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Pouring Salt on a Wound: Pseudomonas aeruginosa Virulence Factors
Alter Na� and Cl� Flux in the Lung

Alicia E. Ballok, George A. O’Toole

Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA

Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen with multiple niches in the human body, including the lung. P.
aeruginosa infections are particularly damaging or fatal for patients with ventilator-associated pneumonia, chronic obstructive pulmo-
nary disease, and cystic fibrosis (CF). To establish an infection, P. aeruginosa relies on a suite of virulence factors, including lipopoly-
saccharide, phospholipases, exoproteases, phenazines, outer membrane vesicles, type III secreted effectors, flagella, and pili. These fac-
tors not only damage the epithelial cell lining but also induce changes in cell physiology and function such as cell shape, membrane
permeability, and protein synthesis. While such virulence factors are important in initial infection, many become dysregulated or non-
functional during the course of chronic infection. Recent work on the virulence factors alkaline protease (AprA) and CF transmem-
brane conductance regulator inhibitory factor (Cif) show that P. aeruginosa also perturbs epithelial ion transport and osmosis, which
may be important for the long-term survival of this microbe in the lung. Here we discuss the literature regarding host physiology-alter-
ing virulence factors with a focus on Cif and AprA and their potential roles in chronic infection and immune evasion.

Pseudomonas aeruginosa is a Gram-negative gammaproteobac-
terium that is present in diverse environments and is a com-

mon opportunistic pathogen displaying high-level antibiotic re-
sistance and with the capability of infecting many hosts, including
humans. In humans, these infections tend to occur in association
with epithelial cell damage to the skin or eye or medical devices
such as catheters or ventilators or in immunocompromised indi-
viduals. In addition to these illnesses, P. aeruginosa lung infections
are common in individuals with chronic obstructive pulmonary
disease (COPD), ventilator-associated pneumonia (VAP), and
cystic fibrosis (CF) (1).

COPD is caused primarily by tobacco smoke inhalation. Long-
term use of tobacco products leads to an increase in airway inflam-
mation and a breach of the airway/vascular barrier (2), which in
turn leads to chronic bronchitis, airway remodeling, and emphy-
sema, resulting in decreased oxygenation of the blood and a re-
duced forced expiratory volume in 1 s, the hallmark of COPD.
Patients with this inflammatory disease are at greater risk of mi-
crobial infection. For patients with COPD, P. aeruginosa can cause
a short-term infection that is cleared quickly, induce severe exac-
erbations, or chronically colonize the lung (reviewed in references
3 and 4).

Nosocomial infections such as VAP, caused by intubation of an
individual, are a growing problem, with mortality rates as high as
13 to 55% (5, 6). Mechanical ventilation is thought to readily
permit the passage of bacteria, which may be attached to the ven-
tilator tube, to the lower airways, and because VAP patients are
often sedated or immobile, the diagnosis of an infection can be
delayed. The bacteria that most commonly cause VAP include
members of the family Enterobacteraceae, Staphylococcus aureus,
and P. aeruginosa. P. aeruginosa infections are of particular con-
cern, as they are associated with a mortality rate as high as 70 to
80% (7).

In the case of CF, patients have a mutation in the gene encoding
the CF transmembrane conductance regulator (CFTR). CFTR is a
chloride ion channel of the ABC transporter family, and muta-
tions in CFTR result in misfolding, a lack of proper localization,
and/or a complete lack of the protein. CFTR, in cooperation with

the epithelial sodium channel (ENaC), is responsible for control-
ling the level of airway surface liquid (ASL) (Fig. 1). ASL is the
periciliary liquid layer, which is critical for the removal of inhaled
contaminants such as bacteria in that it provides hydration to lung
mucus and a substrate for ciliary movement (8) (Fig. 1).

In addition to its role in transporting Cl� ions, CFTR activity is
known to reduce ENaC activity, and thus, the absence of CFTR
leads to ENaC hyperactivity (9). The CFTR-mediated regulation
of ENaC appears to occur regardless of the chloride concentration
within the cell (10), although the mechanism of repression is con-
troversial (reviewed in references 11 to 13). Interaction of these
two proteins, either directly or indirectly as part of a larger protein
complex, is the currently favored model, as yeast two-hybrid, im-
munoprecipitation, and fluorescence resonance energy transfer
analyses support such interactions (14–16).

Thus, depletion of CFTR results in a loss of Cl� secretion and
an increase in sodium import (due to an increase in ENaC activ-
ity). The combined effects of CFTR loss and ENaC derepression
are a reduction of ASL height and an associated thickening of
mucus and ciliostasis (8), although the precise mechanisms by
which these changes occur is still somewhat controversial (11).
The altered airway environment in CF becomes a setting in which
P. aeruginosa can eventually establish an infection.

ESTABLISHING AN INFECTION

The lung is a hostile environment in which to initiate an infection;
thus, P. aeruginosa possesses a cache of virulence factors to ma-
nipulate host physiology and overcome host defenses. These vir-
ulence determinants are both secreted and cell associated. Flagella,
pili, and lipopolysaccharide are not only important for motility
and adhesion but also serve as activators of Toll-like receptor 5
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(TLR5), TLR2, and TLR4, which in turn lead to immune activa-
tion (17, 18). Additionally, LepA, a protease, cleaves protease-
activated receptors 1, 2, and 4 to activate NF-�B and increase
inflammation (19). Rhamnolipids consist of a mixture of secreted
surfactants that promote ciliostasis (20). Phenazines, exported re-
dox-active molecules, are thought to be important for Pseudomo-
nas defense against the host and as a terminal electron acceptor for
respiratory growth. Furthermore, these molecules negatively im-
pact a number of eukaryotic cellular processes, including respira-
tion, electron transport, and gene expression (reviewed in refer-
ence 21). Indeed, phenazines are correlated with a poorer
prognosis in CF (22). P. aeruginosa also has the ability to halt
epithelial cell protein expression and kill host cells by using the
ADP-ribosylating protein ExoA (reviewed in references 23 to 25).
The type III secretion system (T3SS) effectors have also been well
studied and recognized as key for establishing infection (reviewed
in references 26 and 27). These T3SS effectors include ExoS and
ExoT, both of which have ADP-ribosyltransferase and GTPase-
activating activities. ExoS and ExoT work in concert to inhibit
actin polymerization, prevent phagocytosis and cell migration,

and promote apoptosis (28). Similarly, the T3SS-delivered effec-
tor ExoY impairs actin polymerization but also increases mem-
brane permeability (29), while ExoU is a phospholipase that can
cause membrane damage and cell lysis and modulate the inflam-
matory response (24, 30). Together, these proteins dramatically
alter the epithelial layer of the lung, disrupting cell polarity, induc-
ing damage, and preventing P. aeruginosa endocytosis and clear-
ance (31), thereby allowing this microbe to establish an infection
in the lungs.

INFECTION MAINTENANCE

Once P. aeruginosa has invaded the lung and inhibited clearance, it
must induce changes to reduce immune activation and obstruct
clearance mechanisms to persist in the lung. To facilitate mucus
penetration, P. aeruginosa employs a suite of secreted enzymes
(exoproteins) to dampen host immunity (reviewed in references
26 and 32). These immunosuppressing factors include the elasta-
ses LasA and LasB. LasA is responsible for inducing syndecan (co-
receptor proteins) shedding from cells, which has been shown to
be important for P. aeruginosa lung survival (33). LasB cleaves the

FIG 1 Effects of AprA and Cif on host cell physiology. In the absence of P. aeruginosa (left), CFTR is recycled at the apical membrane through ubiquitination by
an E3 ligase (E3L) and deubiquitinated by USP10. CFTR performs two functions, chloride secretion and repression of ENaC, a sodium importer. Normal CFTR
function promotes an osmotic gradient that facilitates hydration of the ASL, providing a liquid for ciliary movement. When P. aeruginosa is present (right), Cif
is expressed, likely in response to endogenous epoxides (yellow circles), and interacts with the repressor protein CifR to derepress cif gene transcription. Cif
protein is secreted via the Sec secretion system (SEC) and can be delivered directly to the host cell or via OMVs, which have been shown to fuse with lipid rafts
to release their contents into the cytoplasm. Cif stabilizes an interaction between G3BP1 and USP10, which in turn prevents USP10 from deubiquitinating CFTR,
resulting in the shunting of CFTR to the lysosome for degradation. Reduced CFTR also eliminates a key mechanism of ENaC repression. The LysR-type regulator
BexR positively regulates the transcription of the aprA gene. The AprA protein is secreted via the T1SS that is encoded by three genes found adjacent to the aprA
gene. AprA has been shown to proteolytically degrade the flagellin monomer, a potent TLR5 activator, as well as IFN-� and complement proteins, all of which
are important for activation of the immune response. Additionally, AprA can proteolytically activate ENaC, which increases sodium import into the host cell.
Thus, in the presence of P. aeruginosa, CFTR is degraded and ENaC activity in increased, which dramatically shifts the osmotic flux toward the cell, resulting in
dehydration of the ASL and ciliostasis. Ub, ubiquitin; IM, inner membrane. Illustration ©2013 William Scavone, Kestrel Studio, reprinted with permission.
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abundant elastin in the lung that is required for normal lung elas-
ticity, as well as surfactant protein D, a collectin that is an impor-
tant modulator of immune effector cell function (34). Protease IV
also degrades surfactant proteins A, B, and D, which are important
for surface tension and innate immunity (35). The phospholipases
PlcB, PlcH, and PlcN target the mucus layer and cell membrane,
facilitating bacterial transit through the mucus layer and liberat-
ing nutrients exploited by the bacteria (36–38). Furthermore,
PlcH has been shown to suppress the neutrophil respiratory burst,
which may also facilitate P. aeruginosa survival (39). A small, un-
characterized secreted factor (�3 kDa) produced by P. aeruginosa
has also been shown to suppress interleukin-8 and NF-�B expres-
sion from epithelial cells (40), thus damping the typical inflam-
matory response to pathogens. Along with these extracellular pro-
teins, production of the polysaccharide alginate increases in many
CF strains, which in turn stimulates mucin production, thereby
limiting immune recognition and clearance (41–43).

The expression of all of the virulence factors listed above is
critical for P. aeruginosa to establish and maintain an infection and
avoid clearance early in the infection process; however, many of
these virulence factors are lost during chronic infection, in part to
evade recognition and reduce inflammasome activation (4, 44–
46). This loss reflects the adaptation of P. aeruginosa to the lung
and a transition to a chronic lifestyle.

CIF, A NOVEL VIRULENCE FACTOR

Interestingly, a novel virulence factor of P. aeruginosa that was
identified fairly recently does not appear to be absent from isolates
harvested from the CF lung over time, unlike many of the other
virulence factors discussed in the previous section (47). This vir-
ulence factor was first identified as a secreted �36-kDa protein
that reduces chloride secretion by epithelial cells and was subse-
quently named CFTR inhibitory factor (Cif) (48).

Early studies suggested that Cif was an epoxide hydrolase (49).
This activity was later confirmed by further enzymatic analysis,
as well as crystallographic studies (50, 51). In fact, Cif has an
unusual active site and is the first described epoxide hydrolase
of its class (Fig. 2) (52). We believe this epoxide hydrolase
activity is important for the Cif-mediated effect on CFTR, as a
mutation just outside the active-site tunnel eliminates the ep-
ithelial cell activity of Cif (41, 44). Ongoing studies are aimed at
verifying this hypothesis.

Cif was initially shown to reduce apical membrane CFTR, and
the mechanism by which this altered CFTR expression occurs was
recently elucidated. Typically, CFTR is efficiently recycled by en-
docytosis at the apical face of the epithelium (53), which is due to
ubiquitination of CFTR by a yet-to-be defined E3 ligase. This pro-
cess of recycling ensures that proper protein folding is maintained
(54). CFTR is then deubiquitinated by USP10, and the endosome
containing CFTR is conveyed to the apical membrane, where
CFTR can once again play its role as an ion transporter and regu-
lator of ENaC. If Cif enters the host cell, it stabilizes the interaction
of USP10 and its negative regulatory protein G3BP1, preventing
USP10 activity (55). The precise mechanism by which Cif medi-
ates the USP10-G3BP1 interaction is unknown. CFTR is not deu-
biquitinated in Cif-exposed epithelium, and the fate of CFTR is to
be shunted to the lysosome for degradation (Fig. 1). Cif has also
been shown to reduce the epithelial cell expression of another
ABC transporter, P-glycoprotein, a drug efflux pump highly ex-
pressed in cancer; however, other drug efflux ABC transporters

like MPR1 and MPR2 are not affected by Cif (56). These studies
have been performed with cultured epithelial cells, which may
limit the possible range of Cif targets; thus, additional Cif viru-
lence effects may be seen in an animal model. Intriguingly, mi-
croarray studies indicate that Cif is highly expressed in a rat peri-
toneal infection model, which may indicate a role in systemic
infection (57).

Cif expression is regulated at the transcriptional level by a TetR
family repressor called CifR (58). The CifR protein binds to two
regions in the intergenic space between the cifR gene and the
operon containing the cif gene, overlapping their respective pro-
moters and transcriptional start sites, to bidirectionally repress
transcription (47). Epoxides act as both substrates for and induc-
ers of Cif, as CifR repression is alleviated in the presence of epox-
ides (58), although there appears to be some specificity of inducers
(47). Interestingly, the cifR transcript appears to be highly ex-
pressed in CF sputum, suggesting that P. aeruginosa encounters
epoxides in the lung (47).

P. aeruginosa is not thought to interact directly with the epi-
thelial cell layer during chronic infection but, instead, likely re-
sides within the mucus layer above the ASL (59). The distance
between the bacteria and the epithelial cell makes transmission of
bacterial proteins a challenge. Cif is packaged into outer mem-
brane vesicles (OMVs), as well as directly secreted (49, 51). These
OMVs have been shown to diffuse through the mucus layer and
fuse with lipid rafts within the membrane to deliver Cif to the host
cytoplasm (60). OMV-mediated Cif delivery is very effective be-
cause 17,000-fold less protein is required for equivalent CFTR
reduction than when the purified protein is applied directly (60).
Therefore, P. aeruginosa has developed an effective means of de-

FIG 2 Structures of Cif and AprA. (A) Cif represents a novel class of �/�
hydrolase. Shown is the ribbon structure of a Cif homodimer with the side
chains of active residues depicted in blue. The tunnel to the active site is shown
in red. (Adapted from reference 50.). (B) AprA-AprI interaction. Crystal struc-
ture of AprA (gray, ribbon) interacting with its inhibitor, AprI (blue, surface
representation). The red region of AprI indicates the N-terminal portion that
interacts with the active-site cleft of AprA. (Adapted from reference 78 with
permission of the publisher.)
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livering this toxin and reducing chloride secretion across the epi-
thelium.

Reduction of CFTR has other physiological implications in ad-
dition to inhibition of chloride secretion and derepression of
ENaC. Reduction or loss of CFTR inhibits the microbicidal activ-
ity of neutrophils by limiting chloride import to endosomes and
preventing hypochlorous acid formation in P. aeruginosa-con-
taining vesicles (61, 62). Thus, Cif-mediated reduction of CFTR
could also serve as a means of innate immune evasion by P. aerugi-
nosa.

APRA, A MULTIFUNCTIONAL PROTEASE

Another pseudomonal protein shown to be important for phago-
cytic evasion is alkaline protease (63). Alkaline protease (AprA,
Fig. 2B) is a zinc metalloprotease produced by P. aeruginosa that
has long been understood to be important for virulence (64–66).
This secreted serralysin family protease was first isolated from
culture supernatants in 1963, and its expression appears to be
maintained in many clinical isolates (44, 67). High levels of AprA
expression have been correlated with P. aeruginosa infections of
the eye, the gastrointestinal tract, and wounds (68). High expres-
sion has also been correlated with mucoidy and implicated in
pulmonary exacerbation in CF (69, 70).

The structure of the �50-kDa AprA protein was elucidated in
1993 and revealed a protein with two domains (71). The N-termi-
nal domain is the proteolytic region that coordinates a Zn2� in its
active-site cleft, while the C-terminal domain contains a number
of repeats (RTX motif) that bind eight Ca2� ions, as well as the
secretion signal (71). The C-terminal domain’s interaction with
Ca2� is thought to be important in proper protein folding after
secretion. Indeed, an increase in extracellular AprA has been ob-
served in P. aeruginosa biofilms grown with high levels of calcium
(72).

AprA is secreted by a complex of three proteins, AprD, AprE,
and AprF, that form a T1SS. The genes encoding this T1SS are
located next to the aprA gene on the chromosome (73). AprD is an
ABC transporter predicted to be localized to the inner membrane,
recognizes the signal sequence on AprA, and initiates transport
across the membrane (26). AprE is the adaptor protein that tran-
sits the periplasm and connects AprD to AprF, the outer mem-
brane pore protein (74). This secretion apparatus appears to be
specific for AprA and AprX, a protein of unknown function (75).
AprA has not been described as delivered via OMVs, although this
is a possibility, as other described exoproteases have been shown
to be present in vesicles (76).

Also located in the genomic vicinity of the aprA gene (just
downstream) is the gene encoding AprI. AprI is an AprA inhibitor
protein that is not secreted but instead remains in the periplasm,
presumably to inhibit AprA-based proteolysis in this compart-
ment as the protease is secreted. AprI has an N-terminal protru-
sion that has a high affinity for the AprA active site (Kd 	 4 pM)
and serves as a potent and specific inhibitor (Fig. 2B) (77, 78).

The aprA gene is activated by two transcriptional regulators.
The quorum-sensing regulator, LasR, has been shown to increase
the level of aprA transcript in an acylated homoserine lactone-
dependent fashion (79, 80). However, it is not clear whether this
regulation is direct or indirect. More recently, a LysR-type activa-
tor of the apr genes, BexR, was identified (81). This regulator binds
directly to the apr genes to upregulate the transcription of the apr
locus. BexR exhibits positive autoregulation, resulting in bistable

expression of the loci regulated by this protein, including the aprA
gene (81). Transcription of AprA is also activated by the sigma
factor PvdS during iron starvation (82).

The somewhat closed structure of the AprA catalytic domain
suggests that it has some degree of target specificity (78); however,
the protease can degrade a number of bacterial and host proteins
for immune recognition evasion (Fig. 1). AprA has been shown to
aid in P. aeruginosa survival in the lung by cleaving transferrin to
facilitate iron acquisition by siderophores (83), as well as inhibit-
ing immune recognition by cleaving flagellin monomers to pre-
vent TLR5 recognition (84). Furthermore, AprA degrades com-
plement proteins C1q, C2, and C3, as well as gamma interferon
(IFN-�) (63, 85, 86), and loss of complement proteins has been
shown to block phagocytosis and killing by neutrophils (63).
Thus, it appears that AprA degrades many extracellular proteins
that may limit the life span of P. aeruginosa in the lung.

Recently, Butterworth et al. also showed that AprA contributes
to lung infection by proteolytically activating ENaC (87). This
study showed that in the presence of AprA, Na� transport in-
creased on both CF and non-CF cells, a finding with important
implications for host cell sodium regulation. The authors con-
cluded that this increase in Na� occurs at the membrane via cleav-
age of a sporadically exposed site, although direct evidence for this
idea is currently lacking (87).

POTENTIAL IMPACTS OF CFTR AND ENAC MISREGULATION
ON OSMOSIS

Loss of CFTR has been shown to broadly impact the biology of the
lung epithelium, and the best documented of these effects is the
loss of chloride secretion across the apical membrane. Cif is capa-
ble of shunting endocytosed CFTR to the lysosome, resulting in
reduced CFTR. Given that CFTR has also been shown to be im-
portant for the proper regulation of ENaC, it is likely then that loss
of CFTR due to Cif could result in increased ENaC activation.
Furthermore, the secreted protease AprA has been shown to pro-
teolytically cleave and activate ENaC above the level of untreated
cells, exacerbating the perturbations of Na� and Cl� homeostasis.
Thus, P. aeruginosa employs a two-pronged approach to reduce
ion transport to the ASL and dehydrate mucus (Fig. 1).

What are the consequences of altering the Na� and Cl� bal-
ance via altering CFTR and ENAC levels and/or function? In CF,
where the CFTR levels of many patients are already quite low, one
might argue that further loss of CFTR might not have a clinically
meaningful impact. However, recent recognition that even partial
rescue of CFTR activity helps improve patient outcomes (88) in-
dicates that reducing residual CFTR activity might do more harm
than previously recognized. The action of Cif and AprA may also
exacerbate the conditions of patients with less severe CFTR alleles.
Additionally, AprA and Cif function could limit the effects of
ENaC- and CFTR-targeted drugs for CF treatment. For example,
it may be prudent to consider the effects of these P. aeruginosa
virulence factors in drug design. CFTR potentiators and activators
currently being developed may not have the desired degree of
effect in the presence of Cif. Additionally, AprA may reduce the
efficacy of ENaC inhibitors like benzamil.

Finally, and more broadly, loss of CFTR due to Cif and AprA-
mediated activation of ENaC may be able to alter conditions suf-
ficiently in the lung to transiently induce a CF-like state in patients
with VAP or COPD, thus allowing colonization of the lung by this
pathogen. Given that COPD is estimated to be among the most
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prevalent diseases in the coming decades (2) and the high mortal-
ity rate of P. aeruginosa-associated VAP (5), our understanding of
the complex microbe-host interactions in such diseases will be
increasingly important. That is, development of Cif or AprA in-
hibitors for coadministration with antibiotics may help to im-
prove the outcomes of patients with P. aeruginosa lung infections.
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