL-3 is shown on the
right. Three rotational views of merged images are shown, demonstrating nuclear colocalization of HTLV-1 p30II (green)/Myc (blue) in all focal
planes. Graphical representations of relative fluorescence intensities for HTLV-1 p30II/Myc-specific signals are shown, and DAPI nuclear staining
is shown for reference. (B) Coimmunoprecipitations were performed using extracts prepared from HTLV-1-infected ATLL patient-derived
lymphocytes and anti-Myc or anti-HTLV-1 p30II antibodies. Interacting proteins were detected by immunoblotting with appropriate primary
antibodies. (C) Jurkat E6.1 or HTLV-1-infected HuT-102 and MJ[G11] lymphocytes were transfected with an empty C�S vector control or
CMV-HTLV-1 p30II (HA) (5.0 �g), and coimmunoprecipitations were performed using a monoclonal anti-HA tag antibody (CA5; Roche
Molecular Biochemicals). HTLV-1 p30II-interacting proteins were detected by immunoblotting. Input levels for immunoprecipitated factors in
Jurkat E6.1, HuT-102, and MJ[G11] extracts are provided. HTLV-1 p30II (HA) expression is also shown. RNA polymerase II and TIP48 were
immunoprecipitated from Jurkat E6.1 whole-cell extracts using antibodies against known binding partners (anti-p300 and anti-Myc). An anti-
HTLV-1 Tax monoclonal antibody (22) was used as a negative control. The HTLV-1 p30II (HA) protein was reimmunoprecipitated from extracts
prepared from Jurkat E6.1 lymphocytes and transfected with either a C�S vector control or CMV-HTLV-1 p30II (HA), using antibodies against
Myc, TIP60, TIP48, TIP49, or nonspecific rabbit preimmune serum (Control). Input levels for actin are shown for comparison. IP, coimmuno-
precipitation.
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fected with a human cyclin D2 promoter-luciferase reporter
construct and CMV-HTLV-1 p30II (HA) in the presence of
increasing amounts of CMV-TIP60, CMV-TIP60�HAT (a
trans-dominant-negative HAT-inactive mutant [25]), or CMV-
TIP60L497A, a COOH-terminal mutant impaired for interac-
tions with cellular factors, including the androgen receptor

(17). Ectopic expression of TIP60 alone did not significantly
transactivate the human cyclin D2 promoter; however, TIP60
overexpression enhanced HTLV-1 p30II-mediated transactiva-
tion in a dose-dependent manner (Fig. 4A). The trans-domi-
nant-negative TIP60�HAT mutant potently inhibited p30II-me-
diated transcriptional activation (Fig. 4A), suggesting that

FIG. 3. HTLV-1 p30II transcriptionally activates Myc-responsive elements within the human cyclin D2 promoter. (A) HeLa cells were
cotransfected with a human cyclin D2 promoter-luciferase reporter plasmid (0.5 �g) (7) and increasing amounts of CMV-HTLV-1 p30II (HA)
(0.008, 0.017, 0.035, 0.07, and 0.15 �g). Cells were lysed by freeze-thawing, and luciferase assays were carried out using equivalent levels of total
cellular proteins. The expression of HTLV-1 p30II (HA), Myc, and actin in transfected cells is shown. (B) HeLa cells were cotransfected as
described for panel A, with a mutant cyclin D2 promoter-luciferase construct lacking conserved Myc-responsive E-box enhancer elements (0.5 �g)
(7) and increasing amounts of CMV-HTLV-1 p30II (HA). (C) 293A fibroblasts were cotransfected as described for panel A, with a human cyclin
D2 promoter-luciferase reporter plasmid and increasing amounts of CMV-HTLV-1 p30II (HA) (0.07, 0.15, 0.25, 0.5, 1.0 �g); luciferase assays were
performed as described above, using equivalent levels of total cellular proteins. HTLV-1 p30II (HA), Myc, and actin proteins were detected by
immunoblotting (lower panels). (D) 293A fibroblasts were cotransfected as described for panel A with a synthetic, E-box-containing minimal tk
promoter-luciferase reporter construct (M4-tk-luc; 0.5 �g) (79) and increasing amounts of CMV-HTLV-1 p30II (HA) (0.07, 0.15, 0.25, 0.5, and 1.0
�g). All luciferase assays were performed in duplicate or triplicate, and results from representative experiments are shown; error bars representing
standard deviations are provided.
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HTLV-1 p30II transactivation requires TIP60-associated HAT
activity (25). The TIP60L497A mutant also weakly enhanced
p30II-mediated transactivation (Fig. 4A). Overexpression of
wild-type TIP60 or the trans-dominant-negative TIP60�HAT

mutant did not alter expression of the HTLV-1 p30II (HA)
protein in transfected HeLa cells (Fig. 4A, lower panels). In-

hibition of TRRAP/p434, as a result of coexpressing either
TRRAPantisense RNA or a trans-dominant-negative TRRAP
mutant, TRRAP1261-1579 (FLAG-epitope-tagged [41]), pre-
vented HTLV-1 p30II-mediated transcriptional activation from
the human cyclin D2 promoter (Fig. 4B). The trans-dominant-
negative, FLAG-tagged TRRAP1261-1579 protein did not alter

FIG. 4. HTLV-1 p30II-mediated transactivation requires the transcriptional coactivators TIP60 and TRRAP. (A) HeLa cells were cotransfected
with a human cyclin D2 promoter-luciferase reporter plasmid (0.5 �g) and CMV-HTLV-1 p30II (HA) (0.15 �g) in the presence of increasing
amounts of CMV-wild-type TIP60, CMV-TIP60�HAT, or CMV-TIP60L497A (1.0 and 3.0 �g) (17, 25). Expression of HTLV-1 p30II (HA) and actin
was detected by immunoblotting (lower panels). (B) HeLa cells were cotransfected as described for panel A with a human cyclin D2 promoter-
luciferase plasmid and CMV-HTLV-1 p30II (HA) in the presence of increasing amounts of C�S-TRRAPantisense or C�F-TRRAP1261-1579 (0.5 and
1.0 �g) (41). Expression of the trans-dominant-negative TRRAP1261-1579-(FLAG) mutant, HTLV-1 p30II (HA), Myc, and actin proteins was
detected by immunoblotting using an anti-FLAG M2 monoclonal antibody (Sigma Chemical Corp.), anti-HA (CA5) or anti-Myc monoclonal
antibodies, or anti-actin goat polyclonal antibody. All luciferase assays were performed in duplicate or triplicate, and results from representative
experiments are shown; error bars representing standard deviations are provided. (C) Overexpression of the (FLAG)-TIP60 (wild-type) and
(FLAG)-TIP60�HAT proteins (25) relative to endogenous TIP60 was visualized by immunofluorescence microscopy using a rabbit polyclonal
anti-TIP60 antibody (top panels) and an anti-FLAG M2 monoclonal antibody (bottom panels). The C�S empty vector was transfected as a negative
control. (D) To confirm the specificity of transcriptional inhibition by TRRAPantisense RNA, 293A fibroblasts were cotransfected with human cyclin
D2 promoter-luciferase and CMV-HTLV-1 p30II (HA) plasmids in the presence of either increasing amounts (0.5 and 1.0 �g) of C�S-
TRRAPantisense (41) or of pSPORT-lacZ, which expresses �-galactosidase mRNA. Relative luciferase activities were determined from duplicate
assays using approximately equivalent levels of total cellular proteins.
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the expression of HTLV-1 p30II (HA) (Fig. 4B, lower panels).
We then performed immunofluorescence microscopy, using a
monoclonal anti-FLAG M2 antibody (Sigma Chemical Corp.)
and a rabbit polyclonal anti-TIP60 antibody (Upstate Biotech-
nology), to visualize expression of the FLAG-tagged wild-type
TIP60 or TIP60�HAT proteins relative to endogenous TIP60
(25). Results shown in Fig. 4C demonstrate that the FLAG-
tagged TIP60 proteins were drastically overexpressed relative
to endogenous TIP60 in transfected cells. To demonstrate the
specificity of transcriptional inhibition due to TRRAPantisense

RNA in panel B, we repeated these experiments using a
pSPORT-lacZ control plasmid which expresses �-galactosi-
dase mRNA. Results shown in Fig. 4D demonstrate that in-
creased �-galactosidase mRNA expression did not influence
HTLV-1 p30II-dependent transactivation from the cyclin D2
promoter, whereas TRRAPantisense inhibited p30II transcrip-
tional activation in a dose-dependent manner. These data col-
lectively indicate that HTLV-1 p30II synergizes with the TIP60
HAT to transactivate Myc-responsive E-box elements within
the human cyclin D2 promoter, requiring the transcriptional
coactivator TRRAP/p434 (7, 25, 41, 79).

HTLV-1 p30II stabilizes Myc/TIP60 chromatin-remodeling
transcription complexes in HTLV-1-infected lymphocytes. As
we have shown that HTLV-1 p30II transcriptionally activates
the conserved Myc-responsive E-box enhancer elements within
the human cyclin D2 promoter (Fig. 3A and C) (7), we sought
to determine whether p30II is present in Myc-containing chro-
matin-remodeling complexes using the ChIP procedure as de-
scribed by Vervoorts et al. (79). Formaldehyde cross-linked
genomic DNA complexes in uninfected Molt-4 lymphocytes or
HTLV-1-infected MJ[G11] and HuT-102 lymphocytes were
fragmented by sonication, and oligonucleosomal-protein com-
plexes were precipitated using antibodies against candidate
Myc-binding factors. Cross-links were reversed, and specific
oligonucleotide DNA primer pairs were used in PCRs to am-
plify immunoprecipitated DNA regions spanning conserved
E-box elements (PRM) or an untranslated sequence (UTR) as
negative control (79). Results in Fig. 5A (top panels) demon-
strate that HTLV-1 p30II was detected only bound to E-box
enhancer elements in HTLV-1-infected lymphocytes. Myc,
TRRAP, TIP49 (RUVBL1), TIP48 (RUVBL2), and the
acetyltransferase hGCN5 (42) were present in chromatin-re-
modeling complexes in uninfected Molt-4 cells and in HTLV-
1-infected MJ[G11] and HuT-102 lymphocytes (Fig. 5A, top
panels). Surprisingly, TIP60 was detected only in Myc-contain-
ing transcription complexes that contained p30II in HTLV-1-
infected T cells (Fig. 5A, top panels), consistent with coimmu-
noprecipitation results and observed effects of ectopic TIP60 in
transactivation assays (see Fig. 2B and 4A). The diminished
recruitment of TIP49 to Myc-containing transcription com-
plexes on the cyclin D2 promoter in HTLV-1-infected
MJ[G11] cells was not attributable to apparent differences in
p30II/Myc/TIP60 interactions (Fig. 5A). Histone H3 acetyla-
tion surrounding the E-box enhancer elements within the hu-
man cyclin D2 promoter, consistent with transcriptional acti-
vation, was detected in all cell types with the exception of H3,
which appeared to be differentially acetylated on Lys-9 and
Lys-14 residues in HTLV-1-infected MJ[G11] and HuT-102
cells, respectively (Fig. 5A, lower panels). Differences in his-
tone H3 acetylation, however, did not correlate with the sta-

bilization of p30II/Myc/TIP60 transcriptional interactions in
HTLV-1-infected T-cell lines.

To identify residues within HTLV-1 p30II that interact with
Myc/TIP60 complexes in vivo, we generated a panel of pGEX
4T.1-glutathione S-transferase (GST)-HTLV-1 p30II con-
structs, expressing full-length GST-HTLV-1 p30II or various
truncation mutants, GST-p30II (residues 1 to 98), GST-p30II

(residues 99 to 154), GST-p30II (residues 155 to 241) spanning
the entire coding region of HTLV-1 p30II (Fig. 5B, see dia-
gram). These proteins were expressed in Escherichia coli BL21
bacteria, and purified recombinant GST-HTLV-1 p30II fusion
proteins were used in GST pull-down experiments as described
by Harrod et al. (23). GST proteins were incubated with HeLa
nuclear extracts at 4°C overnight, and complexes were precip-
itated with glutathione-Sepharose 4B (Amersham-Pharmacia
Biotech). The matrices were washed, and bound factors were
eluted using 10 mM reduced glutathione buffer. Input levels of
purified recombinant GST or GST-HTLV-1 p30II proteins,
Myc, and TIP60 are shown in Fig. 5B. Results shown in Fig. 5B
(right panels) demonstrate that full-length GST-HTLV-1 p30II

interacts with both Myc and TIP60 in HeLa nuclear extracts.
Deletion of amino acid residues from either the NH2 terminus
or COOH terminus of p30II disrupts Myc binding; however,
the TIP60-interacting region of HTLV-1 p30II was mapped to
residues between positions 99 and 154 (Fig. 5B). Our future
efforts will biochemically characterize specific amino acid con-
tacts responsible for the stabilization of HTLV-1 p30II/Myc/
TIP60 transcriptional interactions.

We next examined recruitment of HTLV-1 p30II/Myc/TIP60
chromatin remodeling complexes to conserved, Myc-respon-
sive E-box enhancer elements within the cyclin D2 promoter in
cultured HTLV-1-infected ATLL patient lymphocytes (ATL-
1). Chromatin-immunoprecipitations were performed using
antibodies that recognize endogenous HTLV-1 p30II (34),
Myc, and known Myc-interacting factors as described previ-
ously. Polymerase chain-reaction amplification of ChIP prod-
ucts was performed using the PRM and UTR oligonucleotide
DNA primer pairs (79). Results shown in Fig. 5C demonstrate
that p30II is present in Myc/TIP60 transcription complexes
assembled on E-box enhancer elements within the cyclin D2
promoter in HTLV-1 ATLL patient lymphocytes. The tran-
scriptional coactivators, TRRAP/p434, TIP48, TIP49, and
hGCN5 were also detected in p30II/Myc/TIP60/cyclin D2 pro-
moter complexes (Fig. 5C).

HTLV-1 p30II-GFP stabilizes Myc/TIP60 interactions and
transactivates the cyclin D2 promoter in a TIP60 HAT-depen-
dent manner. We next investigated whether HTLV-1 p30II

interacts similarly in Myc/TIP60 transcription complexes in
293A fibroblasts. Nicot et al. (48) have demonstrated that an
HTLV-1 p30II-green fluorescent protein (GFP) is functionally
identical to HTLV-1 p30II (HA) (48). We therefore cotrans-
fected 293A cells with CMV-HTLV-1 p30II-GFP (kindly pro-
vided by G. Franchini, NCI, NIH [48]) or a pcDNA3.1-GFP
vector control and performed ChIP analyses. Nucleoprotein
complexes were cross-linked by treatment with formaldehyde,
and oligonucleosomal fragments were generated by brief son-
ication of extracted genomic DNA. Chromatin immunopre-
cipitations were performed as described above, and ChIP
products were amplified by PCR using the PRM and UTR
oligonucleotide DNA primer pairs (79). Similar expression of
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HTLV-1 p30II-GFP and GFP proteins was visualized with
transfected 293A fibroblasts by fluorescence microscopy (Fig.
6A and B). The HTLV-1 p30II-GFP protein was immunopre-
cipitated and bound to Myc-containing transcription com-
plexes on conserved E-box elements within the cyclin D2 pro-
moter in transfected 293A fibroblasts, using an anti-GFP
antibody (Fig. 6A). No ChIP product was detected for the
anti-GFP immunoprecipitation in 293A cells transfected with
the pcDNA3.1-GFP control (Fig. 6B). While the transcrip-

tional coactivators TRRAP/p434, TIP48, TIP49, and hGCN5
were present in Myc-containing complexes in both HTLV-1
p30II-GFP and GFP-expressing cells, the TIP60 HAT was de-
tected predominantly in HTLV-1 p30II-GFP/Myc/TIP60 com-
plexes (compare Fig. 6A and B). However, TIP60 was weakly
present in Myc-containing ChIP complexes in GFP-expressing
cells, consistent with the demonstration of pre-existing Myc-
TIP60 interactions by Frank et al. (16) and Patel et al. (56)
(Fig. 6B).

FIG. 5. HTLV-1 p30II is present in Myc-TIP60-containing chromatin-remodeling complexes in HTLV-1-infected lymphocytes. (A) Chromatin
immunoprecipitation assays were performed with uninfected Molt-4 lymphocytes or HTLV-1-infected MJ[G11] and HuT-102 lymphocytes using
antibodies that recognize various Myc-interacting factors (TIP60, TRRAP, TIP48, TIP49, and hGCN5; top panels) or acetylated forms of histone
H3 (acetyl-K9 and acetyl-K14; lower panels). The PRM primer pair anneals to sequences flanking the conserved E-box elements within the human
cyclin D2 promoter, and the UTR negative control primers anneal within an untranslated region (79). (B) Purified recombinant GST-HTLV-1
p30II or GST-p30II (1 to 98), GST-p30II (99 to 154), and GST-p30II (155 to 241) truncated mutant proteins were incubated with HeLa nuclear
extracts, and GST pull-down assays were performed as described previously (23) using glutathione-Sepharose 4B (Amersham-Pharmacia Biotech).
A diagram of GST-HTLV-1 p30II fusion proteins and relative input levels of GST-HTLV-1 p30II and GST-p30II truncation mutants, Myc, and
TIP60 proteins is shown. Results from GST pull-down experiments are provided in the panels on the right. (C) ChIP analyses of HTLV-1
p30II-Myc/TIP60 transcription complexes recruited to Myc-responsive E-box elements within the genomic cyclin D2 promoter in cultured
lymphocytes from an HTLV-1-infected ATLL patient (ATL-1). Chromatin immunoprecipitations were performed as for panel A, and PCR
analyses of ChIP products were carried out using PRM and UTR oligonucleotide primer pairs (79).
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To determine whether the HTLV-1 p30II-GFP protein also
transcriptionally activates the human cyclin D2 promoter in a
TIP60-dependent manner, we cotransfected 293A fibroblasts
with a tk promoter-Renilla luciferase plasmid, a human cyclin
D2 promoter-luciferase reporter plasmid, and CMV-HTLV-1
p30II-GFP in the presence of increasing amounts of either
CMV-TIP60 (wild-type) or CMV-TIP60�HAT, which expresses
a trans-dominant-negative TIP60 mutant (7, 25, 48). Results
shown in Fig. 6C demonstrate that HTLV-1 p30II-GFP tran-
scriptionally activates the human cyclin D2 promoter approx-
imately 14-fold in transfected 293A fibroblasts compared to an
empty pcDNA3.1-GFP control. Overexpression of wild-type
TIP60, in the presence of HTLV-1 p30II-GFP, significantly
increased p30II-GFP-dependent transcriptional activity in a
dose-dependent manner (Fig. 6C). Coexpression of the trans-
dominant-negative TIP60�HAT mutant (25) repressed p30II-
GFP-dependent transactivation from the human cyclin D2
promoter (Fig. 6C), consistent with the results shown in Fig.
4A and with an essential role for the TIP60 HAT in HTLV-1
p30II transcriptional activation. Relative Renilla luciferase ac-
tivities for each sample are shown in Fig. 6D for comparisons
of similar transfection efficiencies.

HTLV-1 p30II transcriptionally activates numerous cellular
genes in a TIP60-dependent or TIP60-independent manner.
To comprehensively identify cellular gene sequences whose
expressions are altered by HTLV-1 p30II-TIP60 transcriptional
interactions, we cotransfected 293A fibroblasts with a C�S
empty vector control, CMV-HTLV-1 p30II (HA), or CMV-
HTLV-1 p30II (HA) and TIP60�HAT, which expresses a trans-
dominant-negative mutant that interferes with endogenous
TIP60 functions (25). Total cellular RNAs were extracted, and
microarray gene expression analyses were performed using
Affymetrix Human U133Plus 2.0 full-genomic chips. Tran-
scriptional activation of cellular target genes is expressed as
activation (n-fold) relative to the empty C�S vector control,
and the lower limit for transactivation was set at 2.5-fold.
Figure 7A shows a graphical representation of cellular target
genes transcriptionally activated by HTLV-1 p30II (HA) (red
lines). TIP60-dependent gene sequences were identified based
upon their transcriptional repression in the presence of the
TIP60�HAT mutant (25) and are indicated by green lines (Fig.
7A). In general, the fold transactivation by HTLV-1 p30II

(HA) ranged between 2.5-fold to 393-fold for specific target
genes (Fig. 7A). Michael et al. (44) have demonstrated that

FIG. 6. HTLV-1 p30II-GFP interacts in Myc/TIP60 transcription complexes and transcriptionally activates the human cyclin D2 promoter.
(A) 293A fibroblasts were transfected with HTLV-1 p30II-GFP (48), and ChIP analyses were performed using various antibodies against specific
Myc-interacting proteins. Expression of HTLV-1 p30II-GFP in transfected cells was visualized by fluorescence microscopy (left panel). Polymerase
chain reaction amplification of ChIP products was carried out using the PRM and UTR oligonucleotide primer pairs as described previously (79).
(B) 293A fibroblasts were transfected with a pcDNA3.1-GFP control, and ChIP analyses were performed as described for panel A. Expression of
GFP was detected in transfected 293A cells by fluorescence microscopy. (C) 293A fibroblasts were cotransfected with a human cyclin D2
promoter-luciferase reporter construct (0.5 �g), tk promoter-Renilla luciferase reporter construct (0.5 �g), CMV-HTLV-1 HTLV-1 p30II-GFP
(0.15 �g), and increasing amounts (1.0 and 3.0 �g) of CMV-TIP60 (wild type) or CMV-TIP60�HAT (25). Dual luciferase assays were performed
to measure transcriptional activation. (D) Relative Renilla luciferase activities for each sample are shown. Error bars representative of standard
deviations from duplicate experiments are provided. WT, wild type.
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FIG. 7—Continued.
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FIG. 7—Continued.
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FIG. 7. Numerous cellular target genes are transcriptionally acti-
vated by HTLV-1 p30II in a TIP60-dependent or TIP60-independent
manner. (A) 293A fibroblasts were transfected with a C�S empty
vector control, CMV-HTLV-1 p30II (HA), or with CMV-HTLV-1
p30II (HA) and CMV-TIP60�HAT (25). Total cellular RNAs were
extracted using a QIAGEN RNeasy kit as recommended by the man-
ufacturer, and microarray gene expression analyses were performed by
the Oregon State University Center for Gene Research and Biotech-
nology using Affymetrix Human U133Plus 2.0 full-genomic chips.
Transcriptional activation of cellular genes by HTLV-1 p30II is ex-
pressed as activation (n-fold) relative to the empty C�S vector control.
A Microsoft Excel graphical representation of cellular target genes
transcriptionally activated by HTLV-1 p30II is shown. TIP60-depen-
dent genes were identified based upon their transcriptional repression
in the presence of the trans-dominant-negative TIP60�HAT mutant
(25). (B) Graphical representation of cellular genes transcriptionally
repressed by HTLV-1 p30II in a TIP60-dependent or TIP60-indepen-
dent manner. (C) A list of major target gene sequences transcription-
ally activated by HTLV-1 p30II as determined by Affymetrix microar-
ray gene expression analyses. Gene sequences whose transactivation
was significantly dependent on the TIP60 coactivator are boxed. Hs.,
Homo sapiens.
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numerous cellular genes are also transcriptionally repressed as
a result of HTLV-1 p30II expression (44). Results shown in Fig.
7B graphically represent cellular target genes transcriptionally
repressed (with levels ranging between 2.5-fold to 125-fold
transrepression) by HTLV-1 p30II (HA) (red lines). Effects of
the trans-dominant-negative TIP60�HAT mutant upon tran-
scriptional repression by HTLV-1 p30II (HA) are indicated by
green lines (Fig. 7B).

In Fig. 7C, we provide a representative list of the major
target gene sequences that are transcriptionally activated by
HTLV-1 p30II (HA) as determined by Affymetrix microarray
gene expression analyses. TIP60-dependent gene sequences
are shown in boxes. Transcriptional activation is expressed as
activation (n-fold) relative to the empty C�S vector control.
Numerous cellular genes were transcriptionally induced by
HTLV-1 p30II (HA) in a TIP60-dependent or TIP60-indepen-
dent manner, suggesting that p30II may participate in multiple,
distinct transcription complexes (Fig. 7C). With respect to the
potential role of HTLV-1 p30II in adult T-cell leukemogenesis,
transcriptional activation of the following genes is of significant
interest: myeloid cell nuclear differentiation 1 antigen (31.1-
fold; TIP60 dependent), protocadherin 15 (26.1-fold; TIP60
dependent), human protein tyrosine phosphatase delta precur-
sor (23.3-fold; TIP60 dependent), cadherin 11-like precursor
(20.2-fold; TIP60 dependent), colony-stimulating factor 2 re-
ceptor beta (19.6-fold; TIP60 independent), human protein
tyrosine phosphatase receptor type Z polypeptide (16.4-fold;
TIP60 dependent), Schizosaccharomyces pombe RAD21-like
protein (16-fold; TIP60 independent), human transmembrane
phosphatase with tensin homology (15.5-fold; TIP60 indepen-
dent), H2B histone family member N (15.1-fold; TIP60 inde-
pendent), major histocompatibility complex class II DR beta 3
(14.0-fold; TIP60 dependent), human CD84 leukocyte antigen
(14.0-fold; TIP60 independent), prostate-specific G protein-
coupled receptor (14.0-fold; TIP60 independent), fibroblast
growth factor 20 (13.8-fold; TIP60 dependent), protein kinase
C alpha-binding protein (13.2-fold; TIP60 independent), reg-
ulator of G-protein-signaling 1 (13.1-fold; TIP60 dependent),
cytoplasmic linker associated protein 2 (13.0-fold; TIP60 inde-
pendent), POU domain 4 transcription factor 2 (12.8-fold;
TIP60 independent), RNA-binding motif protein (RBMY2B)
(12.6-fold; TIP60 independent). Robek et al. (62) have dem-
onstrated that an infectious HTLV-1 molecular clone,
ACH.p30II, exhibits an approximately 20 to 50% reduction in
transformation efficiency compared to the wild-type ACH.wt
(62), suggesting that p30II is required for the full transforming
potential of HTLV-1. Our microarray analyses indicate that
numerous cellular genes are transcriptionally activated by
p30II, and proteins encoded by these genes may contribute to
HTLV-1 leukemic transformation and development of ATLL.

HTLV-1 p30II enhances Myc transforming potential and
requires the TIP60 HAT and TRRAP/p434. As the c-Myc on-
cogene is known to cause cellular transformation (7, 41, 51),
we next investigated whether HTLV-1 p30II might influence
Myc-associated transforming activity in focus formation assays
using immortalized human WRN�/� fibroblasts, which lack
Werner’s syndrome helicase functions (45). This cellular back-
ground was chosen because ATLL is an aging-related malig-
nancy requiring clinical latency periods of 25 to 40 years prior
to disease onset (29), which suggests that genetic mutations

linked to the aging process likely contribute to leukemogene-
sis. Werner’s syndrome is a premature aging disorder (45) that
mimics or recapitulates many of the clinical and cellular fea-
tures of normal aging, and WRN locus (8p11-12) mutations
have been found in HTLV-1-infected ATLL patient lympho-
cytes and in HTLV-1-infected mycosis fungoides/Sezary syn-
drome cells (4, 30, 53, 69, 82). Neither c-Myc nor HTLV-1
p30II (HA) alone significantly induces focus formation in im-
mortalized human WRN�/� fibroblasts (Fig. 8A). Surprisingly,
in combination, HTLV-1 p30II (HA)-Myc coexpression repro-
ducibly induces between 35 and 58 foci in different assays (Fig.
8A and B). The expression of HTLV-1 p30II (HA) and c-Myc
(FLAG) was detected in transformed colonies by immunoflu-
orescence microscopy (Fig. 8D and E), and the p30II protein
appeared to be distributed throughout the nucleoplasm (Fig.
8C). We also observed a high incidence of multinucleated giant
cells in isolated HTLV-1 p30II (HA) Myc-transformed fibro-
blasts that were expanded in culture, consistent with HTLV-1
p30II-induced polyploidy observed during BrdU-FACS analy-
ses (Fig. 8F; compare to control cells in Fig. 8D). The expres-
sion of HTLV-1 p30II (HA) in transformed fibroblasts was
confirmed by immunoblotting using a monoclonal anti-HA
antibody (Fig. 8E). As expected, the majority of expanded
HTLV-1 p30II (HA)-expressing colonies showed increased lev-
els of intracellular Myc protein by immunoblotting (Fig. 8F).
Indeed, these findings indicate that HTLV-1 p30II markedly
enhances the transforming potential of c-Myc and may pro-
mote genomic instability, resulting in polyploidy.

Our transcriptional activation data suggested that enhance-
ment of Myc functions by HTLV-1 p30II requires the coacti-
vators TIP60 and TRRAP/p434. Therefore, we tested whether
focus formation induced by coexpressing HTLV-1 p30II (HA)-
Myc might be affected by overexpressing wild-type TIP60 or
TIP60�HAT and TIP60L497A mutant proteins (17, 25). Results
from two independent experiments in Fig. 9A indicate that
none of the TIP60 expression constructs, either alone or in
combination with c-Myc, significantly induces focus formation
in immortalized human WRN�/� fibroblasts. However, ectopic
TIP60 markedly increases focus formation induced by HTLV-1
p30II (HA)-Myc coexpression (Fig. 9A). The trans-dominant-
negative TIP60�HAT mutant completely abrogated colony for-
mation by HTLV-1 p30II (HA)-Myc, and the TIP60L497A mu-
tant partially inhibited focus formation (Fig. 9A). Increased
colony formation by HTLV-1 p30II (HA)/Myc/TIP60, com-
pared to inhibition of focus formation by the trans-dominant-
negative TIP60�HAT mutant, is shown in Fig. 9B. Inhibition of
TRRAP/p434, as a result of coexpressing increasing amounts
of TRRAPantisense RNA (41), also significantly decreased focus
formation by HTLV-1 p30II (HA)-Myc (Fig. 9C). These find-
ings collectively agree with our transcriptional activation data
and suggest that HTLV-1 p30II enhances Myc transcriptional
and transforming activities in a TIP60 HAT- and TRRAP-
dependent manner.

As we have mapped the TIP60-interacting domain of
HTLV-1 p30II to amino acid residues 99 to 154 through bio-
chemical GST pull-down experiments (see Fig. 5B), we next
analyzed a naturally occurring truncation mutant of p30II,
HTLV-1 p13II, which expresses the carboxyl terminus of p30II,
spanning from residue 155 to 241 (Fig. 10A) (1, 10, 34, 70). The
p13II mutant lacks the TIP60-interacting region of p30II but
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contains the nuclear localization sequence as reported in ref-
erences 1 and 34. Molt-4 lymphocytes were transfected with
CMV-HTLV-1 p30II (HA), CMV-HTLV-1 p13II (HA), or a
C�S empty vector control, and immunofluorescence micros-
copy was performed using an anti-HA (CA5) primary antibody
and rhodamine red-conjugated fluorescent secondary antibody
to visualize protein expression in transfected cells. The p30II

(HA) and p13II (HA) proteins were observed in approximately
20 to 30% of transfected Molt-4 lymphocytes (Fig. 10B). We
then analyzed BrdU incorporation and S-phase cell cycle pro-
gression in HTLV-1 p30II (HA)- or p13II (HA)-expressing
transfected lymphoid cultures, compared to the C�S control.
Results shown in Fig. 10C demonstrate that p30II (HA) ex-
pression markedly increased S-phase progression and
polyploidy as noted in previous experiments (see Fig. 1D),
whereas neither p13II (HA) nor the C�S control resulted in
altered cell cycle progression (Fig. 10C).

To determine whether the TIP60-interacting domain (resi-
dues 99 to 154) of HTLV-1 p30II (HA) is essential for its
oncogenic function, we compared the ability of p30II (HA) and
p13II (HA) (corresponding to amino acids 155 to 241 of
HTLV-1 p30II) to promote focus formation in immortalized
human WRN�/� fibroblasts in combination with c-Myc, as
shown in Fig. 8A. These results demonstrate that the p13II

(HA) mutant, lacking residues 1 to 154 of p30II, is significantly
defective for cellular transformation and focus formation com-
pared to wild-type p30II (HA) (Fig. 10D), suggesting that

TIP60 recruitment is required for p30II-associated oncogenic
activity. Finally, we tested the capacity of HTLV-1 p30II (HA)
and p13II (HA) to transcriptionally activate the human cyclin
D2 promoter-luciferase reporter construct in transfected 293A
fibroblasts. Results shown in Fig. 10E demonstrate that p13II

(HA), lacking the TIP60-interacting domain, is impaired for
transcriptional-activating functions compared to p30II (HA),
which transactivates the cyclin D2 promoter approximately
eight- to ninefold. Indeed, p13II (HA) exhibited a trans-dom-
inant-negative effect upon Myc-dependent transactivation
from the cyclin D2 promoter and slightly repressed transcrip-
tion below the basal level (Fig. 10E). Chromatin-immunopre-
cipitation analyses were performed with 293A fibroblasts ex-
pressing either HTLV-1 p30II (HA) or p13II (HA), by using
antibodies against HTLV-1 p30II (the anti-HTLV-1 p30II or
TofII antibody recognizes a peptide epitope within the COOH
terminus of p30II that is also present in HTLV-1 p13II [32]),
Myc, TIP60, TRRAP, TIP48, TIP49, and hGCN5. Immuno-
precipitation products were amplified using the PRM primer
pair, which anneals to nucleotide sequences flanking the con-
served Myc-responsive E-box elements within the human cy-
clin D2 gene promoter (79). The p30II (HA) protein was pre-
cipitated in Myc-containing chromatin-remodeling complexes
that contain TIP60, TRRAP, TIP48, TIP49, and hGCN5 (Fig.
10F, top panel). However, the p13II (HA) protein was not
detected bound to Myc-responsive E-box elements within the
cyclin D2 promoter and, consistent with p13II’s transcriptional

FIG. 8. HTLV-1 p30II enhances Myc-associated transforming potential. (A) Immortalized human WRN�/� fibroblasts (45) were transfected
with C�S empty vector (3.0 �g), CMV-HTLV-1 p30II (HA) (3.0 �g), C�F-FLAG-Myc (3.0 �g), and combinations of C�S (1.5 �g)/C�F-FLAG-
Myc (3.0 �g) or CMV-HTLV-1 p30II (HA) (1.5 �g)/C�F-FLAG-Myc (3.0 �g). Foci were quantified by direct counting, and representative results
from triplicate experiments are shown. (B) Bar graph quantification of results shown in panel A. (C) HTLV-1 p30II (HA) was expressed throughout
the nucleoplasm of HTLV-1 p30II (HA)/Myc-transformed fibroblasts. (D) CMV-HTLV-1 p30II (HA)/C�F-FLAG-Myc-transformed colonies and
immortalized WRN�/� fibroblasts transfected with C�S/C�F-FLAG-Myc were stained with a monoclonal anti-HA tag antibody (CA5; Roche
Molecular Biochemicals), rhodamine red-conjugated anti-mouse secondary antibody (Jackson ImmunoResearch Laboratories), and DAPI (Mo-
lecular Probes), and HTLV-1 p30II (HA) was detected by immunofluorescence microscopy. The c-Myc (FLAG) protein was visualized with
transfected cells and transformed foci using a monoclonal anti-FLAG M2 antibody. (F) An increased number of multinucleated giant cells were
observed in isolated HTLV-1 p30II (HA)/Myc-transformed WRN�/� fibroblasts expanded in culture. Expression of HTLV-1 p30II (HA), Myc, and
actin proteins in expanded fibroblast cultures was detected by immunoblotting using monoclonal anti-HA, monoclonal anti-Myc, or goat polyclonal
anti-actin antibodies.
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FIG. 9. HTLV-1 p30II/Myc-transforming activity requires the transcriptional coactivators TIP60 and TRRAP/p434. (A) Immortalized human
WRN�/� fibroblasts were transfected with C�F-FLAG-Myc (3.0 �g) and either CMV-HTLV-1 p30II (HA) or empty C�S vector control (1.5 �g)
in the presence of CMV-TIP60, CMV-TIP60�HAT, or CMV-TIP60L497A (3.0 �g), and focus formation/transformation assays were performed as
described for Fig. 8A. Results from two independent experiments are shown for comparison. (B) Overexpression of wild-type TIP60 results in
increased focus formation in WRN�/� fibroblasts cotransfected with CMV-HTLV-1 p30II (HA), C�F-FLAG-Myc, and CMV-TIP60. Coexpression
of the trans-dominant-negative TIP60�HAT mutant (25) inhibits cellular transformation by HTLV-1 p30II (HA)/Myc (lower panel). (C) Immor-
talized human WRN�/� fibroblasts were transfected as for panel A in the presence of increasing amounts of C�S-TRRAPantisense or C�S empty
vector (0.5, 1.5, and 3.0 �g) and focus formation/transformation assays were performed (41). Colonies were quantified by direct counting, and
representative results from duplicate experiments are shown. *, HTLV-1 p30II (HA)/Myc focus formation.
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impairment, the TIP60 HAT was not present in Myc-contain-
ing cyclin D2 promoter complexes in the absence of p30II (HA)
(Fig. 10F, lower panel). Our data suggest that the HTLV-1
p30II oncoprotein enhances Myc-dependent transcriptional
and transforming activities through the stabilization of Myc-
TIP60 interactions on promoters of Myc-responsive genes,
which may also influence the acetylation of Myc protein by the
TIP60 coactivator (Fig. 11) (56).

DISCUSSION

HTLV-1 infects CD4� T cells and promotes deregulated cell
growth and lymphoproliferation associated with the develop-
ment of ATLL. While numerous studies have demonstrated
that the viral Tax protein transcriptionally activates growth/
proliferative-signaling pathways, it has become increasingly ev-
ident that other pX-encoded regulatory factors (p12I, p13II,
p30II, Rex) are likely to perform essential functions during

adult T-cell leukemogenesis (1, 6, 29, 34, 35, 48, 85). Indeed,
the majority of partially deleted HTLV-1 proviruses in ATLL
patient isolates contain intact pX sequences (33, 68), and al-
ternatively spliced ORF I and ORF II mRNAs in HTLV-1-
infected transformed T-cell lines and ATLL patient samples
have been detected (6, 35). Cytotoxic T-lymphocytes specifi-
cally targeted against ORF I and ORF II peptides have been
obtained from ATLL patients, suggesting that these proteins
are present during in vivo HTLV-1 infections (57). Zhang et al.
(86) reported that p30II interacts with p300/CREB-binding
protein and represses Tax-mediated transactivation from the
HTLV-1 LTR (86) and differentially modulates CREB-depen-
dent transcription (87). Nicot et al. (48) and Younis et al. (85)
have demonstrated that p30II prevents nuclear export of the
doubly spliced Tax/Rex mRNA, and others have shown that
p30II is required for maintenance of high viral titers in a rabbit
model of ATLL using an infectious HTLV-1 molecular clone,
ACH.30II, which is defective for p30II production (5, 71). In-

FIG. 10. An HTLV-1 p30II-derived truncation mutant lacking the TIP60-interacting domain does not alter Myc-dependent transcription, cell
cycle progression, or cellular transformation. (A) Diagram of HTLV-1 p30II and the naturally occurring truncation mutant p13II, corresponding
to amino acids 155 to 241 of p30II (1, 10, 34, 70). The TIP60-interacting region is located between amino acid residues 99 and 154, and the nuclear
localization sequence (NLS) is depicted as described in reference 1. The transcriptional activating domain of HTLV-1 p30II has been previously
mapped to residues 62 to 220 (1, 86, 87), which spans a region bearing significant amino acid sequence similarities to homeotic transcription factors,
including Oct1, Pit1, and POU (1, 34). (B) Molt-4 lymphocytes were transfected with CMV-HTLV-1 p30II (HA), CMV-HTLV-1 p13II (HA), or
a C�S control, and immunofluorescence microscopy was performed using a monoclonal anti-HA (CA5) primary antibody and rhodamine
red-conjugated fluorescent secondary antibody (Jackson Laboratories). A DAPI nuclear staining is shown for reference. (C) Molt-4 lymphocytes
were transfected as described for panel B, and cultures were analyzed for BrdU incorporation and total nuclear DNA content by FACS. Arrows
indicate polyploid S-phase (BrdU�; 	2N nuclear content) and polyploid G2/M (BrdU�; 4N nuclear content) cell populations in p30II (HA)-
expressing cultures. (D) Immortalized human WRN�/� fibroblasts were cotransfected with CMV-HTLV-1 p30II (HA)/C�F-Myc or CMV-HTLV-1
p13II (HA)/C�F-Myc, and focus formation assays were performed. Transformed colonies were observed after 2 weeks and quantified by direct
counting. Representative results from duplicate experiments are shown. (E) 293A fibroblasts were cotransfected with a human cyclin D2
promoter-luciferase reporter construct (0.5 �g) in the presence of increasing amounts (0.07, 0.15, and 0.25 �g) of CMV-HTLV-1 p30II (HA) or
CMV-HTLV-1 p13II (HA), and relative luciferase activities were determined using equivalent total cellular proteins. (F) Chromatin immuno-
precipitation assays were performed by using 293A fibroblasts transfected with CMV-HTLV-1 p30II (top panel) or CMV-HTLV-1 p13II (bottom
panel), with antibodies against HTLV-1 p30II (this antibody recognizes a peptide epitope within the COOH terminus of p30II and p13II) (34), Myc,
TIP60, TRRAP, TIP48, TIP49, and hGCN5. Precipitated oligonucleosomal DNA fragments, spanning conserved Myc-responsive E-box enhancer
elements within the human cyclin D2 promoter, were amplified by PCR using the PRM oligonucleotide primer pair (79).
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terestingly, Robek et al. (62) have previously demonstrated
that p30II is dispensable for immortalization and transforma-
tion of human peripheral blood mononuclear cells by
ACH.p30II; however, this mutant exhibited an approximately
20 to 50% reduction in transformation efficiency compared to
the wild-type ACH.wt (62), suggesting that p30II is required for
the full transforming potential of HTLV-1. The physiological
role of p30II in HTLV-1 pathogenesis remains unclear, and it
is intriguing that, similar to Tax, p30II may perform multiple
functions to control viral gene expression and promote dereg-
ulation of CD4� T-cell growth/proliferative pathways.

With this study, we have demonstrated that HTLV-1 p30II

markedly enhances Myc-associated transcriptional and trans-
forming activities and increases S-phase progression and
polyploidy through interactions with the coactivator/HAT,
TIP60 (Fig. 11). HTLV-1 p30II transactivates conserved E-box
enhancer elements within promoters of Myc-responsive genes,
requiring TIP60 HAT activity and the transcriptional coacti-
vator TRRAP/p434. Frank et al. (16) have shown that pre-
existing Myc-TIP60 interactions contribute to Myc-dependent
transcriptional activation and chromatin-remodeling associ-
ated with histone H4 acetylation on a subset of Myc-responsive
genes in rodent and human fibroblasts, although their data
suggest that Myc-TIP60 interactions may be relatively unstable
on certain promoters. Patel et al. also recently demonstrated
that c-Myc is a substrate for lysine acetylation by the TIP60 and
hGCN5 acetyltransferases (56). Indeed, Myc and the TIP60
HAT likely exist in multiple distinct nuclear complexes, and
Park et al. have demonstrated that TIP60 is not present in
Myc/BAF53-containing transcription complexes (54). Our data
indicate that, in absence of HTLV-1 p30II-interactions, ectopic
TIP60 overexpression does not significantly alter Myc tran-
scriptional and transforming activities in functional assays (see
Fig. 4A, 6C, and 9A). Further, we have shown that TIP60 is not
detectably present in Myc-containing chromatin-remodeling
complexes on the human cyclin D2 promoter (7, 79), in the
absence of HTLV-1 p30II, in uninfected Molt-4 lymphocytes
(Fig. 5A). However, we did detect weak recruitment of TIP60
to Myc transcription complexes on the cyclin D2 promoter in
pcDNA3.1–GFP-transfected 293A fibroblasts by ChIPs (Fig.

6B), consistent with the notion that Myc-TIP60 interactions
may be relatively unstable on certain gene promoters. Thus,
aberrant stabilization of Myc-TIP60 interactions, as a result of
HTLV-1 p30II or other stabilizing factors, may contribute
prominently to neoplastic transformation in hematological ma-
lignancies and solid tumors where Myc functions are deregu-
lated or where myc locus mutations are present (18, 24, 26, 43,
55, 60).

The GST-HTLV-1 p30II protein interacts with both Myc and
TIP60, and amino acid residues located between positions 99
and 154 of p30II interact with the TIP60 HAT in vivo. Recruit-
ment of TIP60 is essential for p30II-dependent effects upon cell
cycle progression and focus formation/transformation. Af-
fymetrix microarray gene expression analyses indicate that nu-
merous cellular genes are transcriptionally activated by
HTLV-1 p30II in a TIP60-dependent or TIP60-independent
manner. These gene products could play important roles in
HTLV-1-associated neoplastic disease. Our results indicate
that HTLV-1 p30II is a novel retroviral enhancer of Myc-TIP60
transcriptional and transforming activities that may contribute
to adult T-cell leukemogenesis.
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