
Dartmouth College
Dartmouth Digital Commons

Open Dartmouth: Faculty Open Access Articles

11-30-2013

Role of the CipA Scaffoldin Protein in Cellulose
Solubilization, as Determined by Targeted Gene
Deletion and Complementation in Clostridium
thermocellum
Daniel G. Olson
Dartmouth College

Richard J. Giannone
Oak Ridge National Laboratory

Robert L. Hettich
Oak Ridge National Laboratory

Lee R. Lynd
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

Part of the Bacteriology Commons

This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty
Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

Recommended Citation
Olson, Daniel G.; Giannone, Richard J.; Hettich, Robert L.; and Lynd, Lee R., "Role of the CipA Scaffoldin Protein in Cellulose
Solubilization, as Determined by Targeted Gene Deletion and Complementation in Clostridium thermocellum" (2013). Open
Dartmouth: Faculty Open Access Articles. 1047.
https://digitalcommons.dartmouth.edu/facoa/1047

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/231119673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1047&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1047&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1047&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/49?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1047&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/1047?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1047&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Role of the CipA Scaffoldin Protein in Cellulose Solubilization, as
Determined by Targeted Gene Deletion and Complementation in
Clostridium thermocellum

Daniel G. Olson,a,d Richard J. Giannone,b,d Robert L. Hettich,b,d Lee R. Lynda,b,c,d

Dartmouth College, Hanover, New Hampshire, USAa; Oak Ridge National Laboratory, Oak Ridge, Tennessee, USAb; Mascoma Corporation, Lebanon, New Hampshire,
USAc; BioEnergy Science Center, Oak Ridge, Tennessee, USAd

The CipA scaffoldin protein plays a key role in the Clostridium thermocellum cellulosome. Previous studies have revealed that
mutants deficient in binding or solubilizing cellulose also exhibit reduced expression of CipA. To confirm that CipA is, in fact,
necessary for rapid solubilization of crystalline cellulose, the gene was deleted from the chromosome using targeted gene dele-
tion technologies. The CipA deletion mutant exhibited a 100-fold reduction in cellulose solubilization rate, although it was even-
tually able to solubilize 80% of the 5 g/liter cellulose initially present. The deletion mutant was complemented by a copy of cipA
expressed from a replicating plasmid. In this strain, Avicelase activity was restored, although the rate was 2-fold lower than that
in the wild type and the duration of the lag phase was increased. The cipA coding sequence is located at the beginning of a gene
cluster containing several other genes thought to be responsible for the structural organization of the cellulosome, including
olpB, orf2p, and olpA. Tandem mass spectrometry revealed a 10-fold reduction in the expression of olpB, which may explain the
lower growth rate. This deletion experiment adds further evidence that CipA plays a key role in cellulose solubilization by C.
thermocellum, and it raises interesting questions about the differential roles of the anchor scaffoldin proteins OlpB, Orf2p, and
SdbA.

Clostridium thermocellum is an anaerobic thermophilic bacte-
rium noted for its ability to rapidly solubilize crystalline cel-

lulose, a process mediated by the cellulosome (1). The cellulosome
is composed of tightly bound enzymatic and structural compo-
nents. At the heart of the cellulosome is the scaffoldin protein,
CipA (also known as SL and S1) (2). This protein has been shown
to be capable of crystalline cellulose solubilization in conjunction
with cellulosomal cellulase Cel48S (3). Analysis of the DNA se-
quence of cipA has revealed a set of nine repeated elements known
as type I cohesins (4). These cohesins bind to the type I dockerins
found on cellulosomal enzymes (5). Subsequent analysis of the
CipA protein has revealed three additional modules, the type II
dockerin, the carbohydrate binding module (CBM), and the x
domain.

The type II dockerin comprises a duplicated set of 22 amino
acid residues located near the C terminus of CipA (4). The type II
dockerin binds to type II cohesins located on the anchor scaffoldin
proteins, OlpB, Orf2p, and SdbA. OlpB has seven type II cohesins,
while Orf2p has two and SdbA has one. The anchor scaffoldins
have a C-terminal sequence called the S-layer homology (SLH)
domain that mediates binding to the cell surface (6). In CipA the
CBM is located between the second and third type I cohesins and
binds to crystalline cellulose with a KD (equilibrium dissociation
constant) of 0.4 �M (1). Thus, the current understanding of the
adhesion of C. thermocellum to cellulose involves the following 3
interactions: (i) binding of glycoside hydrolase enzymes in prox-
imity to each other to promote enzyme-enzyme synergy; (ii) bind-
ing of enzymes to the cellulosic substrate via the CBM; and (iii)
anchoring of the cellulosome to the cell surface, where CipA binds
to the anchor scaffoldin (OlpB, Orf2p, or SdbA) via its type II
dockerin and the anchor scaffoldins are attached to the cell by
their SLH domains.

Finally, CipA has one additional module, located between the

ninth type I cohesin and the type II dockerin, called the x module.
Its function in C. thermocellum remains unknown, although it has
been shown to improve the solubility of recombinantly expressed
type II dockerins and seems to enhance the affinity of the type II
cohesin-dockerin interaction (7).

Electron microscopy has revealed hemispherical protuber-
ances on the outside of C. thermocellum cells, which are known as
polycellulosomes (8). In their resting state they are about 200 nm
in diameter, but they form a protracted conformation in the pres-
ence of cellulose (9). Immunolabeling has identified the presence
of CipA (10) and OlpB (6) in the polycellulosomes, though the
protuberances may contain other cellulosomal components as
well.

There have been two previous reports of mutants of C. thermo-
cellum deficient in cellulase activity. Both were isolated by screen-
ing for cells unable to adhere to cellulose. C. thermocellum AD2
was isolated by mixing cells with cellulose and allowing the cellu-
lose to settle. Adherent cells were pulled out of solution upon
binding to cellulose, thus enriching the supernatant for nonadher-
ent cells. After five rounds of this sedimentation enrichment,
strain AD2 was isolated by single-colony purification (11). The
AD2 strain was analyzed by SDS-PAGE and found to be missing a
band associated with CipA when grown on cellobiose, although
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the band reappeared when the strain was grown on cellulose (8).
Further analysis of AD2 by scanning electron microscopy revealed
the complete absence of polycellulosomes when the strain was
grown on cellobiose (12).

Strains SM1, SM4, SM5, and SM6, which also are deficient in
cellulase activity, were isolated using a procedure similar to that
used for strain AD2, though augmented by an initial chemical
mutagenesis step followed by a screen on cellobiose plates with an
Avicel overlay (13). This final screen was designed to identify cells
that were deficient in cellulose solubilization. These mutants were
analyzed by SDS-PAGE, and all were found to be missing a 210-
kDa band associated with CipA. DNA sequence analysis revealed
the presence of an IS1447 insertion element disrupting the cipA
coding sequence in each mutant. Strain SM1 had an insertion in
the first type I cohesin and appeared to be completely lacking
functional type I cohesins. This strain was unable to grow on
MN300 cellulose and exhibited a 15-fold reduction in enzymatic
activity compared to the wild-type (WT) strain (13).

Previous work has shown that the abilities to bind and to sol-
ubilize cellulose are linked (11, 13). Thus, mutants deficient in
cellulose binding are also deficient in cellulose solubilization. The
functional link between these abilities is consistent with our un-
derstanding of the component modules of CipA. In this study, we
further evaluated the extent to which cipA is responsible for this
dysfunctional phenotype and explored the cellulase activity of C.
thermocellum in the absence of a complexed cellulase system.

MATERIALS AND METHODS
Strains and media. All C. thermocellum strains described here are derived
from C. thermocellum strain DSM 1313 and were grown in modified DSM
122 broth as described previously (14). Cellobiose or Avicel-PH105 mi-
crocrystalline cellulose (Sigma-Aldrich) was used as the primary carbon

source at a concentration of either 5 or 10 g/liter. Cells were grown at 55°C.
Strain M1354 was a generous gift from the Mascoma Corporation (Leb-
anon, NH) (15). This strain is derived from C. thermocellum strain DSM
1313 and has a deletion of the hpt gene (Clo1313_2927) to allow for use of
the hpt gene as a counterselectable marker with the antimetabolite 8-aza-
hypoxanthine.

Molecular biological methods. Plasmids were constructed using
yeast-mediated ligation (16), In-Fusion PCR cloning (TaKaRa Bio Inc.),
or standard cloning techniques (17). Plasmids were maintained in Esche-
richia coli TOP10 cells (Invitrogen Corporation) and prepared using the
Qiagen plasmid minikit (Qiagen Inc.). Sequences of chromosomal DNA
were obtained by PCR using genomic DNA from C. thermocellum strain
DSM 1313. Primers were designed using genome sequences provided by
the Joint Genome Institute (http://www.jgi.doe.gov/). The repB and cat
genes are derived from plasmid pMU102 (18). The yeast origin of repli-
cation is derived from plasmid pMQ87 (16). The pMB1 E. coli origin of
replication is derived from plasmid pUC19 (Invitrogen Corp.). The p15A
E. coli origin of replication and arabinose-inducible promoter are derived
from plasmid pBAD30 (19). The hpt and tdk genes (Tsac_0936 and
Tsac_0324, respectively) are derived from Thermoanaerobacterium sac-
charolyticum JW/SL-YS485. The glyceraldehyde 3-phosphate dehydroge-
nase promoter consists of the 525-bp region upstream of the C. thermo-
cellum glyceraldehyde 3-phosphate dehydrogenase gene (Clo1313_2095).
The cbp promoter consists of the 621-bp region upstream of the cellobiose
phosphorylase gene (Clo1313_1954).

Plasmid pDGO-37 (GenBank accession number JX966413) was cre-
ated by combining the p15A E. coli origin of replication and Pbad pro-
moter with the thermophilic Gram-positive origin of replication from
plasmid pMU102. Plasmid pDGO-40 (GenBank accession number
JX966414) was created by inserting the cipA coding sequence, including
819 bp upstream of the start codon (putative promoter region) and 67 bp
downstream of the stop codon (putative terminator region), into plasmid
pDGO-37 (Fig. 1; Table 1).

PCR was performed using either Taq or Phusion DNA polymerase
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FIG 1 Diagram of genetic elements used in this work.
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(New England BioLabs Inc.) according to the directions provided by the
manufacturer. When using whole cells as the PCR template, a 10-min
heating step was included at the beginning of the thermocycling protocol
to lyse the cells. When using Taq DNA polymerase, the lysing temperature
was 95°C. When using Phusion DNA polymerase, the lysing temperature
was 98°C. DNA sequencing was performed using standard techniques
with an ABI model 3100 genetic analyzer (Applied Biosystems).

Strain construction. Previously, two different deletions of cipA were
made. In strain DS11, the cipA coding sequence was deleted from the start
codon to the stop codon using plasmid pDGO-03 (GenBank accession
number JX489218.1). In strain DS16, the cipA promoter sequence was
deleted in addition to the cipA coding region using plasmid pDGO-34
(GenBank accession number JX489219.1) (20). Plasmids were trans-
formed into C. thermocellum using previously described techniques (21).
To avoid the potential for homologous recombination between the plas-
mid and chromosomal copy of the cipA promoter region, plasmid
pDGO-40 was transformed only into strain DS16.

Fermentation conditions. Strains were grown in modified DSM 122
broth (18) at 55°C with cellobiose or Avicel microcrystalline cellulose as
the primary carbon source. When fermentations were performed in a
125-ml glass bottle sealed with a butyl rubber stopper (22), the fermenta-
tion volume was 50 ml, 5 g/liter substrate (Avicel or cellobiose) was used,
the headspace was purged with nitrogen, and the bottles were shaken at
200 rpm. When fermentations were performed in a computer-controlled
fermentor (Sartorius GmbH), the fermentation volume was 2 liters, 10
g/liter substrate (Avicel or cellobiose) was used, the headspace was purged
with a mixture of 20% CO2 and 80% N2, the vessel was stirred at 200 rpm,
and the pH was controlled to 7.0 with 4 N potassium hydroxide. For some
fermentations, an automated sampling device was used to take 6-ml sam-
ples at regular intervals (23).

Analytical techniques. Concentrations of cellobiose, glucose, lactate,
acetate, ethanol, and formate were measured by high-performance liquid
chromatography (HPLC) as previously described (24). Total carbon and
total nitrogen concentrations (TOCN) were measured with a Shimadzu
TOC-V CPH elemental analyzer with TNM-1 and ASI-V modules (Shi-
madzu Corp.) on 0.5- to 1.0-ml aliquots washed twice with water. The
Avicel concentration was determined from these measurements by as-
suming that Avicel contained no nitrogen and that cells contained carbon
and nitrogen in a 4.67:1 molar ratio. A detailed description of the theory
and calculations is being prepared for publication (E. K. Holwerda and
L. R. Lynd, unpublished data).

Samples for protein identification were prepared as previously de-
scribed (14). Briefly, cell pellets were separated from supernatant by cen-
trifugation (2,000 � g) and washed twice with Tris-buffered saline (100
mM Tris HCl, 150 mM NaCl, pH 8.0) to remove residual supernatant
proteins. Cells were lysed by the addition of SDS lysis buffer (SDS LB) (4%
SDS [wt/vol] in 100 mM Tris HCl, pH 8.0), boiled (5 min), sonically
disrupted (Branson Sonifier), and boiled again. Supernatants were con-
centrated 50-fold (50 ml to 1 ml) via spin filtration using a 3,000-molec-

ular-weight (MW)-cutoff membrane (Vivaspin 20, 3 kDa, PES [GE
Healthcare]), adjusted to 2% SDS with 1 ml of SDS LB, and boiled (5
min). Both fractions, whole cell (WC) and supernatant (SN), were pre-
cleared by centrifugation (21,000 � g) and protein concentrations deter-
mined by bicinchoninic acid (BCA) assay (Pierce). Sample fractions were
then combined in a 2:1 (wt/wt) WC-to-SN ratio, reduced with 25 mM
dithiothreitol (DTT), and trichloroacetic acid (TCA) precipitated (3 mg
of combined crude lysate adjusted to 20% TCA on ice for 1 h). Precipi-
tated proteins were then washed, resolubilized in denaturation buffer
(8 M urea, 100 mM Tris HCl, 5 mM DTT, pH 8.0), digested with trypsin
and prepared for MudPIT liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) as previously described (14). In total, 50 �g of
peptides was analyzed per sample via a 24-h MudPIT analysis using an
LTQ XL mass spectrometer (Thermo Scientific). The resulting peptide
fragmentation data were then searched with the MyriMatch database
search algorithm (25) against the C. thermocellum DSM 1313 proteome
(with decoy sequences) as previously described. Identified peptides were
then score filtered (false-discovery rate [FDR], �2% peptide spectrum
match) and assembled into protein identifications (minimum of 2 distinct
peptides per protein call) by IDPicker 3 (26). Proteins were then spectrally
balanced to deal with nonunique peptides and normalized by normalized
spectral abundance factors (NSAF), and abundance values were adjusted
to normalized spectral counts (nSpC) as previously described (27). Pro-
tein-to-protein abundance was then assessed across all samples to identify
those that were differentially expressed (Student’s t test).

Categorization of cellulase and cellulosomal proteins. A list of all
proteins that could participate in cellulose solubilization was generated,
based on membership in the Carbohydrate Active Enzyme (CAZy) data-
base (28) or presence of a cohesin or dockerin domain as determined by
the Pfam database (29) (see Data Set S1 in the supplemental material).
Proteins with Pfam domain PF00963 were designated “cohesin contain-
ing.” Proteins with Pfam domain PF00404 (and no cohesin domain)
were designated “dockerin containing.” Three additional proteins,
Clo1313_1300, Clo1313_2479, and Clo1313_2861, were added to this list,
based on analysis done by Ed Bayer and colleagues (Ed Bayer, personal
communication). Proteins in the CAZy database that did not have a co-
hesin or dockerin domain were designated “CAZy, no cohesin, no dock-
erin.”

Mathematical analysis of fermentation data. To determine the rate of
substrate consumption, the substrate consumption data points were fitted
with the 5-parameter sigmoidal Richards equation (30) per the work of
Holwerda and Lynd (unpublished data):

s(t) � A0 �
At � A0

1 � e�
t0�t
slope�asymm

(1)

where A0 is the lower horizontal asymptote, At is the higher horizontal
asymptote, t is time, x0 is the inflection point, slope is the slope at the
inflection point, and asymm is the asymmetry parameter. The time (t)

TABLE 1 Description of C. thermocellum strains

Strain

Chromosomal genetic elements
Plasmid genetic
elements

Genotype Source or referencecipAp cipA hpt cat cipAp-cipAt

DSM1313 (WT) � � � Wild type DSMZa

M1354 � � �hpt 15
DS11 � M1354 �cipA 20
DS16 M1354 �(cipAp-cipA) 20
DS18 � DS16/pDGO-37 This study
DS19 � � � M1354/pDGO-37 This study
DS20 � � DS16/pDGO-40 This study
DS22 � � � � M1354/pDGO-40 This study
a DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany.
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when the slope of the fitted curve was greatest was determined by taking
the second derivative with respect to time, setting it equal to zero, and
solving for t, which yielded the following equation:

tmax slope � x0 ln(asymm) � slope (2)

The first derivative of equation 1 with respect to time was then evaluated
at the time determined by equation 2 to determine the maximum rate of
substrate consumption. To allow ready comparison between Avicel and
cellobiose, the substrate consumption rate was determined in mM glucose
equivalent/hour.

RESULTS
Comparison of growth rates of various mutants. As expected,
the wild-type (WT) strain and the cipA deletion strains (DS11 and
DS16) have similar substrate consumption rates when grown on
cellobiose (Fig. 2). The metabolic burdens of plasmid mainte-
nance and thiamphenicol inactivation do not have an effect on
Avicel consumption, as can be seen by comparing the wild type to
the empty-vector control (strain DS19) (Fig. 2). The effect of cipA
overexpression can be seen by comparing the empty-vector con-
trol (strain DS19) with the cipA overexpression strain (DS22). The
rate of Avicel consumption was unchanged (Fig. 2). Deletion of
cipA (strains DS11 and DS16) resulted in a 100-fold decrease in
Avicel consumption rate compared to that of the wild-type strain
(Fig. 2). Both cipA deletion strains were able to consume 80% of
the Avicel initially present after �2,000 h (see Table S1 and Fig. S1
in the supplemental material). Fermentation products were simi-
lar to those of the parent strain (see Table S2 in the supplemental
material), and there was no significant accumulation of glucose or
cellobiose. To see if the rate of Avicel consumption could be im-

proved by adaptation, strain DS11 was subsequently passaged two
additional times on Avicel, but no change in rate was detected.

Transforming the cipA deletion strain (DS16) with the cipA
expression plasmid (pDGO-40) (resulting in strain DS20) dra-
matically increased the rate of Avicel solubilization, although it
was still only 1/3 as high as that for the empty-vector control
(DS19) (Fig. 2; see Table S1 in the supplemental material). Inter-
estingly, there was a 100-hour lag phase before the start of rapid
cellulose solubilization. The technique of measuring Avicel con-
centration by TOCN resulted in a larger degree of measurement
variation during the early parts of fermentation. It is therefore
difficult to determine whether the slight negative trend observed
in the first 100 h with strain DS20 represents a physical phenom-
enon or is simply an artifact of the measurement technique
(Fig. 3).

Comparison of protein abundances in various mutants. Al-
though the abundance was measured for all proteins (see Data Set
S1 in the supplemental material), only those proteins thought to
be able to participate in cellulose solubilization (due to the pres-
ence of a cohesin, dockerin, or CAZy domain) were analyzed. The
effect of the metabolic burdens of plasmid maintenance and anti-
biotic inactivation can be determined by comparing the empty-
vector control (strain DS19) to the wild type (WT) (Fig. 4, first
column). Among the cohesin-containing proteins, none are sig-
nificantly differentially expressed. Among the dockerin-contain-
ing proteins, only Cel9F is significantly differentially expressed.
Among the other CAZy proteins, only LicA is significantly differ-
entially expressed.

The effect of cipA overexpression is demonstrated by compar-
ing the empty-vector control (strain DS19) with the cipA overex-
pression strain (strain DS22) (Fig. 4, second column). Among the
cohesin-containing proteins, none of them were significantly dif-
ferent at a P value of 0.01. Although the increase in cipA expression
was not significant at the 0.01 level (P � 0.015), when the values
for the wild type are included as well, the significance increases to
0.0002, suggesting that the effect would likely be confirmed if we
were to perform more replicates. cipA expression increased by
3-fold in strain DS22, although this was not significantly different
from the mean cipA expression in the empty-vector control (strain
DS19) at the 0.01 level (P � 0.015). Among the dockerin-contain-
ing enzymes, none were significantly differently expressed at the
0.01 level. Among the other CAZy proteins, LicA and
Clo1313_0647 (CBM16, domain of unknown function) were sig-
nificantly lower in abundance.

The effect of cipA complementation can be determined by
comparing the empty-vector control (strain DS19) with the com-
plemented cipA deletion strain (DS20) (Fig. 4, third column).
Among the cohesin-containing proteins, OlpB showed signifi-
cantly reduced expression and was 11-fold less abundant in the
complemented deletion strain. Among dockerin-containing pro-
teins, Cel9P and Clo1313_2861 (GH2-CBM6) showed increased
expression. The significance of the Clo1313_2861 result is difficult
to interpret because of the low number of spectra identified for
this protein (�7 for all samples). Among the other CAZy proteins,
Clo1313_2460 (GH15) showed significantly increased abun-
dance.

Since OlpB contains 7 type II cohesins, a dramatic decrease in
OlpB levels could result in a decrease in type II cohesin availability.
Type II cohesin availability was calculated by multiplying the

g/l

FIG 2 Substrate consumption rates for strains of C. thermocellum grown on
either cellobiose (cb) or Avicel (Av) at an initial concentration of 5 or 10 g/liter.
Antibiotic selection was used to maintain the plasmid in plasmid-containing
strains. The presence of the cipA coding sequence is indicated as either chro-
mosomal (C), plasmid based (P), or both. Error bars represent one standard
deviation and were determined based on biological replicates, where n � 2. *,
due to the difficulties of growing strains DS11 and DS16 on Avicel in fermen-
tors, they were grown in sealed glass bottles instead.
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abundance of each anchor scaffoldin (SdbA, Orf2p, and OlpB) by
the number of type II cohesins it contains (Table 2).

DISCUSSION

In agreement with Zverlov et al., we have shown that cipA is es-
sential for rapid solubilization of crystalline cellulose (13). How-
ever, contrary to what was reported previously, we observed that
cipA deletion strains are able to solubilize Avicel microcrystalline
cellulose (which is similar to the MN300 microcrystalline cellulose
used by Zverlov et al.). Furthermore, since the solubilization of
Avicel resulted in the production of lactate, acetate, and, ethanol
and this ability was maintained despite serial transfer, it appears
that the strain was able to grow on Avicel. What is the explanation
for residual ability of the cipA deletion strains (DS11 and DS16) to
solubilize crystalline cellulose? One possibility is that components
of the noncomplexed cellulase system (i.e., CelI and CelY), which
have been shown to synergistically solubilize crystalline cellulose
(31), can compensate for the expected loss of activity. Since each
enzyme has its own CBM, there is no need for CipA to mediate
binding with the cellulosic substrate. These enzymes were found at
very low levels in all strains (�0.01% of cell protein) as deter-
mined by nSpC values (see Data Set S1 in the supplemental mate-
rial), which reduces support for this explanation. Another possi-
bility is that the cellulosomal components are bound directly to
the cell surface via OlpA, which contains both a type I cohesin (for
binding a cellulase enzyme containing a type I dockerin) and an
S-layer homology (SLH) binding domain (for binding to the cell
surface). Levels of OlpA were about 40% higher in the comple-
mented cipA deletion strain (DS20) than in the empty-vector con-
trol (DS19), which supports this hypothesis.

Why does the cipA deletion and complementation strain
(DS20) grow more slowly than the wild-type strain and have a
longer lag phase? cipA expression does not seem to be a likely
explanation, since minor variations in CipA abundance do not
appear to be correlated with growth rate (Fig. 5). On the other
hand, OlpB levels were unexpectedly low in this strain. Compared
to the empty-vector control strain (DS19), the cipA deletion and
complementation strain (DS20) had 30% fewer type II cohesins,
since it seems to have partly compensated for the reduction in olpB
expression with higher levels of sdbA and orf2p expression. Fur-
thermore, the wild-type strain and the cipA overexpression strain
(DS22) both had 15% fewer type II cohesins, and this change in
type II cohesin number did not have a substantial effect on fer-
mentation performance; thus, it seems unlikely that the change in
type II cohesin number is the full explanation. Another possibility
is that the anchor scaffoldins (OlpB, Orf2p, and SdbA) are not, in
fact, interchangeable. For example, if Orf2p and SdbA are primar-
ily used during cellulosome assembly (as has been suggested for
ORFXp in Clostridium cellulolyticum [32]) and OlpB is the final
destination for the assembled cellulosome, then a change in the
abundance of OlpB might have a greater impact on cellulosome
function than would be indicated simply by the overall change in
type II cohesin availability. Further investigations will be required
to determine the exact molecular roles of the various type II cohe-
sin-containing proteins in cellulosome assembly.

Why is olpB expression changed in the cipA deletion strain?
Although cipA and olpB have been reported to be transcribed in-
dependently (33), they may, in fact, be cotranscribed. Even if cipA
and olpB are expressed from individual promoters, the 1-kb re-
gion upstream of cipA may contain other regulatory elements that

Elapsed

A
vi

ce
l

g
lu

co
se

eq
u

iv
al

en
t

FIG 3 Avicel consumption by 4 strains of C. thermocellum growing on 10 g/liter Avicel. In order to allow subsequent comparison with growth rates on cellobiose,
the rate was reported in mM glucose equivalents per hour. Based on an assumed monomer mass of 162 g/mol and a 5% moisture content of Avicel, 58.6 mM
glucose equivalents were present initially. Avicel consumption was measured by elemental analysis of the pellet fraction of fermentation broth corrected for cell
carbon. Error bars represent one standard deviation (n � 3) for Avicel measurement of a representative fermentation. Solid lines represent the best fit of a
5-parameter logistic equation. Equation parameters are given in Table S1 in the supplemental material.
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affect olpB expression. Replacing the native cipA promoter on
plasmid pDGO-40 with a different promoter would allow cipA to
be expressed from a replicating plasmid in a cipA deletion strain
where the native cipA promoter has been left on the chromosome
(e.g., strain DS11).

The cipA deletion and complementation system described here

control complementation

Normalized spectral

FIG 4 Comparison of protein abundance as determined by normalized spectral abundance factor (nSpC) from tandem mass spectrometry measurements
of fermentation broth (combined cells and supernatant) at the end of Avicel fermentations. nSpC measurements were taken from biological duplicate
experiments. Pairwise comparisons were made, and proteins with significant changes (P � 0.01) are indicated by filled symbols. Other proteins are
indicated by unfilled symbols. The presence of cohesins, dockerins, and carbohydrate binding modules (CBMs) was determined by searching the Pfam
database (29).

TABLE 2 Abundances of type II cohesins

Protein

No. of type
II cohesins
per molecule

Protein abundance (nSpC) in:

DS19 WT DS20 DS22

SdbA 1 35.9 30.1 67.7 46.2
OlpB 7 44.1 42.0 3.8 38.7
Orf2p 2 106.3 70.8 148.1 77.9

Total type II
cohesins

557.4 466.0 390.8 473.5 FIG 5 Comparison of substrate consumption rate with the abundance of the
CipA scaffoldin protein for duplicate fermentations with strains DS1, DS19,
DS20, and DS22 grown on 10 g/liter Avicel.
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will be useful for systematic understanding of the cellulolytic ca-
pabilities of C. thermocellum. The ability to express cipA from a
replicating plasmid will enable the rapid exploration of the roles of
its subcomponents, including elucidation of the function of indi-
vidual modules of cipA, exploration of alternative cellulosomal
architectures, and characterization of its noncomplexed cellulase
system.
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