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Anr and Its Activation by PlcH Activity in Pseudomonas aeruginosa
Host Colonization and Virulence

Angelyca A. Jackson,a Maegan J. Gross,a Emily F. Daniels,a Thomas H. Hampton,a John H. Hammond,a Isabelle Vallet-Gely,b*
Simon L. Dove,b Bruce A. Stanton,a Deborah A. Hogana

Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USAa; Division of Infectious Diseases, Boston Children’s Hospital,
Harvard Medical School, Boston, Massachusetts, USAb

Pseudomonas aeruginosa hemolytic phospholipase C (PlcH) degrades phosphatidylcholine (PC), an abundant lipid in cell mem-
branes and lung surfactant. A �plcHR mutant, known to be defective in virulence in animal models, was less able to colonize
epithelial cell monolayers and was defective in biofilm formation on plastic when grown in lung surfactant. Microarray analyses
found that strains defective in PlcH production had lower levels of Anr-regulated transcripts than the wild type. PC degradation
stimulated the Anr regulon in an Anr-dependent manner under conditions where Anr activity was submaximal because of the
presence of oxygen. Two PC catabolites, choline and glycine betaine (GB), were sufficient to stimulate Anr activity, and their ca-
tabolism was required for Anr activation. The addition of choline or GB to glucose-containing medium did not alter Anr protein
levels, growth rates, or respiratory activity, and Anr activation could not be attributed to the osmoprotectant functions of GB.
The �anr mutant was defective in virulence in a mouse pneumonia model. Several lines of evidence indicate that Anr is impor-
tant for the colonization of biotic and abiotic surfaces in both P. aeruginosa PAO1 and PA14 and that increases in Anr activity
resulted in enhanced biofilm formation. Our data suggest that PlcH activity promotes Anr activity in oxic environments and that
Anr activity contributes to virulence, even in the acute infection phase, where low oxygen tensions are not expected. This finding
highlights the relationships among in vivo bacterial metabolism, the activity of the oxygen-sensitive regulator Anr, and
virulence.

Pseudomonas aeruginosa is a virulent opportunistic pathogen
that is frequently cultured from burn wound infections, im-

planted medical devices, and ocular infections and is estimated to
cause 8 to 16% of the nosocomial infections that occur worldwide
(1). P. aeruginosa infections occur in 80% of adults with the heri-
table disease cystic fibrosis (CF), who are particularly susceptible
to bacterial and fungal infections, in part because of decreased
mucociliary clearance (2). P. aeruginosa is the etiological agent of
morbidity and mortality in CF patients because of its contribution
to decreased lung function (3). Its role as the etiological agent of
these distinct disease states can be attributed to its metabolic ver-
satility, expansive array of virulence factors, and biofilm-mediated
persistence within the host.

P. aeruginosa produces a number of well-characterized viru-
lence factors that facilitate the establishment of infections. Hemo-
lytic phospholipase C (PlcH) is a secreted hydrolase that degrades
host-associated phosphatidylcholine (PC) and sphingomyelin (4–
6). These choline-containing phospholipids are abundant macro-
molecules in eukaryotic membranes and host lung surfactant.
PlcH adversely affects the integrity of the lung and contributes to
decreased lung function (7, 8). PlcH antibodies have been isolated
from the sputum of CF patients shortly after colonization with P.
aeruginosa (9), and plcH transcripts can be detected in the serum
of CF patients chronically colonized with P. aeruginosa (8), indi-
cating connections between PlcH activity and P. aeruginosa biol-
ogy in mammalian hosts. The sequential activities of PlcH and
choline phosphatase (PchP) release choline from choline-con-
taining lipids, and choline is imported by multiple P. aeruginosa
transporters (10) before sequential oxidation to glycine betaine
(GB), dimethylglycine, sarcosine, and glycine (11, 12). GbdR pos-
itively regulates plcH and pchP transcription, as well as that of the
genes involved in the catabolism of choline (8, 12).

In the nutrient-rich but hostile inflammatory environment of
the lung, P. aeruginosa is thought to enhance its survival by adopt-
ing a protective biofilm mode of growth (13). Biofilms promote
chronic infection by decreasing susceptibility to antibiotics and
host clearance (14, 15). Biofilm formation and anaerobic metab-
olism have been linked in late-stage biofilms. For example, genes
involved in anaerobic respiration (16–18), which are regulated by
the transcriptional regulator Anr, are abundant in P. aeruginosa
RNA extracted from the sputum of individuals with CF-associated
lung infections (19). Anr is active when the oxygen tension is low
(17, 20), likely because of its dependence upon the formation of an
oxygen-labile [4Fe-4S]2� cofactor that must be assembled prior to
Anr dimerization, DNA binding, and regulation of target genes,
according to work on Fnr, the Escherichia coli Anr homolog (21).
Oxygen can destabilize the labile Fe-S cluster, resulting in loss of
the active dimer.

Within mature 48-h biofilms, P. aeruginosa fermentation path-
ways, which are regulated in part by Anr, are upregulated (22).
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The decreased oxygen tension in CF mucus is hypothesized to lead
to increased Anr activity and the induction of these pathways in
chronic infections (23). Anr homologs have been linked to patho-
genesis in other species, including Shigella flexneri (24), Bordetella
pertussis (25), and Actinobacillus pleuropneumoniae (26). In Neis-
seria meningitidis, deletion of two operons directly controlled by
the Anr homolog Fnr resulted in attenuated virulence of the
pathogen in an infant mouse model of infection (27). The contri-
bution of Anr to P. aeruginosa virulence in vivo has not been ex-
amined, particularly in the context of the acute, rather than the
late, stage of chronic infection.

In this report, we present the links among PlcH activity, cho-
line catabolism, and expression of the Anr regulon in aerated cul-
tures through microarray analysis. We show that Anr plays an
important role in the colonization of plastic surfaces and airway
epithelial cells and that an �anr mutant was severely defective in
virulence in a murine model of acute-phase pneumonia. These
data present a previously uncharacterized connection between
PlcH activity and Anr activity and reveal roles for Anr in biofilm
formation, host colonization, and virulence in environments with
where oxygen is present.

MATERIALS AND METHODS
Growth conditions. All of the strains used in these studies are listed in
Table 1. Strains were maintained on LB, and media were supplemented
with gentamicin (60 �g/ml for P. aeruginosa and 10 �g/ml for E. coli) as
required. For lacZ fusion studies, the medium was supplemented with
carbenicillin (300 �g/ml, nirS-lacZ) or tetracycline (75 �g/ml, cgrA-lacZ).
Unless otherwise noted, cultures were grown in morpholinepropanesul-

fonic acid (MOPS)-glucose medium (28), which contained 10 mM glu-
cose and 8 �M ferric chloride. When specified, choline chloride and/or
sodium nitrate were added to a final concentration of 5 mM. MOPS-
glucose-surfactant medium consisted of MOPS, 10 mM glucose, 8 �M
FeCl3, and 3% (vol/vol) Survanta (Abbott Nutrition), which contains 11.0
to 15.5 mg/ml disaturated PC. Cultures were grown in tubes with 5 ml of
medium on a roller drum at 37°C or in 250-ml flasks with 20 ml of me-
dium (microarray experiments).

Construction of in-frame deletion mutants and plasmids. The PAO1
�plcHR and �gbdR mutants were constructed previously by Shortridge et
al. and Wargo et al., respectively (12, 29). The gbcA knockout plasmid was
constructed with pMQ30 as described in reference 30. To complement the
�anr mutant, anr was amplified from PAO1 with its native promoter
(1680824 to 1681070) and ligated into puc18T-mini-Tn7T-Gm (31). The
anr-D149A allele was synthesized by GenScript and then fused to the 300
bp upstream of the native anr gene by splice overlap extension PCR and
ligated into puc18T-mini-Tn7T-Gm. The anr-D149A gene was placed at
the attTn7 attachment site in the �anr and �plcH mutant backgrounds.

Biofilm assays on plastic and airway epithelial cells. Static biofilm
assays were performed with 96-well microtiter plates in MOPS–10 mM
glucose medium or M63 with 0.2% Casamino Acids with incubation for
24 h, and biofilms were measured as previously described (32). Purified
PlcH or PlcH-T178A protein was added to MOPS-glucose-surfactant me-
dium at to a final concentration of 5 �g/ml for the indicated experiments.

For culture on airway epithelial cells, 5 � 105 CFTR�F508 homozy-
gous human bronchial epithelial cells (CFBE41o�) (33) were grown in
either six-well plates or glass bottom dishes (MatTek Corp., Ashland, MA)
and then maintained in minimal essential medium (MEM) with serum
for 9 to 10 days. Once a confluent monolayer formed, overnight cultures
of P. aeruginosa strains grown in lysogeny broth were resuspended in
MEM. Epithelial cells were washed once, inoculated with 1 ml containing

TABLE 1 Strains and plasmids used in this study

Strain reference no. or
plasmid Description Source and/or reference

Strain no.
P. aeruginosa

DH1856 PAO1 WT S. Dove; 37
DH1297 PAO1 WT M. Schobert; 70
DH1722 PA14 WT 48
DH860 PAO1 �plcHR; in-frame plcHR deletion 29
DH1219 PAO1 �plcHR-RE; reconstruction of plcHR 42
DH2085 PAO1 �plcHR � mini-Tn7-Gm; empty vector at Tn7 site This study
DH2086 PAO1 �plcHR � anr-D149A; expression of anr-D149A at Tn7 site This study
DH543 PAO1 �gbdR; in-frame gbdR deletion 12
DH1857 PAO1 �anr; in-frame anr deletion in DH1856 37
DH1298 PAO1 �anr 17
DH1977 PA14 �anr; in-frame deletion of anr in DH1722 L. Dietrich
DH1913 PAO1 �anr � anr; complementation of �anr at attTn7 site in DH1856 This study
DH1837 PAO1 �anr � anr-D149A; complementation of anr deletion with anr-D149A attTn7 in DH1297 This study
DH2035 PAO1 �gbcA; in-frame deletion of gbcA in PAO1 (DH1856) This study
DH1829 PAO1 Anr-TAP This study
DH1472 PAO1 cgrA-lacZ; cgrA-lacZ reporter integrated at �CTX attachment site 37
DH1791 PAO1 �cgrC; in-frame deletion of cgrC in PAO1
DH1792 PAO1 �cupA2; in-frame deletion of cupA2 in PAO1

E. coli DH522 S17�pir

Plasmids
pMQ30 Suicide vector, Gmr 30
pHA531 nirS promoter upstream of lacZYA in pQF50, Carb/Ampr 36
pGbcA-KO pMQ30 with gbcA SOE KOa product This study
puc18T-mini-Tn7T-Gm attTn7 site insertion vector 31

a SOE KO, splicing by overlap extension knockout.
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1 � 108 P. aeruginosa, and incubated for 1 h. Planktonic cells were re-
moved, and cocultures were refed with serum-free MEM. The medium
was exchanged every 1.5 h. Cocultures were imaged with a Zeiss Axiovert
200 microscope with a 63� differential interference contrast (DIC) ob-
jective. Phospholipase (PLC) activity was measured in cocultures that
were not refed over the 5-h incubation period (Fig. 1B). To quantify
bacterial cell attachment, cocultures were washed twice with Dulbecco’s
phosphate-buffered saline (DPBS) and then treated with 1 ml of 0.1%
Triton X-100 to detach epithelial cells along with attached bacteria from
the wells. The cultures were serially diluted and plated on Pseudomonas
isolation agar, and CFU were counted after growth at 37°C.

NPPC assay. To measure phospholipase C (PLC) activity, superna-
tants from P. aeruginosa wild-type (WT), �plcHR mutant, and
�plcHR-RE mutant strains cocultured with airway epithelial cells as de-
scribed above were incubated with the artificial substrate p-nitrophenyl-
phosphorylcholine (NPPC) as described by Kurioka and Matsuda (34).
The reaction buffer contained 100 mM Tris-HCl (pH 7.2), 25% glycerol,
and 20 mM NPPC. NPPC hydrolysis was detected by measuring the ab-
sorbance at 410 nm and by comparison to a p-nitrophenol standard curve.

Microarray and quantitative PCR experiments. Cultures were grown
in MOPS–10 mM glucose–2 mM sodium pyruvate– 8 �M FeCl3–3% Sur-
vanta. After 4 h, cells were harvested and RNA was isolated with an RNeasy
kit (Qiagen). Contaminating DNA was removed through 1-h RQ1 DNase
(Promega) treatments, and semiquantitative PCR with the RNA was per-
formed to ensure the absence of contaminating DNA. The array data were
generated from two independent experiments performed on two different
days; in each experiment, the WT, �plcHR mutant, and �gbdR mutant
strain cultures were grown in parallel. cDNA was synthesized with Super-
script III reverse transcriptase (Invitrogen, Carlsbad, CA) and NS5 prim-
ers instead of random hexamers.

The cDNAs were terminally labeled with biotin-ddUTP (Enzo Bio-
Array terminal labeling kit; Affymetrix) and hybridized to Affymetrix
Pseudomonas GeneChips according to the manufacturer’s instructions
with the GeneChip fluidics station 450 (Affymetrix), and GeneChips were
scanned with GeneChip Scanner 3000 7G (Affymetrix) in the Dartmouth
Genomics and Microarray Laboratory. We used the BioConductor Affy
library to read in CEL file data, and data were normalized with RMA in
BioConductor (35).

FIG 1 PlcH activity positively affects P. aeruginosa host colonization. (A) PAO1 WT, �plcHR, and �plcHR-RE strains were incubated with a confluent
monolayer of CFBE airway cells for 6 h, and the associated bacteria were counted as CFU. (B) PLC activities in coculture supernatants were measured by NPPC
hydrolysis. The nitrophenol product was measured by determining the OD410. (C) Biofilm formation by the WT, �plcHR, and �plcHR-RE strains in MOPS-
glucose-surfactant medium. (D) Biofilm formation by the �plcHR mutant in MOPS-glucose-surfactant medium upon the addition of 5 �g/ml native PlcH or
PlcH-T178A. (E) Cell density of WT and �plcHR strains grown planktonically in surfactant-containing medium. The data are the averages of three replicate
cultures. *, P � 0.005 (difference from the WT in all panels).
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For quantitative real-time PCR experiments, cDNA was synthesized in
a manner similar to that described above, according to the protocol ac-
companying the Invitrogen Taq polymerase. The cycling regimen was
94°C for 3 min; 30 cycles of 94°C for 30 s, 56°C for 30 s, and 72°C for 30 s;
and extension at 72°C for 2 min; products were kept at 4°C. Quantitative
reverse transcription (RT)-PCR was set up with Power SYBR in accor-
dance with the manufacturer’s instructions. The primers used were dnr-
Forward (AGC CAG CTG TTC CGT TTC TC), dnr-Reverse (GTG GCG
TTC TTC AGG GAA AG), nirS-Forward (CCA AGT ACA TCC AGC ACA
CC), nirS-Reverse (GGT ATC GAT GAC CTT GAC GA), cgrA-Forward
(CAT TAC CAG GAT GCC GAT GT), cgrA-Reverse (CCT CCA GGT
CGA TGA ACA GT), ppiD-Forward (GGT GAG TCG TGG AAA GTG
GT), and ppiD-Reverse (GTA CAT GGC CTT CTC GTC CT). Expression
analysis was done via the Applied Biosystems 7500 Real-Time PCR system
with an annealing temperature of 56°C and an extension temperature of
72°C. Experimental transcripts were normalized to the housekeeping gene
ppiD.

�-Gal assays. To monitor the induction of promoters under the con-
trol of Anr, we used a construct with the nirS or cgrA promoter region
fused to lacZ (36, 37). Cells were grown overnight at 37°C in LB and then
diluted into 5 ml of fresh MOPS medium supplemented as indicated in
culture tubes at a starting optical density at 600 nm (OD600) of 0.05.
Cultures were incubated on a roller drum at 37°C for 5 h. For studies of
Anr activity under conditions with altered access to oxygen, cultures were
grown in MOPS–10 mM glucose–5 mM sodium nitrate with or without 5
mM choline on a roller drum for 5 h at 37°C. We designated aerated
cultures 5-ml cultures and those with low aeration 10-ml cultures. Cul-
tures grown incubated quiescently in closed capped tubes were designated
static. 	-Galactosidase (	-Gal) activity was measured as described by
Miller (38, 39). For osmoprotection studies, a �gbcA nirS-lacZ mutant
strain was grown overnight at 37°C in MOPS–10 mM glucose and then
diluted into 5 ml of 50 mM NaCl–MOPS or 0.3 M NaCl–MOPS–10 mM
glucose with or without 5 mM choline. Cell growth was monitored over
time, and 	-Gal activity was measured once cells grown in 0.3 M NaCl–
MOPS–10 mM glucose–5 mM choline were at a higher density than cells
grown in 0.3 M NaCl–MOPS–10 mM glucose.

General statistics. Experimental replicates were averaged for NPPC,
	-Gal, and quantitative PCR experiments. The means were compared
with a two-sample t test assuming unequal variance. P � 0.05 was consid-
ered significant.

Cellular respiration assay. WT cells were grown in MOPS–10 mM
glucose–5 mM choline to mid-exponential phase (OD600 of 0.4). Cells
were harvested, washed twice, and resuspended in MOPS medium with
only 10 mM glucose, 10 mM glucose, and 5 mM choline or no substrate
(resting). A 100-�l volume of the cell suspensions was added to 96-well
black Costar plates in addition to 10 �l alamarBlue (Invitrogen) reagent.
Fluorescence was monitored at 37°C for 2 h at a 560-nm excitation wave-
length and a 590-nm emission wavelength.

Cytotoxicity assays. Epithelial cell cytotoxicity was assayed by quan-
tification of lactate dehydrogenase (LDH) release according to the man-
ufacturer’s instructions (CytoTox96 nonradioactive cytotoxicity assay kit;
Promega).

Western blotting. A PAO1 strain producing a C-terminally tandem
affinity purification (TAP)-tagged Anr protein (Anr-TAP) was con-
structed by the methods described in reference 40. Anr-TAP-producing
cells were grown as described for the transcript analysis assays. Whole-cell
lysates were prepared by boiling for 10 min, and 20 �l of sample was
subjected to SDS-PAGE for 45 min at 150 V. Proteins were transferred to
a polyvinylidene fluoride membrane, washed, and then probed with a
soluble peroxidase-antiperoxidase complex (Sigma-Aldrich) to detect the
TAP tag. Proteins were visualized by SuperSignal West Pico chemilumi-
nescent substrate (Pierce). The SDS-PAGE gel was stained with GelCode
Blue Stain reagent (Pierce Biotechnology, Inc.) to visualize loaded-pro-
tein concentrations.

Mouse experiments. Male C57BL/6 mice (Jackson Laboratories) were
anesthetized with isoflurane and then inoculated with 6 � 107 P. aerugi-
nosa cells via oropharyngeal aspiration (8). Mouse external body temper-
ature (°C) was logged at 0, 3, and 24 h postinfection with an infrared
thermometer (IR-101; Infrascan, La Crosse, WI). After 24 h, the mice were
euthanized and then their lungs were surgically removed and homoge-
nized in 1 ml phosphate-buffered saline. The homogenate was serially
diluted on Pseudomonas isolation agar for CFU enumeration after incu-
bation at 37°C. The mouse experiments were performed in compliance
with all institutional and federal policies.

Microarray data accession number. Microarray data sets were depos-
ited in the GEO database (GSE41926).

RESULTS
PlcH requirement for P. aeruginosa colonization of epithelial
cells and biofilm formation in lung surfactant-containing me-
dium. Previous work has shown that PlcH degrades phospholip-
ids in host membranes and in lung surfactant both in vivo and in
vitro (8, 41). Furthermore, we recently reported that the recovery
of WT P. aeruginosa was 40-fold greater than that of �plcHR mu-
tant cells after oropharyngeal infections of the mouse lung with
106 CFU of P. aeruginosa (42). To understand the role of PlcH, if
any, in colonization of and growth in the lung, we examined P.
aeruginosa WT and �plcHR mutant cells in an airway epithelial
cell colonization assay. P. aeruginosa strains were coincubated
with a confluent monolayer of CFTR�F508 (CFBE41o�) ho-
mozygous human airway epithelial cells under conditions that
lead to the formation of P. aeruginosa biofilms on epithelial cells
(43). While the initial attachment of WT and �plcHR mutant cells
was not different after 1 h (data not shown), the biofilms formed
by the �plcHR mutant on the epithelial cell monolayer contained
significantly fewer cells than did the biofilms formed by the WT,
and the defect was complemented by restoration of plcHR at the
native locus (�plcHR-RE) (P � 0.005, Fig. 1A). To determine if
PlcH was produced in this system, we measured PLC activity in
supernatants from airway cell cocultures. WT coculture superna-
tants had nine times as much PLC activity as the �plcHR mutant
coculture supernatants, and complementation with plcHR re-
stored PLC activity to 62% of the WT level (Fig. 1B).

To examine the effects of PlcH on surface colonization in PC-
rich environments, we assessed P. aeruginosa growth and biofilm
formation on plastic in a glucose-based medium with 3% Sur-
vanta, a synthetic lung surfactant, which contains 11.0 to 15.5
mg/ml disaturated PC. PlcH is produced in this medium, and
catabolism of the released phosphorylcholine head group has
been shown to occur (8). In lung surfactant-containing medium,
the �plcHR biofilm in the microtiter dish well assay was signifi-
cantly reduced by 7-fold compared to that of the WT or
�plcHR-RE mutant strain (Fig. 1C). Biofilm formation by the
�plcHR mutant could also be complemented with purified native
PlcH protein but not an equivalent amount of a catalytically inac-
tive PlcH variant (PlcH-T178A) (44), indicating that its activity
rather than its surface association domains is required for the
stimulation of biofilm formation (Fig. 1D). We found that WT
and �plcHR mutant cell densities were not significantly different
in surfactant-containing medium, suggesting that the difference
in biofilm formation was not due to decreased growth (Fig. 1E).

PC availability-induced transcript levels of genes regulated
by Anr. To determine how PlcH activity impacted P. aeruginosa
surface colonization (Fig. 1A and C), we compared the global
expression profiles of the �plcHR mutant and the �gbdR mutant,
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a strain lacking a transcriptional regulator required for PlcH pro-
duction and PC catabolism (8), to that of the WT in surfactant-
containing medium at 4 h. The P. aeruginosa WT, �plcHR, and
�gbdR strains had completely overlapping growth curves over 10
h in MOPS-glucose-surfactant medium, as determined by OD
(data not shown) and consistent with data in Fig. 1E. The mRNA
expression profiles were determined with the Affymetrix Pseu-
domonas GeneChip. While most of the transcripts did not differ
among the three strains, one strong pattern emerged, i.e., lower
levels of transcripts regulated by the transcription factor Anr in the
�plcHR and �gbdR mutant strains than in the WT. Trunk et al.
reported genes with Anr boxes in their promoter regions that are
differentially expressed in an Anr-dependent manner (45). We

found that, with few exceptions, transcripts within this defined
Anr regulon were lower in strains that could not produce PlcH
(�plcHR and �gbdR mutant strains) than in the WT (Fig. 2A).

To better compare the WT to the �plcHR mutant, the P values
and n-fold changes in more than 5,000 P. aeruginosa transcripts
were displayed on a volcano plot (Fig. 2B). This presentation
method showed that the bulk of the transcripts did not change
significantly in abundance and that the differences in Anr-regu-
lated transcripts were among the strongest trends in the data com-
paring �plcHR (Fig. 2B) or �gbdR (not shown) to the WT. The
n-fold differences between the WT and the �plcHR mutant for
Anr-regulated genes ranged from 5- to 36-fold (see Table S1 in the
supplemental material), and differentially regulated transcripts

FIG 2 PlcH activity correlates with the induction of the Anr regulon. (A) The WT and �plcHR mutant strains were grown for 4 h at 37°C in MOPS-glucose-
surfactant medium. RNA was profiled with Affymetrix Pseudomonas GeneChips (n 
 2). Shown is a heat map of Anr-regulated transcripts clustered according
to differential expression in the WT, �plcHR, and �gbdR strains. (B) Volcano plot depicting the average n-fold difference in transcripts in surfactant-containing
medium between the �plcHR mutant and WT strains. Anr-regulated transcripts are highlighted in red. The horizontal line marks P 
 0.05, and the vertical lines
represent a 2-fold change. (C) To confirm the microarray data, the nirS-lacZ promoter fusion was used in the WT, �plcHR, and plcHR-RE strains in MOPS-
glucose medium with (closed bars) and without (open bars) 3% Survanta after growth at 37°C for 6 h. The data are the means of three replicate cultures. *, P �
0.0005 (different from the WT without PC).
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include those involved in energy generation under low-oxygen
conditions, such as those that encode high-affinity cytochrome
oxidases and fermentation and denitrification enzymes. The Anr-
regulated operon cgrA-cgrC, which encodes transcriptional regu-
lators of CupA fimbriae (37, 46), was also differentially expressed.
Transcripts that were more highly expressed in the �plcHR mu-
tant but not known to be controlled by Anr are shown in Table S2
in the supplemental material; the majority of these transcripts
encode proteins that have not yet been characterized.

P. aeruginosa PC catabolism yields the catabolic intermediates
GB and dimethylglycine, inducing plcH and pchP transcription
through activation of GbdR (8), in addition to genes involved in
the GB degradation pathway (12). We observed that many of the
choline catabolism-related transcripts were differentially ex-
pressed with 20-fold lower levels of transcripts involved in GB
catabolism (gbc, dgc, and soxA-D) in the �gbdR mutant than in the
WT (8). The lower abundance of these transcripts indicated that
GB was being generated in WT cultures from the release of the
phosphorylcholine head group by PlcH. PlcH activity also releases
diacylglycerol, which can be oxidized by P. aeruginosa as a source
of energy in the lung (19). Interestingly, the psrA transcript, which
encodes a repressor of genes involved in the oxidation of lipids,
was 12-fold more abundant in the WT than in the �plcHR mutant
(47). Fatty acid oxidation-associated transcripts (fad genes) were
not among those identified as being different among the WT,
�plcHR, and �gbdR strains. These data suggest that in these cul-
tures, catabolism of the choline head group, but not the lipid por-
tion of PC, was under way.

PlcH activity is associated with higher levels of Anr activity in
vitro and on airway epithelial cells. Because of the surprising dif-
ferences in the levels of Anr-controlled transcripts (Fig. 2A) in
aerated cultures of the P. aeruginosa WT, �plcHR, and �gbdR
strains that were at the same cell densities, we examined links
between PlcH activity and Anr induction. Following the transcrip-
tion of an Anr-regulated gene, nirS, strains carrying a plasmid with
the nirS promoter driving lacZ expression were grown with high
levels of aeration in MOPS medium with and without surfactant.
We observed significantly higher levels of 	-Gal activity in WT
cultures with surfactant, while the �plcHR strain did not show a
significant difference in nirS-lacZ expression. Complementation
with the plcHR gene at the native locus restored the increase in the
expression of the Anr-controlled gene in medium with surfactant
(P � 0.0005, Fig. 2C). The stimulation of nirS promoter activity
upon the addition of surfactant was Anr dependent (Fig. 3A).
Because Anr also regulates the cgrA-cgrC operon (46), we assayed
activity at the cgrA promoter in strains carrying cgrA-lacZ fusions.
We observed higher levels of 	-Gal activity in medium with sur-
factant (P � 0.001) in an Anr-dependent manner (Fig. 3B).

To determine if PlcH activity impacted the activation of the
Anr regulon when P. aeruginosa was cocultured with airway epi-
thelial cells, we assayed nirS and cgrB levels in the WT, �plcHR,
and �plcHR-RE strains. Both transcripts were lower in the
�plcHR mutant than in the WT at 6 h (Fig. 4). The �anr mutant
had 40- and 30-fold lower levels of nirS activity than the WT and
the complemented mutant, respectively (data not shown).

Choline catabolism positively regulates Anr activity in vitro.
In light of transcriptional evidence that choline derived from
PlcH-mediated PC degradation (8) was being catabolized in WT
cells when Anr-regulated transcripts were lower in �plcHR and
�gbdR mutant cells than in the WT, we sought to determine if

choline was sufficient to induce Anr activity in P. aeruginosa. We
compared nirS promoter activity in a WT strain with that in the
nirS-lacZ fusion grown with and without choline in MOPS-glu-
cose medium. The inclusion of choline in the medium was suffi-
cient to stimulate Anr activity in the WT by 3.3-fold (Fig. 5A). The
levels of three Anr-regulated genes, dnr, cgrA, and nirS, assessed by
quantitative RT-PCR in medium supplemented with the PC ca-
tabolite choline, were found to be significantly lower in the �anr
mutant strain than in the WT and the �anr-complemented strain
(see Fig. S1 in the supplemental material). It is important to note
that the �anr mutant was able to grow and catabolize choline;
thus, the defect in PC-mediated induction was due solely to the
absence of Anr activity at the given promoters. To determine if the
catabolism of choline is required for the stimulation of the Anr-
regulated transcript levels, we also monitored nirS-lacZ activity in
the �gbcA mutant, which cannot catabolize choline or GB for
energy or growth because of the inability to convert GB into di-
methylglycine (12). In contrast to what was seen in WT cultures,
activity at the nirS promoter was not higher in the �gbcA mutant
upon the inclusion of choline in the growth medium (Fig. 5A).
These data indicated that choline must be catabolized to induce
Anr activity and suggested that the osmoprotectant properties of
GB were not responsible for Anr induction. To exclude the possi-

FIG 3 Anr is required for PC-mediated induction of nirS and cgrA. Shown are
data for nirS-lacZ (A) and cgrA-lacZ (B) promoter fusions in the WT, �anr
mutant, and anr-complemented �anr mutant strain backgrounds in MOPS-
glucose without (closed bars) and with (open bars) 3% surfactant. The data are
means of three replicate cultures with comparable results in independent ex-
periments. *, P � 0.05 (difference from base medium).
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bility that the lack of response to choline in the �gbcA mutant was
due to an inability to take up or accumulate GB, we grew the
�gbcA mutant in MOPS-glucose medium with a concentration of
salt that was partially inhibitory (0.3 M NaCl) in the absence of
choline or another osmoprotectant. While 5 mM choline was able
to rescue growth in 0.3 M NaCl to levels of control cultures (data
not shown), choline did not influence the expression of nirS-lacZ
in salt-containing medium (5.83 � 2.5 Miller units without cho-
line versus 8.40 � 1.2 Miller units with choline).

One potential explanation for our finding that choline or sur-
factant catabolism stimulates Anr activity is that the addition of
choline or the ability to degrade the head group from PC leads to
increased respiratory activity or cell density. In our glucose-con-
taining medium, the addition of choline did not result in a signif-
icant change in growth rates or final yields, suggesting that differ-
ences in OD did not explain the enhanced Anr activation seen
(data not shown). Furthermore, when the respiratory activity of
WT cells pregrown in choline-containing medium to induce the
expression of choline transporters (10) was measured, it was
found that there was similar respiratory activity in cells given glu-
cose, even with the addition of choline as measured by alamarBlue

FIG 4 Anr is active early during P. aeruginosa colonization of epithelial cell
monolayers. Shown are the results of a quantitative RT-PCR analysis of nirS
and cgrB, normalized to ppiD, in the WT, the �plcHR mutant, and its comple-
mented derivative. The data are means from three replicate cultures, and sim-
ilar results were obtained in two independent experiments. *, P � 0.001 (dif-
ference from the WT).

FIG 5 Induction of Anr activity is dependent on choline catabolism. (A) nirS promoter expression was assayed in the WT and �gbcA mutant backgrounds in
MOPS-glucose (control) with or without 5 mM choline (Cho) and/or 5 mM nitrate (NO3

�) after growth at 37°C for 5 h. (B) Respiratory activity of WT without
a carbon source (Resting), with glucose, or with glucose and choline was measured with alamarBlue. Data are presented as percent reduction over time. (C) WT
nirS-lacZ was grown in 20 mM glucose or choline alone at 37°C. 	-Gal activity was measured at an OD600 of 0.2. (D) nirS-lacZ promoter fusion in WT cells grown
in MOPS-glucose with 5 mM sodium nitrate with or without 5 mM choline in aerated, low-oxygen, and static cultures at 37°C. The data are the means of
biological replicates. (E) Western blot analysis of an Anr-TAP-producing strain grown under high and low oxygen concentrations in MOPS-glucose medium
with 5 mM nitrate with or without 5 mM choline. The data are the means of replicate cultures with comparable results between independent experiments.
*, P � 0.05 (compared to control cultures).
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(Invitrogen) reduction (Fig. 5B). Although P. aeruginosa grows
more slowly on choline as a sole carbon source (12), WT cells
grown solely on choline to an OD of 0.2 had higher levels of nirS-
lacZ-derived 	-Gal activity (6.75-fold) than did glucose-grown
cells analyzed at the same cell density (Fig. 5C). Together, these
data suggest a model in which choline-induced Anr activity was
not dependent on cell density or changes in respiratory activity.

The addition of nitrate to anoxic medium promotes nirS tran-
scription via coordinate regulation by Anr and the secondary tran-
scription factor Dnr (18, 45). While the addition of nitrate to
aerated cultures in MOPS-glucose medium did not induce nirS
promoter activity, choline with nitrate induced higher levels of
nirS-lacZ transcription than choline alone (Fig. 5A), suggesting
that nirS transcription could be promoted by the activation of
coregulators once Anr was activated. As was observed in the ab-
sence of nitrate, there was no induction of nirS-lacZ in the �gbcA
mutant.

A comparison of 	-Gal activities in the WT nirS-lacZ strain in
base medium without choline showed the expected increases as
oxygen became less available (Fig. 5D). Increased liquid volumes
in culture tubes (low-oxygen conditions) were sufficient to induce
a 3-fold greater increase in nirS promoter activity over levels in
aerated cultures, and static conditions led to a 25-fold increase in
	-Gal levels (Fig. 5D). Thus, Anr was largely inhibited under our
aerated and low-oxygen culture conditions because of the pres-
ence of oxygen. While choline significantly stimulated Anr activity
at the nirS promoter under both aerated (Fig. 5A, 3.3-fold, and D,
2-fold) and low-oxygen (Fig. 5D, 2-fold) conditions (P � 0.05),
there were no observable effects of choline on Anr activity under
static culture conditions (Fig. 5D). To determine if Anr protein
levels were affected by the addition of choline in cultures exposed
to oxygen, we used a strain expressing a functional Anr fusion
protein with a C-terminal TAP tag. The addition of choline did
not lead to higher levels of Anr protein than in cells in medium
with glucose alone under either aerated or low-oxygen conditions
(Fig. 5E).

Anr activity contributes to P. aeruginosa biofilm formation
on plastic and epithelial cells. Because our interest in Anr came
from an examination of the effects of PlcH activity in mouse lung
colonization (8) and biofilm formation in lung surfactant-con-
taining medium (Fig. 2), we assayed the �anr mutant biofilm
phenotype. The �anr mutant strain, like the �plcHR mutant
strain, was defective in biofilm formation compared to the WT in
surfactant-containing medium, and biofilm formation was re-
stored upon complementation with anr (Fig. 6A). Unlike the
�plcHR mutant strain, which formed biofilms indistinguishable
from those of the WT in medium without surfactant (data not
shown), the �anr mutant biofilm defect was not limited to surfac-
tant-containing medium; its biofilm formation in the absence of
surfactant was significantly lower than that of the WT in medium
with glucose and amino acids as growth substrates (see Fig. S2A in
the supplemental material). As PAO1 strains can vary between
labs, the �anr mutant biofilm defect was confirmed in two distinct
PAO1 WT and �anr mutant pairs (see Fig. S2) (17, 37) and was
also observed in genetically distinct P. aeruginosa strain PA14 (see
Fig. S3) (48), demonstrating that Anr was important for P. aerugi-
nosa biofilm formation in different strain backgrounds. Because
Anr controls CgrA-CgrC, regulators that control the expression of
the genes that encode CupA fimbriae, appendages that promote
cell-cell interactions and robust biofilms (37, 46, 49, 50), we as-

sayed the contributions of cupA2 and cgrC to P. aeruginosa bio-
films. In our assay, the absence of cupA2 or cgrC did not change the
biofilm phenotype from that of the WT (see Fig. S4).

To determine if induction of Anr activity affects P. aeruginosa
biofilm formation, we constructed a strain expressing an Anr-
D149A variant that was predicted to have constitutive activity on
the basis of work on Fnr in E. coli (51). The �anr mutant strain
producing Anr-D149A formed a more robust biofilm than the
WT and the complemented �anr mutant in surfactant-containing
medium (Fig. 6A), indicating that promotion of Anr activity in-
creases biofilm formation. The activity of Anr-D149A was 4.5-fold
higher than that of native Anr in MOPS-glucose medium lacking
choline (Fig. 6B), which was fortuitously similar to the amount of
stimulation of native Anr observed upon the addition of choline
(Fig. 3A). Furthermore, as observed in surfactant-containing me-
dium, enhanced biofilm formation upon the production of Anr-
D149A was observed in MOPS-glucose medium (see Fig. S2 in the
supplemental material).

To determine if the defects in biofilm formation in the �plcHR
mutant in medium with surfactant was due in part to defects in
Anr activation, the anr-D149A allele was transformed into the
�plcHR strain. The �plcHR mutant strain expressing the hyper-
active Anr-D149A variant had a 2.8-fold increase in biofilm for-
mation compared to that of the �plcH mutant, whereas the ap-
propriate vector control had an only 1.6-fold increase in biofilm
formation. As a control, we confirmed that the anr-D149A allele

FIG 6 Anr activity promotes P. aeruginosa biofilm formation. (A) Biofilms
formed by WT, �anr mutant, and anr- and anr-D149A-complemented �anr
mutant strains after 24 h in MOPS-glucose-surfactant medium. (B) nirS-lacZ
expression in the �anr mutant strain carrying the empty vector, anr, or �anr
plus anr-D149A in MOPS-glucose medium. 	-Gal activity was measured after
growth at 37°C for 4 h. The data are the means of three replicate cultures. *, P �
0.001 (difference from the WT).
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stimulated biofilm formation in the WT background with native
anr (not shown), as well as in the �anr mutant (Fig. 6A). These
findings are consistent with our model in which part of the
�plcHR mutant’s defect in biofilm formation in lung surfactant-
containing medium is due to the inability to activate Anr under
oxic conditions.

Anr is involved in the colonization of airway epithelial cells
and the mouse lung. To gain insight into how Anr may impact
host interactions, we assessed P. aeruginosa colonization of CFBE
cells. In this model, the �anr mutant was observed to be defective
in surface association (Fig. 7A). Compared to the abundant, ro-
bust microcolonies observed in WT cocultures, the �anr mutant
formed only small groups of bacterial cells on the epithelial cell
monolayer after 6 h in a coculture (Fig. 7A). At this time point, the
�anr mutant showed a marked reduction in cytotoxicity relative
to that of the WT, as measured by LDH release into the coculture
supernatant (Fig. 7B). Both the airway cell colonization defect and
the decrease in cytotoxicity in the �anr mutant strain were res-
cued by complementation.

A role for Anr activity in chronic, late-stage infections associ-
ated with CF could be inferred from several studies of oxygen
tension in CF patient airway mucus (52), induction of genes in-
volved in denitrification in P. aeruginosa in sputum environments
(53), and fermentation pathways in 48-h flow cell biofilms formed
by P. aeruginosa (22). On the basis of the observation that the �anr
mutant had an early defect in biofilm formation on airway epithe-
lial cells, we also hypothesized that the absence of Anr would lead
to a defect in colonization or virulence in an acute-phase infection
model. To this end, we used a mouse pneumonia model to assay
the contribution of Anr regulation to the establishment of the
acute phase of infection. Twenty-four hours after mice were inoc-
ulated with 6 � 107 P. aeruginosa cells by oropharyngeal aspira-
tion, the �anr mutant was recovered from the lungs at 1,000-fold
lower levels than the WT and the anr-complemented �anr mutant
train (Fig. 8; P � 0.001). Furthermore, the mice infected with the
WT and anr-complemented strains had lower external body tem-
peratures, a marker of imminent death (54), than mice infected
with the �anr mutant strain. Mice infected with the �anr mutant
strain had a body temperature near the baseline (27.9 � 0.9°C),
while mice infected with the WT had a significantly lower body
temperature (22.8 � 0.4°C) at 24 h. The differences between the

two groups in body temperatures and the number of CFU recov-
ered suggest that Anr plays a role in this acute-phase infection
model.

DISCUSSION

Our analyses of P. aeruginosa strains grown in lung surfactant-
containing medium showed significantly higher levels of Anr-reg-
ulated transcripts in the WT than in the �plcHR and �gbdR mu-
tants, indicating that PlcH activity increased the Anr activation of
its target promoters (Fig. 2). Evidence of increased Anr activity
extended to several pathways involved in P. aeruginosa respira-
tion, biofilm formation, and virulence (see Table S1 in the supple-
mental material). Choline was sufficient to increase activity at
Anr-regulated promoters independent of increases in cell density
or metabolic activity (Fig. 5). To our knowledge, this is the first
report linking the catabolism of host-derived substrates and in-
creased Anr activity under conditions where Anr is thought to be
largely inactive because of the presence of oxygen (17, 55). A re-
cent study has shown that P. aeruginosa betI and betB transcripts
were particularly upregulated in CF patient lung infections, as well
as burn wound samples, compared to those in planktonic controls
(56). Because the betaine aldehyde dehydrogenase-encoding

FIG 7 Anr regulates microcolony formation on airway cells and cytotoxicity. (A) Images of WT, �anr mutant, anr-complemented �anr mutant biofilms on
CFBE cells after 6 h. DIC images were taken at �63 magnification. (B) Percentages of LDH release from CFBE cells following coculture with the WT, the �anr
mutant, and the anr-complement �anr mutant for 6 h. The data are the means of three replicate cultures. *, P � 0.05 (difference from the WT).

FIG 8 The �anr mutant is severely defective in a murine pneumonia model.
Male C57/BL6 mice received 6 � 107 WT and �anr mutant cells by oropha-
ryngeal inoculation. Mice were sacrificed at 24 h, and following growth at
37°C, CFU were enumerated. Data are the mean values of individual mice.
Values from three separate experiments were pooled. *, P � 0.001 (difference
from the WT and anr-complemented �anr mutant strains).
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genes are responsible for the conversion of choline to GB (57), this
implies choline uptake and utilization in vivo.

Biofilm formation was negatively impacted by the absence of
Anr on plastic and on airway epithelial cells (Fig. 6 and 7) (58).
While Anr is well known for its role in the regulation of denitrifi-
cation (17), the defects in Anr biofilm formation extended to con-
ditions without any sources of nitrate, nitrite, or nitric oxide, and
thus, defects were not due to the inability to use these alternative
electron acceptors (see Fig. S2 in the supplemental material). Re-
cent studies have shown a role for pyruvate fermentation path-
ways in late stages of biofilm development in flow cells (22), and
future studies will elucidate whether or not Anr is required for the
control of these pathways and if these pathways play roles in early
events in biofilm development on plastic and in host colonization.
The �anr mutant also had a severe defect in mouse lung coloni-
zation and appeared to be largely cleared from the lung within 24
h, in contrast to the WT (Fig. 8). The steep oxygen gradients that
exist within the mucus plugs in the CF patient lung (52, 59), likely
because of the combined respiratory and enzymatic activities of
both bacterial and host cells (60), have already hinted at an im-
portant role for Anr in P. aeruginosa utilization of alternate elec-
tron acceptors during chronic CF lung infections.

Our data support a model in which Anr also plays an integral
role in initial events governing P. aeruginosa colonization of the
host (Fig. 7 and 8). The environments in which these events take
place are not anoxic, and although Anr activity is repressed by
oxygen, we have shown that the availability of choline, which can-
not be synthesized by P. aeruginosa de novo, induces Anr activity
only under aerated conditions (Fig. 5). Because choline catabo-
lism is predicted to require oxygen at multiple steps (12), it is not
surprising that choline does not stimulate Anr activity under an-
aerobic conditions. Induction of denitrification enzymes when
oxygen is present may enable the detoxification of nitric oxide
species produced in the highly inflammatory host environment
(61). Small quantities of nitrate are available to be metabolized by
P. aeruginosa in the CF lung (52, 62, 63), and nitric oxide, either
provided exogenously or generated through denitrification, could
stimulate the expression of the type III secretion system, which is
associated with acute toxicity to epithelial cells and promotion of
inflammation (64). The early induction of Anr may benefit P.
aeruginosa in vivo through the induction of high-affinity terminal
oxidases that can increase respiration at low oxygen tensions and
may also give P. aeruginosa an advantage, as oxygen becomes lim-
iting during biofilm formation or depletion of local oxygen by the
host immune response (55). It is also interesting that a small RNA
controlled by Anr impacts the expression of quorum sensing-con-
trolled virulence factors such as phenazines (65). Anr also contrib-
utes directly to the regulation of genes involved in cyanide biosyn-
thesis (66). Future studies will determine whether these or
alternative Anr-regulated pathways clarify the nature of the �anr
defect in the mouse pneumonia model.

We put forward a model in which PlcH activity promotes Anr
activity and thus promotes host colonization. Interestingly, PlcH
shows little toxicity for epithelial cells (44); therefore, this poten-
tial role for PlcH in interactions with epithelial cells provides new
insight into the mechanisms by which this virulence factor pro-
motes disease. PlcH has been shown to contribute to virulence in
many different hosts, including plants, invertebrates, and mam-
mals. It is important to note that the plcH promoter has been
reported to have an Anr consensus sequence, and thus, there is

potential for there to be a positive feedback loop triggering this
pathway (45). While our data suggest that PlcH activity stimulates
Anr through the release of choline, it is challenging to determine
whether abolition of choline catabolism is sufficient to prevent
Anr activation in lung surfactant because of the regulation of PlcH
production by choline catabolism intermediates (67). Our prior
work has shown, however, that choline is readily catabolized in
lung surfactant-containing medium (8), and even low concentra-
tions of choline trigger the induction of multiple choline trans-
porters (10). Because P. aeruginosa does not synthesize its own
choline, we speculate that choline serves as an indicator of the
presence of eukaryotic hosts. While the mechanism(s) by which
choline stimulates Anr activity is unknown, our data show that
Anr stimulation was not due to increased cell density or an in-
creased respiratory rate (Fig. 1E and 5B). Oxygen consumption
experiments did not show reproducible differences in oxygen up-
take between cultures with choline and glucose and cultures with
glucose alone (data not shown). Choline-derived GB is an osmo-
protectant in P. aeruginosa and other species (10, 68), and while it
is possible that it could stabilize the mature 4Fe-4S cluster-con-
taining dimer in its soluble or DNA-bound state, its accumulation
did not stimulate Anr activity (Fig. 5A). Because the activity of the
E. coli Anr homolog, Fnr, is impacted by iron availability and nitric
oxide (69), there is the potential for complex regulation of Anr
activity in the context of mammalian hosts.

Together, these data suggest that Anr could be a viable target
for the development of novel P. aeruginosa therapies. Since other
pathogens require Anr homologs for virulence (24–27), such an
approach may also be beneficial in the treatment of other diseases.
Future work will determine if the inactivation of Anr during es-
tablished infections can limit disease.
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