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Coculture of Staphylococcus aureus with Pseudomonas aeruginosa
Drives S. aureus towards Fermentative Metabolism and Reduced
Viability in a Cystic Fibrosis Model

Laura M. Filkins,? Jyoti A. Graber,? Daniel G. Olson,” Emily L. Dolben,? Lee R. Lynd,” Sabin Bhuju,® George A. O'Toole?

Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA®; Thayer School of Engineering at Dartmouth,
Hanover, New Hampshire, USA®; Helmholtz Centre for Infection Research, Braunschweig, Germany©

ABSTRACT

The airways of patients with cystic fibrosis are colonized with diverse bacterial communities that change dynamically during
pediatric years and early adulthood. Staphylococcus aureus is the most prevalent pathogen during early childhood, but during
late teens and early adulthood, a shift in microbial composition occurs leading to Pseudomonas aeruginosa community predom-
inance in ~50% of adults. We developed a robust dual-bacterial in vitro coculture system of P. aeruginosa and S. aureus on
monolayers of human bronchial epithelial cells homozygous for the AF508 cystic fibrosis transmembrane conductance regulator
(CFTR) mutation to better model the mechanisms of this interaction. We show that P. aeruginosa drives the S. aureus expres-
sion profile from that of aerobic respiration to fermentation. This shift is dependent on the production of both 2-heptyl-4-hy-
droxyquinoline N-oxide (HQNO) and siderophores by P. aeruginosa. Furthermore, S. aureus-produced lactate is a carbon
source that P. aeruginosa preferentially consumes over medium-supplied glucose. We find that initially S. aureus and P. aerugi-
nosa coexist; however, over extended coculture P. aeruginosa reduces S. aureus viability, also in an HQNO- and P. aeruginosa
siderophore-dependent manner. Interestingly, S. aureus small-colony-variant (SCV) genetic mutant strains, which have defects
in their electron transport chain, experience reduced killing by P. aeruginosa compared to their wild-type parent strains; thus,
SCVs may provide a mechanism for persistence of S. aureus in the presence of P. aeruginosa. We propose that the mechanism of
P. aeruginosa-mediated killing of S. aureus is multifactorial, requiring HQNO and P. aeruginosa siderophores as well as addi-
tional genetic, environmental, and nutritional factors.

IMPORTANCE

In individuals with cystic fibrosis, Staphylococcus aureus is the primary respiratory pathogen during childhood. During adult-
hood, Pseudomonas aeruginosa predominates and correlates with worse patient outcome. The mechanism(s) by which P.
aeruginosa outcompetes or kills S. aureus is not well understood. We describe an in vitro dual-bacterial species coculture system
on cystic fibrosis-derived airway cells, which models interactions relevant to patients with cystic fibrosis. Further, we show that
molecules produced by P. aeruginosa additively induce a transition of S. aureus metabolism from aerobic respiration to fermen-
tation and eventually lead to loss of S. aureus viability. Elucidating the molecular mechanisms of P. aeruginosa community pre-
dominance can provide new therapeutic targets and approaches to impede this microbial community transition and subsequent
patient worsening.

C omplex polymicrobial communities colonize the airways of
cystic fibrosis (CF) patients within the first month of life (1).
Culture-independent studies have revealed the simultaneous
presence of numerous bacterial taxa, fungi, and viruses in respi-
ratory samples from CF patients at all stages of life (2-8). This
abundance of microbes colonizing the respiratory tract, and par-
ticularly the lower airways, is facilitated by thick airway mucus and
deficient mucociliary clearance that result from mutation of the
cystic fibrosis transmembrane conductance regulator (CFTR)
gene (9-11). These polymicrobial airway communities are diverse
and dynamic, especially in young patients (12). During the first
decade of life, bacterial diversity generally increases in patient
samples. As patients age, diversity decreases until adulthood,
when lower airway communities often become stable and resilient
to significant perturbation by treatment (7, 12—-15). In recent
years, our understanding of the complexities of these polymicro-
bial communities has improved by characterizing patient samples
using deep-sequencing technologies; however, how these com-
munities impact interbacterial interactions, the immune re-
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sponse, antibiotic efficacy, and overall patient health is not well
understood.

Culture-independent studies have emphasized the relevance of
several emerging pathogens, like Streptococcus milleri group spe-
cies and Mycobacterium abscessus, as well as nonpathogenic com-
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munity members (16-19). Despite the identification of these
emerging pathogens, Staphylococcus aureus and Pseudomonas
aeruginosa remain two of the most relevant bacterial pathogens for
CF patients. S. aureus is the most prevalent pathogen detected in
pediatric patients clinically (20). The presence of S. aureus is cor-
related with worse lung function and lower forced expiratory vol-
ume (FEV), poorer nutrition, and increased inflammation in chil-
dren (21, 22). Further, strains of S. aureus may persist in patients
through adaptation of numerous virulence factors, including cap-
sule, hemolysis, biofilm formation, and antibiotic resistance (par-
ticularly methicillin resistance) (23) and through the formation of
small-colony variants (SCVs) (24). P. aeruginosa is detected in
patients of all ages but is typically most prevalent and abundant in
adult patients (20). Similarly to S. aureus, P. aeruginosa is associ-
ated with decreased FEV (25) and increased inflammation in chil-
dren (26). Further, early colonization with P. aeruginosa is corre-
lated with increased exacerbation and morbidity (27, 28). P.
aeruginosa has a repertoire of virulence factors (including pro-
teases, rhamnolipids, phospholipase C, hemolysin, and others)
that may aid early-stage colonization. During chronic P. aerugi-
nosa infection, expression of such virulence factors subsequently
decreases over time to promote persistence (29). During long-
term infections, hypermutators and adaptations like mucoidy
and antibiotic resistance, as well as changes in gene expression,
aid P. aeruginosa’s ability to chronically colonize patient airways
(30-34).

While S. aureus is well recognized as the predominant CF
pathogen throughout childhood, P. aeruginosa is arguably the sec-
ond most relevant pathogen in CF children. In some patients, P.
aeruginosa may be the first pathogen isolated in infants and is
detected in about 25 to 40% of young children by culture-based
methods (12, 20, 35). Early in life, P. aeruginosa acquisition is
associated with increased isolation of methicillin-resistant S. au-
reus (28). Interestingly, during late adolescence and adulthood the
frequency of S. aureus in CF patients steeply declines and this
microbe is displaced by P. aeruginosa (20). P. aeruginosa is de-
tected in 80 to 90% of adults and becomes the predominant or-
ganism in the sputum of at least half of patients (3, 12, 20).

This striking negative clinical correlation between S. aureus
and P. aeruginosa during teenage years and young adulthood has
driven several in vitro and in vivo studies geared toward character-
izing the interbacterial interactions of these two organisms (36—
44). These previous studies have found that P. aeruginosa secretes
various antistaphylococcal products and proteases, such as LasA,
that can cause both biofilm dispersion and cell lysis of S. aureus
(42, 45). Further, P. aeruginosa produces several inhibitors of S.
aureus respiration, including hydrogen cyanide, quinoline N-ox-
ides, and the phenazine pyocyanin (41, 46-48). P. aeruginosa has
also been described to benefit from coculture with S. aureus by
using this Gram-positive organism as an iron source (43) and a
cue to produce extracellular virulence factors against both pro-
karyotic neighbors and the host (49). In response to the hostile
environment, S. aureus may adapt to P. aeruginosa exoproducts,
particularly in the presence of 2-heptyl-4-hydroxyquinoline N-
oxide (HQNO), through increased biofilm formation (41) or in-
creased frequency of SCVs (50, 51).

Despite significant efforts to characterize P. aeruginosa and S.
aureus in CF patients, the molecular mechanism of their interac-
tion and the role of the host (52) in driving the dynamics of the
transition between P. aeruginosa and S. aureus during teenage
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years are not well understood. Studies of these two organisms, to
date, have characterized isolated interactions using various in vitro
or in vivo models. Here, we use a single in vitro model that can be
adapted to study interactions on epithelial cells or plastic, during
coculture in both the planktonic and biofilm phases. Using this
system, we describe a mechanism by which P. aeruginosa drives S.
aureus toward a lactic acid fermentative lifestyle through the ac-
tion of HQNO and P. aeruginosa-produced siderophores early in
coculture, eventually leading to killing of S. aureus and predomi-
nance of P. aeruginosa in the community.

MATERIALS AND METHODS

Strains and culture conditions. Overnight cultures were inoculated with
a single colony of P. aeruginosa or S. aureus into 5 ml lysogeny broth (LB)
or tryptic soy broth (TSB), respectively, and grown for ~12 h at 37°C with
aeration on a roller drum. Methicillin-resistant S. aureus strains were
grown in TSB plus 16 pg/ml oxacillin under these same conditions. SCV
strains were grown statically for 20 h. A complete list of strains used
throughout this study is provided in Table S1 in the supplemental mate-
rial.

Coculture assays. (i) Coculture assay on CFBE monolayers. Cocul-
ture assays were performed as previously described (53), with indicated
adaptations to accommodate multiple bacterial species, and are depicted
in Fig. 1A. Liquid cultures of P. aeruginosa and S. aureus were individually
centrifuged (10,000 X g, 3 min) and washed in minimal essential medium
plus 2 mM r-glutamine (MEM + 1-Gln). Washed bacterial cells were
resuspended in MEM + L-Gln to an optical density at 600 nm (ODy,) of
0.1. For coculture samples, 250 pl of 0.1-ODy,, P. aeruginosa and 250 p.l
0f 0.1-ODyy, S. aureus were added to triplicate wells of monolayers of CF
bronchial epithelial (CFBE) airway cells in a 24-well plate. CFBE mono-
layers were grown as previously described (54). For monoculture con-
trols, 250 pl of 0.1-ODy, P. aeruginosa or 250 .l of 0.1-ODy, S. aureus
and 250 pl of MEM + 1-Gln were added to triplicate wells. Target inputs
were 0.5 X 107 to 1 X 10”7 CFU per well for each species in a 24-well plate.
CFBE coculture plates were incubated at 37°C with 5% CO, for 1 h, at
which point any unattached bacterial cells were removed and 500 pl of
MEM + L-Gln + 0.4% L-arginine was added to each well and incubated
for an additional 5 h. After this additional 5-h incubation, the planktonic
cells were removed and 500 pl of fresh MEM + L-Gln + 0.4% L-arginine
was once again replaced in each well. The established coculture biofilm
was incubated for an additional 16 h, followed by viable cell counts. For
planktonic CFU enumeration, culture supernatant was 10-fold serially
diluted in phosphate-buffered saline (PBS) and plated on Pseudomonas
isolation agar or mannitol salt agar, for P. aeruginosa and S. aureus selec-
tive growth, respectively. S. aureus SCV strains were selected on tryptic soy
agar plates grown in an anaerobic chamber for 3 days. After removal of
culture supernatants, the biofilm fraction was removed by treatment with
250 pl of 0.1% Triton X-100 in PBS, with gentle shaking for 15 min.
Biofilm bacteria were then scraped and vortexed in the plate for 2 min
(covered with aluminum tape). Biofilm fractions were then serially di-
luted and plated as described for the planktonic fraction.

(ii) Coculture assay on plastic substrate. In the plastic coculture as-
say, in which the bacterial biofilms are grown on a plastic substrate rather
than on CFBE cells, bacterial culture preparation and inoculation were
performed as described above. Cultures were inoculated directly into tis-
sue culture-treated 24-well plastic plates. Unattached cells were removed
after 1 h, and 500 wl MEM + L-Gln was added to each well. The cultures
were then incubated for an additional 16 h, followed by CFU counts
performed as described for the coculture assay on CFBE cells. For iron
supplementation assays, bacterial cells were inoculated in MEM + 1-Gln
on plastic substrate. After 1 h, unattached cells were removed and MEM +
L-Gln + 8 uM FeCl; was added to the well. Cocultures then proceeded as
described above.

RNA isolation. Coculture assay mixtures for RNA analysis were pre-
pared and inoculated as described in the CFBE and plastic assays and
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FIG 1 Invitro P. aeruginosa-S. aureus coculture assays on CFBE monolayers or
plastic model early-stage coexistence and late-stage S. aureus killing by P.
aeruginosa. (A) Assay design displaying P. aeruginosa-S. aureus coculture as-
says on CFBE monolayers and a plastic substrate. (B and C) Time course
analyses were performed for S. aureus 8325-4 in planktonic and biofilm frac-
tions. S. aureus viability was measured as log,,(CFU/well) in a 24-well plate
either in coculture with P. aeruginosa PA14 or as a monoculture. The key for
panels B and C is shown at the top of panel B. Assays were performed in the
CFBE coculture (B) or plastic coculture (C). Error bars indicate standard er-
rors of the means from a representative triplicate time course assay. Sa, S.
aureus; Pa, P. aeruginosa.

incubated for 6 total hours. After 6 h, planktonic cells and supernatant
were removed and surface-attached biofilms were treated with RNAlater.
Treated samples were scraped from the substrate using a cell scraper and
collected. Samples were subsequently pelleted (16,000 X g, 5 min), and
bacterial cells were lysed for 30 min at 37°C in 0.25 g/l lysostaphin
and 2.5 pg/pl lysozyme in Tris-EDTA (TE) buffer. Total RNA was iso-
lated using TRIzol and the Direct-Zol RNA miniprep kit (Zymo Re-
search), followed by Turbo DNA-free DNase (Life Technologies) treat-
ment, per the manufacturer’s reccommendation.
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RNA-seq. One microgram of total RNA was treated for rRNA and
tRNA removal before sequencing. Single-read transcriptome sequencing
(RNA-seq) was performed on the HiSeq platform at the Helmholtz Cen-
tre for Infection Research (Braunschweig, Germany). Raw RNA-seq reads
were processed using the CLC Genomics Workbench. Processing was
performed using default parameter settings set by the manufacturer. For
each sample, sequences were trimmed and mapped to the P. aeruginosa
UCBPP-PA14 (P. aeruginosa PA14) and S. aureus 8325 reference genomes
using the RNA-seq analysis tool. Mapped sequences were further analyzed
using R-project and the Bioconductor package edgeR (55). Read count
data sets were filtered to remove low-expression reads prior to RNA ex-
pression analysis, with a cutoff of at least 15 counts, to reduce bias from
library size differences and to address the fact that there is little power to
detect differential expression of very low detection reads. Only a single
replicate was performed for each sample; therefore, a conservative cutoff
of 10-fold increase or decrease in gene expression was applied to identify
genes of interest.

Reverse transcription and qRT-PCR. ¢cDNA was synthesized from
total RNA for each coculture or monoculture using the Invitrogen Super-
script III first-strand synthesis system according to the manufacturer’s
protocol. RNAs from plastic-grown coculture biofilm samples were syn-
thesized using random hexamers and ~100 ng total RNA. cDNA for
CFBE-grown cocultures was synthesized using gene-specific primers
(GSP) (see Table S2 in the supplemental material) in a single reaction to
decrease nonspecific detection from host RNA. Briefly, total RNA, 10 mM
deoxynucleoside triphosphates (ANTPs), and primers (50 ng/pl random
hexamers or 2 WM [each] GSP) were incubated for 5 min at 65°C in a
10-pl total volume. Following this incubation, 10 pl of cDNA synthesis
mix was added for a final 20-p.l reaction mixture of 1X reaction buffer, 5
mM MgCl,, 0.01 M dithiothreitol (DTT), 2 U/pul RNaseOUT, and 10 U/l
Superscript III reverse transcriptase. Reaction mixtures were incubated at
25°C for 10 min, 50°C for 50 min, 85°C for 5 min, and 4°C for 5 min.
Afterward, 1 pl RNase H was added to each reaction mixture and incu-
bated at 37°C for 20 min. Quantitative real-time PCR (qRT-PCR) was
performed with three technical replicates for each sample. S. aureus-spe-
cific primers were designed for each gene of interest and are specified in
Table S2 in the supplemental material. For qRT-PCR, 1 pl of cDNA was
diluted in a 10-pl reaction mixture with 0.25 uM forward and reverse
primers and 1X iQ Sybr green Supermix (Bio-Rad). The qRT-PCR was as
follows: 95°C for 3 min and then 95°C for 30 s, annealing temperature
(T, near) for 30 s, and 72°C for 20 s, for 40 cycles. cDNA to each gene of
interest was quantified based on cycle threshold (C;) compared to a stan-
dard curve of purified P. aeruginosa PA14 rplU DNA and normalized from
sample to sample based on S. aureus rpoB quantification (56). S. aureus
gyrB was used as a second normalization control for initial experiments
and showed results consistent with those of rpoB; therefore, a single gene,
rpoB, was used for later assays and is reported here.

Quantification of metabolite accumulation and utilization. Sequen-
tial monocultures of P. aeruginosa PA14 and S. aureus 8325-4 were treated
with culture supernatant containing exoproducts and metabolites from
previous cultures, as depicted in Fig. 3A. Six-well tissue culture-treated
plates were inoculated with 2 ml 0.05-ODy, P. aeruginosa PA14 or S.
aureus 8325-4 in MEM + L-Gln + 0.5 g/liter yeast extract. In many sam-
ples, lactate, acetate, and ethanol were produced at levels near the limit of
detection; therefore, yeast extract (0.5 g/liter) was added to amplify pro-
duction of these metabolites above background. Cultures were incubated
at 37°C and 5% CO,. Similarly to the plastic-grown coculture assay, su-
pernatant and unattached cells were removed after 1 h and replaced with
2 ml fresh MEM + 1-Gln + 0.5 g/liter yeast extract or 1 ml fresh medium
plus 1 ml spent culture supernatant from the appropriate 16-h monocul-
ture. A 16-h monoculture of P. aeruginosa PA14 was followed by a 16-h
monoculture of S. aureus 8325-4 and, finally, a 12-h monoculture of P.
aeruginosa PA14. Culture supernatants were collected at indicated time
points throughout the 16-h or 12-h monocultures to examine the kinetics
of metabolite accumulation and consumption. Lactate, ethanol, acetate,
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formate, and glucose accumulation and/or utilization from culture super-
natants was analyzed by high-performance liquid chromatography
(HPLC) as previously described (57). Briefly, 400 pl culture supernatant
was filtered using 0.22-pm nylon centrifugal filters and acidified with 10
wl of 10% sulfuric acid sample. Samples were analyzed on a Bio-Rad
HPX-87H column.

Statistical analysis. Differences in survival, bacterial load, or growth
of monoculture versus cocultures of S. aureus or P. aeruginosa viabilities
were compared for log, , normalized values using Student’s  tests with the
Holm-Sidék method for correcting for multiple comparisons or analysis
of variance (ANOVA) with Dunnett’s or Siddk’s multiple-comparison
posttest, as specified. Normalized RNA expression, quantified by qRT-
PCR, was compared using the Friedman rank test and Dunn’s posttest.

RESULTS

P. aeruginosa coexists with and then kills S. aureus in late-stage
coculture on airway cells and plastic. Clinical culture data and
non-culture-based microbial analyses from both pediatric and
adult populations show dynamic community structure earlier in
life, particularly pertaining to the evolving predominance of P.
aeruginosa versus S. aureus (1,7, 20, 58). To better understand the
nature of these community dynamics and interbacterial interac-
tions, we adapted the previously described in vitro airway cell-P.
aeruginosa coculture assay, using human bronchial epithelial cells
(CFBE41lo ) homozygous for AF508 CFTR (referred to as CFBE
here) (53), to include a dual-bacterial system (Fig. 1A). As de-
picted in Fig. 1A, during the in vitro CFBE coculture assay, P.
aeruginosa PA14 and S. aureus 8325-4 are coinoculated onto a
monolayer of CFBE cells. Unattached bacterial cells are removed
after the first hour. A dual-species biofilm is allowed to form for 5
additional hours on the airway epithelium. After the initial 6 h, the
medium is again replaced and the established biofilm coculture is
incubated for an additional 16 h.

Over the course of 22 h, we observed that the population of P.
aeruginosa PA14 is not impacted by the presence or absence of S.
aureus 8325-4, in either the planktonic or the biofilm phase (see
Fig. S1A in the supplemental material). In contrast, we observed a
dynamic interaction between P. aeruginosa PA14 and S. aureus
8325-4 in regard to the S. aureus 8325-4 population. The kinetics
of the CFBE-inoculated coculture assay displayed an extended
period of coexistence, followed by late-stage killing of S. aureus
8325-4 by P. aeruginosa PA14 (Fig. 1B). It isimportant to note that
we interpret the reduced population of S. aureus as attributable to
the killing of this microbe as we are measuring viable counts of
each microbe. A rapid decline in the S. aureus 8325-4 population
occurs between 10 h and 16 h of coincubation with P. aeruginosa
PA14. This S. aureus 8325-4-killing phenotype by P. aeruginosa
PA14 occurs on airway cells but does not require the presence of
CFBE cells, as a simplified coculture assay performed on plastic
displays similar late-stage interaction kinetics (Fig. 1A and C). On
both the CFBE and plastic substrates, S. aureus 8325-4 killing is
observed in both the biofilm and planktonic phases (Fig. 1B and
C). Wewill focus on S. aureus biofilm results here, but it should be
noted that the reported phenotypes are consistent between the
planktonic populations and the biofilm-grown bacteria.

The coculture assay performed on plastic also displays a strik-
ingly enhanced planktonic S. aureus 8325-4 population in the
presence of P. aeruginosa PA14 between 4 h and 6 h (Fig. 1C). The
increased planktonic S. aureus 8325-4 population may be due, at
least in part, to a biofilm dispersion phenotype in the presence of
P. aeruginosa PA14. This conclusion is indicated by the decreased
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biofilm population of S. aureus 8325-4 and a concomitant increase
in the planktonic S. aureus 8325-4 population at 6 h (see Fig. S2 in
the supplemental material). Less dramatic biofilm dispersion sim-
ilarly occurs on CFBE monolayers prior to the second medium
change in the airway cell coculture system. This S. aureus biofilm
dispersion phenomenon was previously reported by Park et al. to
be mediated by P. aeruginosa proteases (42). While the described
S. aureus biofilm dispersion phenotype is consistent with the ob-
servations in our coculture model on plastic, other mechanisms
leading to an increased planktonic population are possible. Addi-
tionally, similarly to the CFBE coculture model, when bacteria are
coincubated on plastic, the P. aeruginosa PA14 population is not
differentially impacted by the presence or absence of S. aureus
8325-4 (see Fig. S1B in the supplemental material).

Killing of S. aureus by P. aeruginosa is not specific to the S.
aureus 8325-4—P. aeruginosa PA14 strain combination. There is,
however, variation in the degree or kinetics of S. aureus killing by
P. aeruginosa strains (see Fig. S3A in the supplemental material).
Two other tested laboratory strains of P. aeruginosa (PAO1 and
FRD1) killed S. aureus 8325-4, but less dramatically than P. aerugi-
nosa PA14. S. aureus 8325-4 killing by seven clinical isolates of P.
aeruginosa ranged from no killing (no difference in viable cell
count from S. aureus 8325-4 monoculture) to killing that resulted
in S. aureus 8325-4 viable cell counts below the limit of detection
in our coculture assay (<2 log;,[CFU/well]). Notably, P. aerugi-
nosa strains with lower biofilm populations at the end of the assay,
likely due to decreased initial attachment and/or reduced growth/
survival despite similar starting inocula, were unable to kill S. au-
reus 8325-4 (SMC1585, SMC5450, and SMC5451 [see Fig. S3B in
the supplemental material]), indicating a dose-dependent rela-
tionship between P. aeruginosa population and S. aureus killing.
However, end-of-assay P. aeruginosa population was not the only
factor contributing to this variation, as demonstrated in the co-
culture with SMC1587, which developed a P. aeruginosa biofilm
population comparable to that of P. aeruginosa PA14 at the end of
assay but showed no killing of S. aureus 8325-4 (see Fig. S3 in the
supplemental material). Importantly, both mucoid and nonmu-
coid strains of P. aeruginosa can reduce S. aureus 8325-4 popula-
tions (see Fig. S3A in the supplemental material). This finding was
confirmed through equivalent S. aureus 8325-4 killing by the par-
ent strain FRD1 (mucoid) and its transposon mutant derivative
FRD1 algT::Tn501, which is nonmucoid due to the mutation in
the alginate biosynthetic genes.

Furthermore, killing of S. aureus by P. aeruginosa PA14 in our
coculture model is not specific to S. aureus 8325-4. All S. aureus
laboratory strains tested (8325-4, Newman, MW2, and USA300)
and clinical isolates of S. aureus (including both methicillin-sen-
sitive and methicillin-resistant strains) were killed by P. aerugi-
nosa PA14 (see Fig. S4 in the supplemental material). Susceptibil-
ity to killing did vary, but all strains experienced at least a 20-fold
decrease in population when in coculture with P. aeruginosa PA14
compared to monoculture.

Taken together, our data show that multiple strains of P.
aeruginosa, including mucoid and nonmucoid strains, are capable
of killing a variety of S. aureus laboratory and clinical isolates,
either in a biofilm or planktonically, indicating a general mecha-
nism of interaction between these organisms. Furthermore, while
the kinetics of the interaction shows some variation, the killing of
S. aureus by P. aeruginosa does not require the presence of CFBE
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cells. We took advantage of the latter conclusion in many of the
subsequent experiments presented below.

Coculture with P. aeruginosa upregulates S. aureus fermen-
tation pathway gene expression. To better understand the mo-
lecular nature of P. aeruginosa-S. aureus interactions, an unbiased
approach to examine changes in gene expression was employed.
RNA-seq analysis was performed on single samples of 6-h biofilms
from the plastic coculture assay, as follows: (i) P. aeruginosa PA14
monoculture, (ii) S. aureus 8325-4 monoculture, and (iii) P.
aeruginosa PA14 plus S. aureus 8325-4 coculture. P. aeruginosa
PA14 and S. aureus 8325-4 gene read assignments for monocul-
tures and cocultures are provided in Tables S3 and S4 in the sup-
plemental material, respectively. We utilized the RNA-seq results
as a hypothesis-generating approach; therefore, a conservative
cutoff of 10-fold change or greater was used to identify differen-
tially expressed genes of potential interest for further investiga-
tion.

P. aeruginosa PA14 gene expression was minimally impacted
by the presence of S. aureus 8325-4 compared to growth of P.
aeruginosa PA14 alone (see Fig. S5 in the supplemental material).
Only one gene, PA_10470, displayed a greater-than-10-fold
change in coculture compared to monoculture. PA_10470, which
encodes a major facilitator superfamily (MFS) transporter, was
downregulated 15-fold in the presence of S. aureus 8325-4.

In contrast, coculture of P. aeruginosa PA14 with S. aureus
8325-4 greatly impacted S. aureus 8325-4 gene expression com-
pared to an S. aureus monoculture (Fig. 2A). A summary of genes
with >10-fold change in expression (increased or decreased) in
the presence of P. aeruginosa PA14 compared to S. aureus 8325-4
alone is provided in Table S5 in the supplemental material. The four
most differentially upregulated S. aureus 8325-4 genes in coculture
with P. aeruginosa PA14 compared to S. aureus 8325-4 monocul-
ture were pyruvate formate-lyase l-activating enzyme (pfIA,
SAOUHSC_00188), formate acetyltransferase (pflB, SAOUHSC_
00187), L-lactate dehydrogenase (Idh, SAOUHSC_00206), and al-
cohol dehydrogenase (adh, SAOUHSC_00113), all of which are
associated with fermentation pathways in S. aureus (Fig. 2A).

Upregulation of S. aureus 8325-4 fermentation pathway gene
expression in coculture with P. aeruginosa PA14 on plastic was
confirmed by qRT-PCR. Representative genes for formate (pfiB,
SAOUHSC_00187), lactate (Idh, SAOUHSC_00206), and ethanol
(adh, SAOUHSC_00113) fermentation pathways were selected
based on the RNA-seq results and quantified relative to the ex-
pression of a reference gene, rpoB (SAOUHSC_00524). S. aureus
expression of pfIB and Idh was upregulated >1,000-fold, and adh
was upregulated >200-fold in coculture with P. aeruginosa PA14
compared to S. aureus 8325-4 monoculture in biofilm samples
(Fig. 2B).

S. aureus shifts from aerobic respiration to lactic acid fer-
mentation in the presence of P. aeruginosa secreted products.
The RNA-seq and qRT-PCR analyses strongly indicated that S.
aureus upregulates fermentation pathways in the presence of P.
aeruginosa. However, expression data alone do not definitively
confirm a metabolic transition away from aerobic respiration.
HPLC was performed to quantify the accumulation of metabolic
products in culture supernatants and, thus, identify changes in S.
aureus 8325-4 metabolism. Due to the complexity of the coculture
system, simply analyzing monoculture versus coculture superna-
tants does not distinguish production and/or consumption of
metabolic products by the two separate species. Therefore, a series
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FIG 2 S. aureus fermentation pathway gene expression is upregulated in the
presence of P. aeruginosa. S. aureus 8325-4 gene expression was compared in
coculture with P. aeruginosa PA14 versus S. aureus monoculture. Total RNA
was isolated from 6-h biofilm fractions on plastic. (A) Filtered RNA-seq reads
corresponding to all expressed genes by S. aureus in coculture and monocul-
ture. Highly differentially expressed genes in coculture with P. aeruginosa com-
pared to S. aureus monoculture are indicated (light gray, >10-fold-increased
expression in coculture; dark gray, >10-fold-decreased expression in cocul-
ture). Key fermentation pathway genes are indicated. (B) Relative expres-
sion of marker genes from formate (pfIB, SAOUHSC_00187), lactate (ldh,
SAOUHSC_00206), and ethanol (adh, SAOUHSC_00113) fermentation path-
ways. S. aureus gene expression in coculture with P. aeruginosa is compared
with that in S. aureus monoculture. Statistical significance was determined for
9 replicate samples using multiple Student ¢ tests and the Holm-Siddk method
for correcting for multiple comparisons (*, P < 0.05). Sa, S. aureus; Pa, P.
aeruginosa.

of monoculture assays were performed using culture supernatants
of P. aeruginosa PA14 or S. aureus 8325-4 in the mixing experi-
ments outlined in Fig. 3A. By separating the two organisms and
sequentially analyzing culture supernatants, we were able to iden-
tify production, accumulation, and consumption of metabolites
by the individual bacterial species.

When S. aureus 8325-4 was grown as a monoculture without
the addition of P. aeruginosa PA14 supernatant over 16 h, S. aureus
8325-4 produced over 6 mM acetate, indicative of aerobic respi-
ration (59, 60) (Fig. 3B). However, S. aureus 8325-4 treated with P.
aeruginosa PA14 culture supernatants showed greatly reduced
production of acetate, accumulating to only 1.5 mM rather than 6
mM over 16 h. Instead, S. aureus 8325-4 cultures treated with P.
aeruginosa PA14 supernatants accumulated lactate in a linear
fashion over the 16-h culture (to about 7 mM), whereas S. aureus
8325-4 cultures not treated with P. aeruginosa PA14 supernatants
accumulated less than 1 mM lactate over 16 h (Fig. 3C). Accumu-
lation of lactate in the S. aureus 8325-4 culture treated with P.

July 2015 Volume 197 Number 14


http://jb.asm.org

A Pamono-culture

Coculturing CF Microbes

{F “Sa” supernatant

¢ 16 hrs < “Sa + Pa sup” supernatant
-o- “Pa only” supernatant
P -8 “Pa + Sa sup” supernatant
sup + media =& “Pa + (Sa + Pa) sup” supernatant
~  Samono-culture  Sa mono-culture B 8
V¥ 16 hrs Vv 16 hrs g(é” % 5
“Sa + Pa sup” “Sa” 8 3 =
L supernatant supernatant % 4
sup + media) sup + media} g2
~ Pa mono-culture Pa mono-culture Pa mono-culture < 0 T y T J
12 hrs $ 12hrs y12hrs o o S5 10 15 20
S Culture Duration (hrs)
“Pa + (Sa + Pa) “Pa + Sa sup” “Pa only” me
sup” supernatant supernatant supernatant
c D E
8 4 6+
s S S
% B B £,
@ 2 24 L
© * & 2.
G2 S 1 <£E'3
— 1 p—a )
0 T T T | 0 ; - . 0
0 5 10 15 0 5 10 15

0 5 10 15 20
Culture Duration (hrs)

Culture Duration (hrs)

Culture Duration (hrs)

FIG 3 P. aeruginosa exoproducts induce lactate production by S. aureus, which is subsequently consumed by P. aeruginosa. (A) Schematic of the sequential P.
aeruginosa PA14 and S. aureus 8325-4 monoculture and spent supernatant treatment protocol used to analyze metabolite accumulation and utilization.
Metabolites were quantified by HPLC from clarified supernatants collected throughout the assay at the indicated time points (B to E). The key above panel B
applies to the graphs in panels B to E. (B and C) Accumulation of acetate (B) or lactate (C) by S. aureus monoculture in the presence (white triangles) or absence
(white squares) of P. aeruginosa culture supernatants. (D and E) Accumulation/utilization of lactate (D) or acetate (E) by P. aeruginosa monocultures in the
absence of S. aureus culture supernatants (circles), the presence of S. aureus supernatants when S. aureus was grown in fresh MEM (black squares), or the presence
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aeruginosa PA14 supernatants demonstrates a metabolic transi-
tion to fermentation in the presence of P. aeruginosa PA14 exo-
products.

Surprisingly, although formate and alcohol fermentation gene
expression pathways were highly upregulated, formate and etha-
nol did notaccumulate in S. aureus 8325-4 cultures treated with P.
aeruginosa PA14 supernatants. After 16 h, formate and ethanol
concentrations were detected at 0.5 mM and 0.6 mM, respectively
(near the limit of detection for our instrument). These results are
consistent with those seen in the S. aureus Col hemB mutant, pre-
viously reported by Kohler et al. (61).

In a coculture system, metabolites produced by one organism
can serve as signals or nutrients for the other organism. Therefore,
we were interested in whether P. aeruginosa utilizes the fermenta-
tion products secreted by S. aureus. When P. aeruginosa PA14 was
grown in medium containing the supernatants from S. aureus
8325-4 cocultured with P. aeruginosa supernatants, the S. aureus-
produced lactate was consumed by P. aeruginosa to below detect-
able levels (Fig. 3D). In fact, P. aeruginosa PA14 consumed the S.
aureus 8325-4-produced lactate preferentially over the glucose in
the medium (see Fig. S6 in the supplemental material), which was
consistent with previous reports (62). P. aeruginosa can also con-
sume acetate (63); however, it was not the preferred carbon source
under the culture conditions used here; rather, additional acetate
accumulated over time (Fig. 3E). The additional accumulation of
acetate by P. aeruginosa monocultures was unexpected, given the
lack of pyruvate in MEM. However, as shown previously, P.
aeruginosa can produce pyruvic acid as an organic acid by-product
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when grown in glucose-based minimal medium, in the absence of
pyruvate (64). Perhaps, this glucose-derived pyruvate serves as the
substrate for acetate production by P. aeruginosa.

Together, these results suggest interesting metabolic dynamics
wherein as a monoculture, S. aureus primarily respires aerobically
and produces acetate; however, in the presence of P. aeruginosa
exoproducts, S. aureus is shifted to a fermentative metabolism and
primarily produces lactate, which P. aeruginosa then preferentially
consumes.

HQNO and P. aeruginosa siderophores are required for S.
aureus killing by P. aeruginosa. While RNA expression and
HPLC analyses yielded great insight into the S. aureus response to
the presence of P. aeruginosa under the conditions of our cocul-
ture model, it did not inform the mechanism(s) by which P.
aeruginosa causes altered viability of S. aureus. To investigate the
mechanism behind P. aeruginosa-mediated killing of S. aureus in
this coculture assay, a targeted candidate gene approach was used.
Previously, P. aeruginosa-produced HQNO was reported to in-
hibit normal growth of S. aureus (44, 48, 51). Additionally, cocul-
ture of P. aeruginosa with S. aureus shifts the gene expression of P.
aeruginosa toward that of a less iron-starved profile in a rat peri-
toneal coculture model (43). Therefore, we targeted the Pseu-
domonas quinolone signal (PQS) (Fig. 4A) pathway and Pseu-
domonas iron acquisition via siderophore production in our
initial experiments.

P. aeruginosa PA14 strains with deletions in PQS pathway
genes and/or genes required for siderophore biosynthesis were
used in the airway epithelial cell and biofilm coculture assay. Sim-
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FIG 4 HQNO and siderophores produced by P. aeruginosa are required for
late-stage killing of S. aureus in vitro. (A) Depiction of the PQS pathway in P.
aeruginosa focusing on the genes/gene products analyzed in the coculture as-
says. (B) Coculture assays on a monolayer of epithelial cells were performed
with S. aureus 8325-4 and P. aeruginosa PA14 WT or specified deletion mutant.
S. aureus biofilm viability was measured at 16 h. Averages and errors (standard
errors of the means) from three separate experiments, each run in triplicate,
are shown. Differential survival of S. aureus in each coculture was compared to
S. aureus monoculture using ANOVA and Dunnett’s multiple-comparison
posttest (a, P < 0.05). Differential survival of S. aureus monoculture or S.
aureus in coculture with a P. aeruginosa mutant is compared to S. aureus
coculture with WT P. aeruginosa also using ANOVA and Dunnett’s multiple-
comparison posttest (b, P < 0.05). Sa, S. aureus; Pa, P. aeruginosa.

ilarly to wild-type (WT) P. aeruginosa PA14, survival and growth
of mutant strains of P. aeruginosa PA14 with the targeted deletions
were not altered by the presence of S. aureus 8325-4 (see Fig. S7 in
the supplemental material). In contrast, S. aureus 8325-4 survival
was differentially impacted by coculture with various mutant
strains of P. aeruginosa PA14 (Fig. 4B). As seen previously, after 16
h in the CFBE coculture biofilm, WT P. aeruginosa PA14 kills S.
aureus 8325-4, resulting in about a 10,000-fold reduction in S.
aureus 8325-4 CFU/well compared to S. aureus 8325-4 monocul-
ture (Fig. 4B). Coculture with single mutants incapable of synthe-
sizing pyoverdine (ApvdA) or pyochelin (ApchE), the two major
siderophores produced by P. aeruginosa PA14, trends toward de-
creased killing of S. aureus 8325-4 compared to coculture with WT
P. aeruginosa PA14. However, coculture with a mutant P. aerugi-
nosa strain that lacks synthesis of both siderophores, the ApvdA
ApchE strain, markedly reduced P. aeruginosa-mediated killing of
S. aureus 8325-4, allowing survival and growth of S. aureus to
levels similar to those when this organism was grown in a mon-
oculture. Interestingly, in a plastic-grown coculture biofilm, both
siderophores are required for efficient P. aeruginosa-mediated
killing of S. aureus 8325-4, as coculture with either single mutant,
the ApvdA or ApchE strain, or the double mutant, the ApvdA
ApchE strain, results in greatly reduced killing of S. aureus com-
pared to WT P. aeruginosa PA14 coculture (see Fig. S8 in the
supplemental material). Thus, to kill S. aureus 8325-4 most effi-
ciently in both the CFBE- and plastic-grown coculture models, P.
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aeruginosa PA14 requires both major siderophores, pyoverdine
and pyochelin.

Coculture on CFBE monolayers with the P. aeruginosa PA14
ApgsA mutant, which reduces all downstream products of the
PQS biosynthetic pathway, similarly results in reduced S. aureus-
killing (Fig. 4). Consistent with other previously reported cocul-
ture models of P. aeruginosa and S. aureus (51), HQNO plays an
important role in S. aureuskilling in our CFBE-coculture model; a
P. aeruginosa PA14 ApgsL mutant, which does not produce
HQNO (Fig. 4A), does not efficiently kill S. aureus 8325-4 (Fig.
4B). While S. aureus killing is significantly reduced in coculture
with P. aeruginosa PA14 ApgsA or ApgsL mutants compared to
WT P. aeruginosa PA14, S. aureus 8325-4 survival is not recovered
to monoculture levels. Further, coculture with P. aeruginosa PA14
ApgsA ApgsL does not further reduce killing compared to either
the P. aeruginosa PA14 ApgsA or the P. aeruginosa PA14 ApgsL
single mutant. Similarly to the pattern observed in coculture with
the siderophore mutants, the requirements for P. aeruginosa-me-
diated killing of S. aureus on plastic are more stringent than in the
CFBE coculture model; that is, coculture with P. aeruginosa PA14
ApgsA, ApgsL, or ApgsA ApgsL mutants supports survival of S.
aureus 8325-4, comparable to that of S. aureus 8325-4 monocul-
ture (see Fig. S8 in the supplemental material). Interestingly, PQS
plays a variable role in S. aureus 8325-4 killing in these coculture
models. The P. aeruginosa PA14 ApgsH mutant, which does not
produce PQS but instead accumulates its precursor 2-heptyl-4-
quinolone (HHQ), trends toward a reduced ability to kill S. aureus
8325-4 in the CFBE coculture model, indicating a possible mod-
erate impact of PQS or downstream signals in S. aureus killing
(Fig. 4B). However, in our plastic-grown coculture model P.
aeruginosa PA14 ApqgsH trends toward more effective killing of S.
aureus 8325-4 than that by WT P. aeruginosa PA14 (see Fig. S8 in
the supplemental material). Together, our data are consistent with
the model that it is the accumulation of HQNO that is primarily
responsible for the role of the PQS pathway in P. aeruginosa-me-
diated killing of S. aureus.

Some redox-active phenazines produced by P. aeruginosa, like
pyocyanin, inhibit respiration and have been reported to be anti-
staphylococcal (47, 65). In both our CFBE- and plastic-grown
coculture models, P. aeruginosa PA14 AphzA-G1/2,a mutant lack-
ing both phenazine biosynthetic clusters and thus unable to pro-
duce phenazines, including pyocyanin, still killed S. aureus 8325-4
to levels similar to that observed for the WT P. aeruginosa PA14
(Fig. 4B; see also Fig. S8 in the supplemental material). This result
further indicates that HQNO is the primary effector in the PQS
pathway required for S. aureus 8325-4-killing by P. aeruginosa
PA14 in this coculture model. Finally, consistent with the require-
ment for both siderophores and HQNO for P. aeruginosa-medi-
ated killing of S. aureus, a triple mutant of P. aeruginosa PA14, the
ApgsA ApvdA ApchE or ApgsL ApvdA ApchE strain, results in
comparable survival of S. aureus 8325-4 in coculture and mon-
oculture on CFBE monolayers and plastic (Fig. 4; see also Fig. S8 in
the supplemental material).

The concentration of iron in the MEM (0.055 wM) is similar to
that detected in bronchoalveolar lavage fluid from healthy pa-
tients (<0.1 wM) (66). Patients with CF have increased iron con-
centrations in the lower respiratory tract. The concentration of
lower airway total iron varies between patients but has been de-
tected around 8 M on average (67). Although total iron can be
easily measured, the concentration of iron readily available for

July 2015 Volume 197 Number 14


http://jb.asm.org

Coculturing CF Microbes

>
w
(@)

—~ — 3
& % o 10
g o £ 8

23 53 35

q) o~

03 ORS) O3

o= o= o T 101

25 5 5

¥ s % 3 2

7]

r 0 x o r 810
S S =Y
X X X
| 1] w 101

Bl WT Pa+3a 24 Pa ApgsLApvdAApchE + Sa
EA Pa ApgsL + Sa

[ saonl
E Pa ApvdAApchE + Sa Y

FIG 5 P. aeruginosa-produced HQNO and siderophores are required to induce S. aureus fermentation gene expression. S. aureus 8325-4 biofilms were grown
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of the means. Sa, S. aureus; Pa, P. aeruginosa.

microbial use is less clear. Under coculture conditions supple-
mented with 8 uM ferric chloride (FeCl;), WT P. aeruginosa PA14
killed S. aureus 8325-4 more efficiently than in low-iron medium
(see Fig. S9 in the supplemental material). Additionally, when
supplemented with iron, P. aeruginosa PA14 ApvdA or ApchE sin-
gle mutant strains did not experience a defect in S. aureus 8325-4
killing. P. aeruginosa PA14 did still require siderophores and
HQNO for efficient killing of S. aureus 8325-4 under 8 uM iron
conditions; however, loss of these components (as displayed
through coculture with the ApvdA ApchE, ApgsL, or ApgsL ApvdA
ApchE mutant of P. aeruginosa PA14) did not yield restoration of
growth/survival of S. aureus 8325-4 to levels equivalent to those of
monoculture. In the presence of additional iron, P. aeruginosa
siderophores, in particular, played a reduced role in P. aeruginosa-
mediated S. aureus killing compared to that under low-iron (un-
supplemented) conditions. Further, the lack of complete recovery
of S. aureus growth/survival in coculture with P. aeruginosa PA14
ApgsL ApvdA ApchE in 8 uM iron medium indicates a role for
additional Pseudomonas aeruginosa factors or nutrient competi-
tion in mediating P. aeruginosa-S. aureus interbacterial interac-
tions. Taken together, the production of HQNO and both sidero-
phores is required for efficient killing of S. aureus by P. aeruginosa.

HQNO and P. aeruginosa siderophores induce mixed acid
fermentation gene expression in S. aureus. Based on the RNA
expression results, HPLC metabolite quantification, and mutant
P. aeruginosa coculture analyses, we hypothesized that molecules
produced by P. aeruginosa lead to induction of fermentation path-
way expression in S. aureus. To test this hypothesis, RNA expres-
sion of fermentation pathways was compared by qRT-PCR in S.
aureus 8325-4 monoculture with that in S. aureus 8325-4-P.
aeruginosa PA14 coculture biofilms on CFBE monolayers using
key mutants identified from the late-stage killing phenotype (Fig.
5). Markers of gene expression of the three main fermentation
pathways are the same as with those investigated in the plastic-
grown coculture biofilms in Fig. 2: lactate fermentation (Idh,
SAOUHSC_00206), formate fermentation (pfiIB, SAOUHSC_
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00187), and alcohol fermentation (adh, SAOUHSC_00113). Sim-
ilarly to plastic-grown cocultures, S. aureus 8325-4 Idh expression
was strongly induced when in coculture with WT P. aeruginosa
PA14 on CFBE cells with >120-fold-increased expression com-
pared to S. aureus 8325-4 monoculture (Fig. 5A). Interestingly,
coculture with either the P. aeruginosa PA14 ApgsL strain, which
does not produce HQNO, or the P. aeruginosa PA14 ApvdA ApchE
double mutant, lacking two major siderophores, resulted in a
trend toward decreased induction of Idh, compared to the cocul-
ture with WT P. aeruginosa PA14 (about 20-fold- and 30-fold-
increased expression, respectively, compared to S. aureus 8325-4
monoculture). Coculture with the triple mutant P. aeruginosa
PA14 ApgsL ApvdA ApchE, lacking HQNO and siderophore pro-
duction, greatly decreased the induction of S. aureus 8325-4 Idh
expression in coculture to a nonsignificant increase of about
3-fold compared to S. aureus 8325-4 monoculture. Thus, both
HQNO and P. aeruginosa siderophores appear to contribute to the
induction of the lactate fermentation pathway expression when S.
aureus 8325-4 is in coculture with P. aeruginosa PA14 and do so in
an additive manner. Similarly, induction of pfIB and adh in S.
aureus 8325-4 was dependent on the production of both HQNO
and P. aeruginosa siderophores (Fig. 5B and C). This additive im-
pact of P. aeruginosa-produced HQNO and siderophores on S.
aureus fermentation gene induction in CFBE-grown coculture
biofilms was also consistent in a second tested strain, S. aureus
USA300 (see Fig. S10A to Cin the supplemental material). Finally,
similar to what was observed in CFBE-grown coculture biofilms,
an additive role of HQNO and P. aeruginosa siderophores in the
induction of S. aureus 8325-4 Idh, pfIB, and adh expression was
detected in coculture biofilms grown on plastic (see Fig. S10D to F
in the supplemental material).

While HQNO and P. aeruginosa siderophores significantly
contribute to the induction of fermentation gene expression, over
replicate experiments, coculture of S. aureus 8325-4 with P.
aeruginosa PA14 ApgsL ApvdA ApchE displayed a nonsignificant
trend toward elevated expression of Idh, pfIB, and adh compared
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FIG 6 S. aureus SCV strains have increased resistance to killing by P. aerugi-
nosa. Plastic-grown biofilm coculture assays were performed with P. aerugi-
nosa PA14 and S. aureus USA300 and Col parent strains or genetic mutants
with stable SCV phenotypes. S. aureus viability was measured at 16 h. Differ-
ential survival rates of S. aureus SCV strains were compared in coculture with
P. aeruginosa versus monoculture and compared to parent S. aureus strain
coculture viability using ANOVA and the Sidék multiple-comparison test for
six replicate samples (¥, P < 0.05; ns, not significant). Error bars represent
standard errors of the means. Sa, S. aureus; Pa, P. aeruginosa.

to S. aureus 8325-4 monoculture. Thus, it is likely that other fac-
tors associated with coculture of S. aureus and P. aeruginosa con-
tribute to S. aureus 8325-4 fermentation pathway induction.
Namely, competition for oxygen likely makes the coculture envi-
ronment less oxic as indicated by a >10-fold reduction in catalase
expression by S. aureus 8325-4 when in coculture with P. aerugi-
nosa PA14 and a >10-fold increase in expression of nrdG, a class
III ribonucleotide reductase upregulated under anaerobic condi-
tions (68) (see Table S5 in the supplemental material). Overall, P.
aeruginosa production of HQNO and siderophores results in in-
duction of lactate, formate, and alcohol fermentation pathway
expression in S. aureus.

S. aureus small-colony variants are partially protected from
P. aeruginosa killing. Respiratory inhibitors like HQNO and
pyocyanin were previously reported to select for S. aureus SCVs
(50, 51). SCVs characteristically have a deficient electron trans-
port chain and provide a survival mechanism that may help S.
aureus persist in the presence of P. aeruginosa (50). We introduced
S. aureus SCV strains with stable mutations in the electron trans-
port chain into the coculture assay mixture on plastic to assess
SCV susceptibility to P. aeruginosa-mediated killing of S. aureus in
our biofilm model. Survival rates of S. aureus USA300 hemB and
menD transposon mutants and an S. aureus Col hemB mutant,
which generate SCVs, were compared to those of their respective
WT parent strains in the presence of P. aeruginosa PA14 or in
monoculture (Fig. 6). S. aureus USA300 hemB::Tn and menD::Tn
mutants survived significantly better than WT S. aureus USA300
in the presence of P. aeruginosa PA14. However, protection from
killing was partial as survival in coculture was 10- to 150-fold
reduced compared to S. aureus monoculture. Interestingly, the S.
aureus Col hemB mutant was completely protected from killing by
P. aeruginosa PA14. Thus, growth as an SCV appears to provide a
mechanism for S. aureus persistence in coculture; however, there

2260 jb.asm.org

Journal of Bacteriology

is heterogeneity in the degree of protection from P. aeruginosa
PA14 between S. aureus strains.

DISCUSSION

Itis well known in reports of the respiratory microbiota of patients
with CF that Pseudomonas is a low-abundance, sometimes tran-
sient, organism during childhood. In pediatric patients, S. aureus
is the primary pathogen, and it is not until late adolescence and
adulthood that P. aeruginosa becomes a prevalent pathogen (20).
Two main interaction phenotypes seen in these CF patients, the
period of coexistence early in life and later-stage displacement of
Staphylococcus by Pseudomonas, appear to be broadly modeled in
our simplified, in vitro CFBE- and plastic-grown cocultures.
While these in vitro coculture models clearly have limitations, they
can be easily modified to address important questions pertaining
to CF microbial interactions. Here, we showed the ability to study
differential interactions as they occur over time in a single assay,
including host cell colonization, biofilm formation, biofilm dis-
persion, and planktonic interactions. While not addressed here,
we have also employed this coculture model to investigate the
impacts of antibiotics and nutrient availability on interbacterial
interactions, as well as the differential impact of multiple versus
single bacterial species on host epithelial cell cytokine response
(L. M. Filkins and G. A. O’Toole, unpublished data). Further, this
simple model sets the foundation for building more complex in
vitro polymicrobial communities with multiple bacterial species
and additional host factors.

Using our CFBE-grown and plastic-grown coculture systems,
we were able to further elucidate the multifactorial mechanism of
S. aureus killing by P. aeruginosa, which we propose by the model
presented in Fig. 7. We propose that P. aeruginosa secretes exo-
products, including siderophores and HQNO, and competes for
oxygen, all of which negatively impact S. aureus growth and sur-
vival. Specifically, production of these exoproducts and oxygen
utilization by P. aeruginosa inhibit the electron transport chain of
S. aureus by sequestering iron that is a necessary heme cofactor of
cytochromes, by inhibiting the oxidation of cytochrome b and
reduction of cytochrome aa; (65, 69), and by competing for the
terminal electron acceptor. S. aureus responds to inhibition of the
electron transport chain by increasing gene expression of fermen-
tation pathways (formate, lactate, and ethanol). As a result, S.
aureus metabolism is shifted away from acetate production and
toward lactate fermentation. P. aeruginosa can preferentially con-
sume S. aureus-produced lactate. We propose that over time the
combination of a poisoned electron transport chain, and thus
markedly slower growth (70, 71), competition for micronutrients,
and additional antimicrobial products produced by P. aeruginosa
leads to S. aureus cell death. As previously reported, P. aeruginosa-
induced S. aureus cell lysis causes the release of iron, which can be
further utilized by P. aeruginosa (43) and thus provide an addi-
tional competitive advantage to P. aeruginosa over S. aureus. The
accompanying paper by Nguyen et al. (72) further explores the
role of iron in the transition from S. aureus to P. aeruginosa pre-
dominance.

The RNA expression analyses performed here strongly indicate
a shift toward fermentative metabolism for S. aureus in the pres-
ence of P. aeruginosa. This observation was further confirmed by
the accumulation of lactate and decrease in acetate accumulation
in S. aureus culture supernatants in the presence of P. aeruginosa
exoproducts. Although S. aureus was previously demonstrated to
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also produce ethanol and formate under anaerobic conditions
(73), these additional metabolites were produced only to levels
near the limit of detection under the culture conditions here, de-
spite strong upregulation of genes from their respective fermen-
tation pathway genes (adh and pfIB). The gene expression and
metabolite profile that we observed here when S. aureus was
grown with P. aeruginosa are similar to those of an S. aureus Col
hemB mutant, previously reported by Kohler et al. (61). In the Col
hemB mutant, lactate was the primary fermentation metabolite
detected, while no detectable formate accumulated and very low
levels of ethanol were produced. Kohler et al. further determined
that, although formate pyruvate lyase is expressed and translated
at very high levels, the protein is inactive in the hernB mutant,
explaining the lack of formate production. In our in vitro S. au-
reus-P. aeruginosa coculture model and sequential supernatant-
treated monocultures, S. aureus metabolism mimics that seen in a
stable, genetic mutant of the electron transport chain.

Although P. aeruginosa displaces S. aureus as the predominant
organism and pathogen during adulthood, S. aureus remains a
minor community member in some patients. Additionally, the
prevalence of S. aureus SCVs correlates with worse disease state
and increases with age (21, 74). The in vitro coculture interactions
reported previously (50) and described here indicate that muta-
tions in the electron transport chain (characteristic of S. aureus
SCVs) partially protect S. aureus from P. aeruginosa killing (Fig.
7). Similarly, S. aureus SCVs may be selected for in respiratory
communities where P. aeruginosa is abundant, contributing to
their persistence in a hostile environment.

The precise mechanism of S. aureus cell death remains an open
question. Based on the work here, it is evident that S. aureus cell
death in this coculture model involves a shift to fermentation;
however, S. aureus is equipped to grow under anaerobic condi-
tions; thus, it is unlikely that the shift to lactate metabolism is the
direct cause of death. Further, while P. aeruginosa exoproducts
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were sufficient to induce the shiftin S. aureus metabolism, treating
S. aureus monocultures with P. aeruginosa culture supernatants
did not efficiently kill S. aureus and S. aureus actively metabolizes
in the presence of P. aeruginosa supernatants (Fig. 3B and C). One
possible indication from the requirement of viable P. aeruginosa
for efficient killing of S. aureus is the role of oxygen consumption
and competition in S. aureuskilling. Some aerotolerant anaerobes
can grow in oxic environments if cocultured with rapidly respiring
aerobic organisms (75), such as P. aeruginosa. It is hypothesized
that P. aeruginosa consumption of oxygen is rapid enough to
maintain sufficiently low levels for the growth of such anaerobes.
Thus, while competition for oxygen is evidently not sufficient to
decrease S. aureus viability alone, in combination with HQNO
and Pseudomonas aeruginosa siderophores, reduced oxygen avail-
ability may put S. aureus at a significant coculture disadvantage.
In addition to the proposed role of oxygen competition, there
are several possible mechanisms by which the shift to lactate fer-
mentation promotes S. aureus cell death in the presence of P.
aeruginosa cells. One model is that reduced energy production by
fermentation, compared to respiration, puts S. aureus at a com-
petitive growth disadvantage in coculture. Alternatively, the
switch of S. aureus to a fermentative lifestyle might increase S.
aureus susceptibility to other antimicrobial factors produced by P.
aeruginosa; however, the increased persistence of S. aureus SCVs,
which also rely on fermentation for their primary energy genera-
tion, in coculture with P. aeruginosa argues against this simple
model. Thus, the SCV phenotype may indicate a key role for S.
aureus being properly adapted to a fermentative lifestyle before
encountering P. aeruginosa in coculture in order for S. aureus to
persist. Another possible model is that P. aeruginosa competes
for/depletes a micronutrient required by S. aureus specifically un-
der conditions of fermentative growth. Finally, S. aureus cell death
may be impacted by pH balance, likely perturbed by increased
lactate accumulation and accumulation of reactive oxygen spe-
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cies. At this time, it is not possible to distinguish among these (or
alternative) models for P. aeruginosa-mediated killing of S. aureus.
The difficulty of determining a precise mechanism of killing is not
an unprecedented challenge. Analogous to our question of P.
aeruginosa-mediated killing, the mechanism of antibiotic-medi-
ated killing has been poorly understood for years and was recently
brought back into focus for continued debate (76-79).

The respiratory microbial communities of CF patients are
complex and dynamic throughout childhood and adolescence.
Despite a strong focus on P. aeruginosa and S. aureus in CF lung
infections, the driving factors that result in P. aeruginosa predom-
inance during adulthood are not well understood. Here, we deter-
mined several possible mechanisms by which P. aeruginosa may
displace S. aureus in respiratory communities. However, the im-
mune response, host factors, and the other microbial community
members undeniably also impact the transition from S. aureus to
P. aeruginosa being the predominant pathogen in CF and the as-
sociated impact on patient outcome.
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