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Effects of tcpB Mutations on Biogenesis and Function of the
Toxin-Coregulated Pilus, the Type IVb Pilus of Vibrio cholerae

Yang Gao, Caitlyn A. Hauke, Jarrad M. Marles,* Ronald K. Taylor†

Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA

ABSTRACT

Vibrio cholerae is the etiological agent of the acute intestinal disorder cholera. The toxin-coregulated pilus (TCP), a type IVb
pilus, is an essential virulence factor of V. cholerae. Recent work has shown that TcpB is a large minor pilin encoded within the
tcp operon. TcpB contributes to efficient pilus formation and is essential for all TCP functions. Here, we have initiated a detailed
targeted mutagenesis approach to further characterize this salient TCP component. We have identified (thus far) 20 residues of
TcpB which affect either the steady-state level of TcpB or alter one or more TCP functions. This study provides a solid frame-
work for further understanding of the complex role of TcpB and will be of use upon determination of the crystal structure of
TcpB or related minor pilin orthologs of type IVb pilus systems.

IMPORTANCE

Type IV pili, such as the toxin-coregulated pilus (TCP) in V. cholerae, are bacterial appendages that often act as essential viru-
lence factors. Minor pilins, like TcpB, of these pili systems often play integral roles in pilus assembly and function. In this study,
we have generated mutations in tcpB to determine residues of importance for TCP stability and function. Combined with a pre-
dicted tertiary structure, characterization of these mutants allows us to better understand critical residues in TcpB and the role
they may play in the mechanisms underlying minor pilin functions.

Vibrio cholerae O1 is a Gram-negative pathogenic bacterium
and the etiologic agent of the acute intestinal disorder cholera

(for a review, see the work of Kaper et al. [1]). Cholera remains a
major health concern and economic burden in developing na-
tions. As the source of cholera infection is typically fecal contam-
ination of potable water sources, developing nations and nations
devastated by natural disasters are particularly vulnerable to chol-
era epidemics. Cholera is readily treatable with oral rehydration
therapy, but left untreated, it can quickly lead to severe dehydra-
tion, shock, and death in less than 24 h postinfection (2).

Essential to V. cholerae pathogenesis are two virulence factors,
cholera toxin (CT) (reviewed by Sandkvist [3]) and the toxin-
coregulated pilus (TCP) (4, 5). CT is secreted via the extracellular
protein secretion (EPS) type II secretion system (T2SS) and inter-
nalized via receptor-mediated endocytosis by epithelial cells of the
host small intestine (3). There, CT initiates a biochemical cascade
of events leading to a massive efflux of Na�, K�, Cl�, and HCO3

�,
followed by H2O, giving rise to the hallmark symptom of profuse
watery diarrhea. TCP, a type IV pilus, is essential for pathogenesis
in both the infant mouse cholera model (4) and infant rabbit
model (6), as well as in humans (5). TCP is essential for secretion
of the colonization factor TcpF (7), is the receptor for the lyso-
genic bacteriophage (CTX�) carrying the CT genes (ctxAB) (8),
and mediates bacterial colonization of the human small intestine
(5, 9).

Type IV pili are flexible surface appendages found to be impor-
tant in the environmental lifestyle and are essential for pathogen-
esis of a number of bacterial species. Type IV pilus structures have
been shown to be essential for cellular adhesion (10), natural
transformation (11), motility (12), biofilm formation (13), and
virulence (4, 5, 14–18). Characteristics of the system’s major pilin
protein, which forms the pilus structure, along with the organiza-
tion of the genes encoding components of the pilus biogenesis

apparatus, are used to classify type IV pili into two distinct sub-
types, IVa and IVb (19, 20).

The V. cholerae TCP, along with the colonization factor antigen
III (CFA/III) and longus pili of enterotoxigenic Escherichia coli
(ETEC) and the colonization factor Citrobacter (CFC) pilus of
Citrobacter rodentium (21), fall under the type IVb subtype. The
major pilin proteins in these systems contain longer leader se-
quences (25 to 30 amino acids), compared to the 6- to 8-amino-
acid-long leader sequences of the type IVa pilins (20). The type
IVb pilus machinery is also simpler, in that the dozen or so genes
encoding the assembly apparatus proteins are arranged in the
same operon, whereas the type IVa assembly apparatus often re-
quires 40 or more proteins encoded by genes distributed through-
out the organism’s genome (22). All type IV pilus systems also
contain minor pilins, characterized by their hydrophobic �-heli-
ces, which are also highly conserved in all major pilins. Minor

Received 12 April 2016 Accepted 23 July 2016

Accepted manuscript posted online 1 August 2016

Citation Gao Y, Hauke CA, Marles JM, Taylor RK. 2016. Effects of tcpB mutations on
biogenesis and function of the toxin-coregulated pilus, the type IVb pilus of Vibrio
cholerae. J Bacteriol 198:2818 –2828. doi:10.1128/JB.00309-16.

Editor: V. J. DiRita, Michigan State University

Address correspondence to Yang Gao, yang.gao.gr@dartmouth.edu, or
Caitlyn A. Hauke, caitlyn.a.hauke.gr@dartmouth.edu.

* Present address: Jarrad M. Marles, 8209 Terminal Road, Suite 700, Lorton, Virginia,
USA.

† Deceased.

Y.G. and C.A.H. contributed equally to this work.

Supplemental material for this article may be found at http://dx.doi.org/10.1128
/JB.00309-16.

Copyright © 2016, American Society for Microbiology. All Rights Reserved.

crossmark

2818 jb.asm.org October 2016 Volume 198 Number 20Journal of Bacteriology

http://dx.doi.org/10.1128/JB.00309-16
http://dx.doi.org/10.1128/JB.00309-16
http://dx.doi.org/10.1128/JB.00309-16
http://crossmark.crossref.org/dialog/?doi=10.1128/JB.00309-16&domain=pdf&date_stamp=2016-8-1
http://jb.asm.org


pilins are much less abundant than major pilins. Most minor pi-
lins in the type IVa systems are similar in size to their major pilins
and have been demonstrated to be incorporated into the pilus
structure to mediate pilus functions (23–25). In contrast, the mi-
nor pilins of the type IVb systems are much larger than their major
pilin counterparts, and their precise roles in pilus assembly and
function are less well understood.

TcpB is characterized as the minor pilin of TCP. The tcpB gene
is found in the tcp operon adjacent to the major pilin gene tcpA,
and the protein it encodes contains the highly conserved pilin-like
hydrophobic N-terminal �-helix. Similar to minor pilins of the
CFA/III and longus type IVb systems in ETEC, TcpB has a short
(7-amino-acid) type IVa pilin-like leader sequence and is signifi-
cantly larger than the TcpA pilin (423 amino acids [aa] and 199 aa,
respectively). TcpB is essential for all known TCP functions (7);
however, unpublished data from our laboratory show that the
formation of pilus structures can still occur in the absence of
TcpB. A �tcpB mutant strain is unable to autoagglutinate (an in
vitro phenotype that correlates with colonization), deficient in se-
cretion of the colonization factor TcpF, unable to be transduced
by CTX-Km�, and unable to colonize the infant mouse (7, 26). In
addition, the pili produced by a �tcpB mutant strain are only
found as small thin twisted bundles in a lower abundance than the
wild type and are incapable of forming the large supertwists seen
for wild-type strains and essential for autoagglutination and col-
onization (27), which may explain their inability to carry out any
TCP-associated functions.

Recently, the crystal structure of the ETEC CFA/III minor pilin
CofB has been determined (28, 29). CofB contains a pilin-like
N-terminal region and two discrete C-terminal domains con-
nected by flexible linkers. It was also revealed that CofB is required
for and likely initiates CFA/III pilus assembly. The minor pilins
CofB and TcpB share many similarities. Although their sequences
are only homologous in the N-terminal �-helix region, they are
both substantially larger than their pilin counterparts and have
multiple cysteines and other shared residues. The similarities be-
tween CofB and TcpB allow for reliable structural modeling of
TcpB using the solved CofB structure. Based on the similarities, it
could also be surmised that TcpB is likely required for efficient
TCP assembly. A finer understanding of specific residues of TcpB
is needed to decipher the role the protein plays in the TCP ma-
chinery. Such information could also provide insights into the
mechanism of action of all type IVb minor pilins. In this study, we
initiated a targeted mutagenesis approach to determine residues
that are important for TcpB stability and function. We hypothe-
sized that by identifying residues that are important for some, but
not all, TCP-associated functions, we could gain insight into the
roles played by different regions of the protein, with the ultimate
goal of understanding the possible mechanisms by which TcpB
mediates the functions of TCP.

MATERIALS AND METHODS
Bacterial strains and growth media. The bacterial strains and plasmids
used in this study are described in Table S1 in the supplemental material.
All strains were maintained at �80°C in lysogeny broth (LB) containing
20% (vol/vol) glycerol. V. cholerae strains grown under TCP-expressing
conditions were grown in LB, with a starting pH of 6.5 and aeration at
30°C for 12 to 16 h, as previously described (4, 30).

When appropriate, strains were grown with antibiotics at the follow-
ing final concentrations: 100 �g/ml ampicillin, 30 �g/ml gentamicin, 45
�g/ml kanamycin, and 100 �g/ml or 1,000 �g/ml streptomycin. All DNA

manipulations were performed using standard molecular and genetic
techniques (31). Strains containing plasmid pBAD22, pTK85, pTRNS101,
or their derivatives were grown in LB containing ampicillin, and expres-
sion of the fusion protein was induced with 0.01% (wt/vol) arabinose as
needed.

Plasmid and strain construction. Plasmid pJMA32 was constructed
via the QuikChange PCR-based mutagenesis system (Stratagene). Com-
plementary mutagenic primers ABN75 (5=-GGCACAACCCAAAAGGAT
GGTAGCGCGGGACCGCATGCG-3=) and ABN76 (5=-CCGGATAGAA
GCGCATGCGGTCCCGCGCTACCATCCTTTTGGG-3=) were used for
inverse PCR to amplify the entire pTK85 (26) template construct, incor-
porating the mutation. The resulting plasmid (pJMA32) was then trans-
formed into S17-1 �pir via electroporation, isolated via a Qiagen miniprep
kit, using the manufacturer’s directions, and verified by sequencing. Fol-
lowing verification, the plasmid was introduced in a V. cholerae O395
�tcpB strain, RT4368, via electroporation. All additional plasmids used in
the mutagenesis screen were constructed similarly, with the exception of
plasmids pJMA46, pJMA70, pJMA57, and pJMA71. These plasmids con-
tain fortuitous additional mutations generated during the QuikChange
PCR process, which were discovered during sequencing verification. Plas-
mid descriptions are found in Table 1.

Plasmid pTRNS101 was constructed as follows. Briefly, an approxi-
mately 2,800-bp region of V. cholerae O395 containing tcpB was cloned
into the allelic exchange vector pKAS32 (32). The resulting plasmid
(pTRNS101) was then verified by sequencing and used as a template con-
struct for QuikChange (Stratagene) or Phusion (New England BioLabs)
PCR-based mutagenesis (as described above for pJMA32). The resulting
constructs were used to introduce chromosomal tcpB point mutations via
allelic exchange into strain RT4368 (Table 2), as previously described
(30). The resulting strains, RT4634 to RT4656, RT4658, RT4659, and
RT4660, were then verified by sequencing to ensure no unintended mu-
tations occurred during the procedure.

Strains RT4657 and RT4662 were constructed using the following ap-
proach due to difficulty generating these mutations. Primer pairs were
used to amplify 	500-bp chromosomal regions flanking the intended
mutation site. Each primer pair was designed to include a common re-
striction site to join the two products and a unique restriction site for
vector incorporation. The upstream primer pair was additionally de-
signed to incorporate the intended mutation. The resulting PCR products
were then cloned into pKAS32, resulting in plasmids pTRNS132 and
pTRNS133. The plasmids were verified by sequencing and the mutations
then introduced into RT4368 using previously described methods (30).

Plasmid pTRNS120 was constructed by gene splicing by overlap ex-
tension (gene SOEing) (33). Briefly, (i) pJMA71, containing the desired
tcpB mutant allele, was used as a template for PCR amplification. An
	600-bp region encompassing the 3= end of tcpB was PCR amplified. (ii)
O395 wild-type (WT) chromosomal DNA both upstream and down-
stream of the amplified region in step 1 was PCR amplified. The reverse
primer of the upstream region and the forward primer of the downstream
region were designed to incorporate segments overlapping the PCR am-
plified region from step 1. (iii) The three PCR-amplified regions produced
in steps 1 and 2 were subjected to two additional rounds of PCR amplifi-
cation using the outside-most primers to generate a single PCR product of
	2,700 bp. This final PCR product was ligated into the allelic exchange
vector pKAS32 and propagated in S17-1 �pir. The desired mutation was
then introduced into the O395 WT strain via allelic exchange and verified
by sequencing.

Autoagglutination assay. Cultures were inoculated for each strain
from an individual colony and grown under TCP-expressing conditions,
as described above, with antibiotics and/or arabinose as required. The
autoagglutination phenotype was scored visually after allowing cultures to
stand at room temperature for 15 min, and 1 ml of each culture was
removed from the top of each culture tube and the optical density at 550
nm (OD550) measured.

Key TcpB Residues Important for TCP Functions
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TABLE 1 Phenotypic screening of strains with plasmid-carried tcpB

Construct Alteration(s)a TcpB stabilityb Autoagglutinationb Transduction efficiencyc TcpF secretionb

pTK85 WT TcpB � � �� �
pBAD22 Empty vector � � � �
pJMA82 E5V � � �� �
pJMA83 R26E � � � �
pJMA86 W79A � � �� �/�
pJMA85 K81A � � �� �
pJMA84 E83R � � �� �
pJMA37 C85A � � �� �/�
pJMA72 C85S � � � �
pJMA54 C107A � � � �
pJMA73 C107S � � � �
pJMA45 LCWD249-252AAAA �/� � �/� �
pCHG016 L249A � � �� �/�
pJMA38 C250A � � � �/�
pJMA75 C250S � � � �
pCHG017 W251A � � �� �
pJMA58 D252A �/� � �� �
pJMA39 C261A � � �/� �/�
pJMA76 C261S � � �/� �
pJMA52 K272A � � �� �
pJMA62 E274A � � �� �
pJMA61 D276A � � �� �
pJMA49 K278A � � �� �/�
pJMA51 D281A �/� � �� �/�
pJMA60 K286A � � �� �
pJMA48 K295A � � �� �
pJMA53 K297A � � �� �
pJMA69 F307A � � � �/�
pJMA47 D309A � � �� �
pJMA50 K314A �/� �� �� �
pJMA40 C321A � � � �/�
pJMA74 C321S �/� � �� �
pJMA41 R328A � � �� �
pJMA68 SS334-335AA � � � �/�
pJMA42 E348A � � �� �
pJMA34 KD351-2AA �/� � �� �
pJMA46 L262P, KD351-2AA � �/� �� �
pJMA67 S353A � �/� � �/�
pJMA35 KD359-60AA � � �� �
pJMA66 S362A � �/� �� �
pJMA32 K363A � � �� �
pJMA59 H366A � � �� �/�
pJMA65 L369A � � �� �
pJMA64 S370A � � �� �
pJMA43 K381A � � �� �
pJMA63 W383A � � � �/�
pJMA33 D384A � � �� �
pJMA55 E392A � �/� �� �
pJMA70 E392A, D402A �/� � � �/�
pJMA56 D402A � � �� �
pJMA36 RNPK408-11AAAA � � � �/�
pJMA57 RNPK408-11ANPA � � �� �
pJMA71 �392-401, RNPK408-11AKNA �/� � � �
pCHG005 W420A � � � �
pCHG003 C421S � � � �
a Alterations in bold type were selected for further study as chromosomal mutations.
b �, wild type like; �, �tcpB mutant like; �/�, a decrease in function compared to the wild type but not complete loss; ��, exceeds wild-type levels.
c Level of transduction efficiency: ��, approximately wild-type level; �, approximately 1 to 2 log below wild-type level; �/� approximately 3 to 5 log below wild-type level; �, no
Kmr bacteria were recovered and transduction efficiency is therefore below the limit of detection, equivalent to 
7 to 8 log below the wild-type level.
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CTX-Km� transduction assay. Strains were grown as described for
the autoagglutination assay. The CTX-Km� transduction assay was per-
formed as previously described (8, 9). Briefly, equal volumes of CTX-
Km�-containing supernatants and bacterial cultures were mixed and in-
cubated in a water bath at 37°C for 45 min. Following incubation,
dilutions of each sample were plated on LB agar containing kanamycin.
Additionally, dilutions of bacterial cultures were plated to determine in-
put bacteria. Transduction efficiency is calculated as the ratio of kanamy-
cin-resistant (Kmr) test strain transductants to the number of input CFU
divided by the ratio of Kmr wild-type O395 transductants (or �tcpB/
pTK85 transductants for a positive control) to the number of wild-type
O395 (or �tcpB/pTK85) input CFU.

Western immunoblotting. Whole-cell lysates were assayed for to-
tal protein concentrations using a bicinchoninic acid protein assay kit
(Pierce). Equal amounts of total protein for each sample were resus-
pended in 2� sodium dodecyl sulfate-polyacrylamide gel electropho-
resis buffer. Culture supernatant fractions were resuspended in 6�
buffer due to their lower protein concentrations and were loaded at
equal volumes of sample. All samples were boiled for 10 min prior to
being loaded on 16% precast Tris-glycine gels (Invitrogen). Proteins
were electroblotted onto a nitrocellulose membrane via an iBlot dry
blotting system (Invitrogen). The membrane was blocked with 3%
bovine serum albumin in 1� Tris-buffered saline with 0.1% Tween
(TBST) overnight. The primary antisera used included lab collections
of polyclonal antipeptide or monoclonal antibodies against TcpB and
TcpF.

Transmission electron microscopy. Strains were grown under TCP-
expressing conditions. A Formvar-coated copper grid was inverted and
suspended on top of a 50-�l drop from an overnight culture on Parafilm
for 10 min. Grids were wicked dry with Whatman filter paper, negatively
stained with 0.5% phosphotungstic acid (pH 6.5) for 2 min, and stored in
a desiccated chamber until viewing. Grids were viewed using a Jeol 100CX
electron microscope at 100 kV. Each strain was observed at magnifications
of up to �25,000.

Modeling of residues altered in this study. Predicted secondary and
tertiary structures were generated by Phyre2 (http://www.sbg.bio.ic.ac.uk
/phyre2) using the mature TcpB amino acid sequence. Phyre2 generates a
multisequence alignment by scanning the query sequence against a cu-
rated protein sequence database and uses the Hidden Markov method
(HMM) to construct a tertiary model based on a database of HMMs of
proteins of known structure (34). Phyre analysis revealed CofB to be the
primary structural match to TcpB, with 99% of TcpB residues modeled at
100% confidence in homology models to the CofB crystal structure. The
predicted tertiary structure of TcpB was generated using PyMOL (http:
//www.pymol.org/).

RESULTS
Construction and analysis of plasmid-borne tcpB mutant al-
leles. In an effort to better understand the role of TcpB in TCP
functions, we initiated an extensive genetic analysis of TcpB by
targeting tcpB codons for mutagenesis. The corresponding resi-

TABLE 2 Summary of TCP functional assays for tcpB chromosomal missense mutants

Strain Alteration(s)
TcpB
stabilitya Autoagglutinationa

Transduction
efficiencyb

TcpF
secretiona Pilus phenotype

V. cholerae O395 None (WT) � � �� � WT
RT4368 �tcpB NA � � � �tcpB mutant
RT4634 E5V � �/� � � WT
RT4635 R26E � � � � WT (looser twists)
RT4637 E83R � � �� � WT
RT4638 C85A �/� � �/� � �tcpB mutant
RT4639 C85S �/� � �/� � �tcpB mutant
RT4640 C107A �/� � �/� � �tcpB mutant
RT4641 C107S �/� � �/� � �tcpB mutant
RT4644 C250A � � � � �tcpB mutant
RT4645 C250S � � � � �tcpB mutant
RT4646 W251A � � � � �tcpB mutant
RT4648 C261A � � � � �tcpB mutant
RT4649 C261S � � � � �tcpB mutant
RT4650 K278A � � �� �/� WT
RT4651 D281A � � � �/� WT
RT4652 F307A � � �/� � WT (many singular pilus fragments

but also a few larger WT-like
supertwists; some twists appear
to be looser than normal)

RT4653 K314A � � � � WT
RT4654 C321A � � � � �tcpB mutant (occasional large

twists but no supertwists)
RT4655 C321S � � � � �tcpB mutant
RT4656 KD351-2AA � � � � �tcpB mutant
RT4657 S353A � � �� �/� WT (intermediate in size)
RT4658 H366A � � �� � WT
RT4659 W383A � � �/� � WT (very loose strands, fraying)
RT4660 �392-401, RNPK408-411AKNA � � � � �tcpB mutant
RT4662 C421S � � � � �tcpB mutant
a �, wild type like; � �tcpB mutant like; �/�, a decrease in function compared to the wild type but not complete loss; NA, not applicable.
b Level of transduction efficiency: ��, approximately wild-type level; �, approximately 1 to 2 log below wild-type level; �/�, approximately 3 to 5 log below wild-type level; �, no
Kmr bacteria were recovered and transduction efficiency is therefore below the limit of detection, equivalent to 
7 to 8 log below the wild-type level.
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dues we selected included all cysteine residues, residues conserved
among TcpB orthologs, and additional charged residues, with em-
phasis on those closer to the C terminus, as previous work has
shown the C-terminal region of the pilin TcpA is important for
pilin function (9), and TcpB has a similar pilin-like domain. Se-
lected residues were changed to Ala or a specific alternative amino
acid based on previous studies involving pilin proteins. In addi-
tion, each Cys residue was changed to a Ser to investigate the
importance of disulfide bond formation, as changing the -SH
group to an -OH group alters the bonding capabilities of the side
chain while maintaining the overall conformation of the amino
acid. Additional mutations that arose during the PCR process,
which were identified during the sequence verification step, were
analyzed as well, bringing the total to 53 different alleles of tcpB.

To simplify the process of identifying important residues of
TcpB, we initially screened these mutations by generating each
allele on a pBAD22 expression construct using a PCR-based mu-
tagenesis system. Each plasmid-borne allele was then introduced
into an O395 �tcpB strain via electroporation. Strains were grown
under TCP-expressing conditions and assessed for TcpB steady-
state level, along with any effect on TCP functions using in vitro
assays to assess autoagglutination (an in vitro phenotype that cor-
relates with the ability to colonize the small intestine [9, 27]),
ability to secrete TcpF, and CTX-Km� transduction frequency.
The results for each assay were compared to those for an O395
�tcpB/pTK85 strain and an O395 �tcpB/pBAD22 strain as posi-
tive and negative controls, respectively. A summary of the results
relative to the control strains can be found in Table 1. A panel of
mutations affecting one or more, but not all, TCP functions (high-
lighted in bold in Table 1) were then selected for further study by
generating equivalent chromosomal mutations in tcpB. Addition-
ally, residues corresponding to those shown to be important in
previous studies of pilin TcpA function were also generated in
tcpB to determine if they play a role in the function of this minor
pilin as well (35, 36).

Construction of chromosomal tcpB mutant alleles. The re-
sults of our screening study identified a number of alleles that
exhibited an effect on either the TcpB steady-state level or one or
more TCP functions (Table 2). The 24 selected alleles were regen-
erated using either a PCR-based mutagenesis method or other
standard molecular cloning methods in an allelic exchange vector,
as described in Materials and Methods. The mutations were then
recombined into the chromosome via allelic exchange. By intro-
ducing the mutations into the chromosome, the tcpB alleles are
expressed using their native promoter, thereby eliminating any
consequences of TcpB overexpression which may have occurred
in the initial plasmid-based screen. Each allele was verified by
sequencing, and each resulting strain was tested for the allele’s
effect on TcpB steady-state level, pilus formation visually assessed
using transmission electron microscopy (TEM), autoagglutina-
tion, TcpF secretion, and CTX-Km� transduction frequency. A
subset of altered residues was labeled on the predicted secondary
and tertiary structures of TcpB (see Fig. 5), which may provide
context to better understand the subsequent phenotypic results.

TcpB steady-state levels of tcpB chromosomal missense mu-
tants. Strains containing chromosomal mutations in tcpB were
grown overnight under TCP-expressing conditions with whole-
cell extracts (WCE) assayed via Western immunoblotting for the
presence of TcpB using anti-TcpB antiserum (Fig. 1, arrow). TcpB
was detected in each strain, with the exception of mutants RT4646

(TcpBW251A), RT4654 (TcpBC321A), RT4655 (TcpBC321S), RT4656
(TcpBKD351-2AA), RT4662 (TcpBC421S), and the O395 �tcpB strain.
Notably, TcpB was detectable in strains encoding mutations of
C250 and C261 but not in C321 or C421 mutants. Both C85 and
C107 mutants also yielded detectable TcpB, albeit the protein lev-
els were severely reduced. In addition, an unidentified cross-reac-
tive protein was observed at 	180 kDa only in the TcpBC250A

mutant strain and was consistently seen on the immunoblot even
with increased levels of dithiothreitol (DTT) added to the protein
sample (data not shown). This higher-molecular-weight band was
also detected in strains expressing either a plasmid-borne allele
that encodes TcpBC250A or a chromosomal allele encoding
TcpBC250A constructed from an independent allelic exchange ex-
periment (data not shown), suggesting that this band is not the
result of any technical errors made during the construction of the
mutant. A nonspecific band observed on the immunoblot served
as a loading control.

Pilus formation by the tcpB chromosomal missense mu-
tants. To ensure the effects on TCP function observed in the tcpB
missense mutants are attributable to alterations of the amino ac-
id(s) on the function of TcpB and not the result of an inability of
the strain to elaborate TCP, each strain was visually assessed via
TEM to confirm that a pilus structure was produced. This analysis
also permitted the opportunity to characterize the pili produced
by each strain and categorize them based on our previously pro-
posed model of the hierarchy of pilus bundling (27).

Figure 2 shows representative images of pili from O395 WT,
�tcpB mutant, and tcpB missense mutants. We previously desig-
nated the small bundles of pili produced by the �tcpB strain as
“twists” and the large bundles of pili observed in the O395 WT
strain as “supertwists” (27). Our results show O395 WT forming
supertwists, while only twists were observed for the �tcpB mutant
strain. Strains RT4634 (TcpBE5V), RT4637 (TcpBE83R), RT4650

FIG 1 Steady-state level of tcpB chromosomal missense mutants. Western
immunoblot of whole-cell lysates of O395 WT, �tcpB, and tcpB chromosomal
mutants grown under TCP-expressing conditions and probed with anti-TcpB
antiserum. A nonspecific band on the immunoblot beneath TcpB serves as the
loading control. RT4660* refers to the TcpB alteration �392-401, RNPK408-
411AKNA.
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(TcpBK278A), RT4651 (TcpBD281A), and RT4658 (TcpBH366A) ap-
pear capable of forming supertwists similar to those observed for
the O395 WT strain. Strains RT4638 (TcpBC85A), RT4639
(TcpBC85S), RT4640 (TcpBC107A), RT4641 (TcpBC107S), RT4645
(TcpBC250S), RT4646 (TcpBW251A), RT4648 (TcpBC261A), RT4649
(TcpBC261S), RT4660 (TcpB�392– 401, RNPK408 – 411AKNA), and
RT4662 (TcpBC421S) produced pili bundles that were similar in
size to the twists produced by the �tcpB mutant strain, and the
supertwists seen in the O395 WT strain were not observed. Inter-
estingly, an intermediate level of bundling (neither completely
WT nor �tcpB mutant-like in nature) was observed for the
RT4635 (TcpBR26E), RT4652 (TcpBF307A), RT4657 (TcpBS353A),
and RT4659 (TcpBW383A) strains, where they readily form super-
twists but the bundles appear much looser than those of the wild
type.

Autoagglutination phenotype of tcpB chromosomal mis-
sense mutants. Next, we characterized the autoagglutination phe-
notype of the tcpB missense mutants. When grown under TCP-
expressing conditions, the O395 WT strain forms visible
aggregates that rapidly precipitate out of a suspension upon re-
moval of the culture from the rotator. To determine whether mu-
tations in tcpB altered the autoagglutination phenotype, strains
were grown under TCP-expressing conditions as described in the
Materials and Methods and scored both visually and by a spectro-
photometer (Fig. 3). The OD550 values shown in Fig. 3 represent
an average of three replicates. A �tcpB mutant strain was used as a
negative control and showed no autoagglutination, consistent
with previous studies (7, 26).

Seven of the mutant strains retained the ability to autoaggluti-
nate at WT levels. The TcpBE5V mutant consistently resulted in
reduced levels of autoagglutination, exhibiting a visible pellet on
the bottom of the culture tube and a turbid supernatant, while 16
of the mutations (including all strains encoding Cys alterations)
resulted in the inability of the strain to form aggregates, appearing
similar to the �tcpB mutant strain. The autoagglutination pheno-
types appeared to be consistent with the formation of supertwists
(Table 2).

TcpF secretion by tcpB chromosomal missense mutants.
TcpB is essential for secretion of the colonization factor TcpF (7,
26). Whole-cell extracts (WCE) and filtered culture supernatants
(Supe) were assayed for the presence of TcpF via immunoblotting
with anti-TcpF antiserum (Fig. 4). Only strains encoding mutants
R26E, E83R, and K314A (RT4635, RT4637, and RT4653, respec-
tively) retained the ability to secrete TcpF at WT levels, where all of
the TcpF is secreted into the culture supernatant and none re-
mains in the WCE. Strains encoding the mutations K278A,
D281A, and S353A (RT4650, RT4651, and RT4657, respectively)
showed an intermediate phenotype, as a band corresponding to
TcpF was observed in the supernatant fraction, but TcpF was still
detectable in the WCE. A �tcpF mutant strain was used as a neg-
ative antibody control.

CTX-Km� transduction frequency of tcpB chromosomal
missense mutants. An O395 �tcpB strain is deficient for CTX-

FIG 2 Pilus morphology of tcpB chromosomal missense mutants. Represen-
tative images of mutants under TCP-inducing growth conditions. Overnight
cultures were negatively stained with phosphotungstic acid and viewed using
TEM. The black arrow in the WT panel indicates pili, and white arrows indi-
cate flagella. All images were taken at a magnification of �25,000.
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Km� transduction (7, 26). To determine whether the tcpB mis-
sense mutations altered the transduction frequency by CTX-
Km�, each strain was tested as described in Materials and
Methods, with the results shown in Table 3. O395 WT and �tcpB
mutant strains were used as positive and negative controls, respec-
tively. Transduction efficiency was determined by dividing the
transduction frequency of the experimental strain by WT.

Four tcpB mutant trains resulted in WT levels of transduction
efficiencies. Four mutants resulted in transduction efficiencies of
approximately 1 to 2 log below the levels of the WT strain. Six
mutants resulted in transduction efficiency 4 to 5 log below WT
levels and are considered to be severely defective in CTX� trans-
duction. The remaining 10 tcpB mutant strains were greater than 7
log below WT efficiencies and were considered to be transduction
negative.

DISCUSSION

The V. cholerae O395 minor pilin TcpB is required for efficient
TCP formation, although some pili are still produced by a tcpB
mutant. However, TcpB is essential for all known TCP functions
both in vitro and in vivo. To further characterize this important
protein and better understand how TcpB mediates the various
TCP functions, we initiated a targeted mutagenesis study to iden-
tify those residues of TcpB important for TCP function.

FIG 4 TcpF secretion by tcpB chromosomal missense mutants. Western im-
munoblots of filter-sterilized culture supernatant (Supe) and whole-cell ex-
tract (WCE) samples from O395 WT, �tcpB mutant, and tcpB chromosomal
mutant strains grown under TCP-expressing conditions and probed with anti-
TcpF antiserum. The �tcpF mutant served as an antiserum control.

FIG 3 Autoagglutination phenotype of tcpB chromosomal missense mutants. Strains were grown under TCP-expressing conditions, followed by 15 min of
standing at room temperature (RT). Images show the various levels of autoagglutination of the different tcpB mutants. Numbers below the images indicate
average OD550 from three separate cultures for each strain.
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Through the analysis of mutants that were unaffected in TcpB
stability but altered in one or more TCP-associated functions, we
found that changes in autoagglutination and phage transduction
phenotypes are correlated. If a mutant is able to autoagglutinate to
a wild-type level when grown under TCP-inducing conditions, it
also has a wild-type level of phage transduction efficiency. If a
mutant is unable to autoagglutinate, it is also either severely de-
fective in phage transduction or unable to be transduced by phage
at a level detectable by our assay. However, this phenotypic corre-
lation does not extend to TcpF secretion, as there are two mutants
(RT4634 and RT4658) that have wild-type, or near-wild-type, lev-
els of autoagglutination and phage transduction efficiency but are
unable to secrete TcpF (Table 2). This finding may reflect a dis-
ruption in the interaction between the pilus and its secreted pro-
tein, i.e., a potential TcpB-TcpF interaction.

The recent crystallization of enterotoxigenic E. coli minor pilin
CofB (28, 29) may provide new insights into the significance of the
TcpB point mutants generated in this study, as 99% of the TcpB
residues modeled at 100% confidence in homology models with
the CofB crystal structure (which was crystalized without the N-
terminal �-helix) when analyzed using the Phyre2 modeling
server (28). CofB consists of a pilin domain, a linker connecting
the pilin domain to a �-repeat region containing two �-repeats,
and a second connective linker, followed by a C-terminal �-sand-
wich domain (28). The Phyre2 protein folding recognition soft-
ware generated secondary and tertiary structural models for TcpB
that we used to map our selected amino acids of interest from the
mutagenesis study (Fig. 5). These residues include all the cysteines
as well as amino acids that, when altered, do not affect the stability

of TcpB but impact the phenotypic profile of TCP. Given the
homology to CofB, it appears that TcpB consists of a pilin domain,
one �-repeat region, and the �-sandwich domain.

When viewing the tertiary predicted model for TcpB, of first
interest were the Cys missense mutations (Fig. 5B, blue). In type
IV pilins, the disulfide bridge forms a loop structure, termed the
D-region (37), shown in TCP pilin TcpA to contain residues im-
portant for TCP function. TcpB contains 6 Cys residues, making it
difficult to predict a priori which ones might be critical for TcpB
stability. Some of the Cys residue alterations resulted in a loss of
detectable TcpB in the WCE of strains grown under TCP-express-
ing conditions, suggesting that these mutations decrease the sta-
bility of TcpB. None of the Cys mutant strains showed the ability
to autoagglutinate or secrete TcpF, and all were markedly deficient
compared to O395 WT in phage transduction frequency.

In CofB, two disulfide bonds are present within a �-repeat
region, where each links a pair of �-strands (28, 29). In the
Phyre2-predicted model, the homologous cysteine residues
within TcpB would be C250 and C261, which could be a disulfide
bonded pair within the corresponding �-repeat region that links
the predicted pilin domain to the �-sandwich domain in TcpB. Of
note, the TcpB steady-state level was not affected in strains carry-
ing these mutations (RT4645 and RT4649, respectively), indicat-
ing that alterations at C250 or C261 do not affect the overall sta-
bility of TcpB. These cysteine mutations may prevent proper
folding of a domain of the protein, thereby preventing full TcpB
function, perhaps due to the disruption of a disulfide bond. In
TcpB, C321 and C421 are homologous to a pair of cysteines in
CofB that form a disulfide bond within the �-sandwich region
(25), suggesting that a similar disulfide bond occurs in TcpB as
well. Changing these residues (in RT4655 and RT4662, respec-
tively) completely abolished TcpB stability and TCP functions,
suggesting that these cysteines, and potential disulfide bond, are
critical for TcpB. The C85 and C107 residues are located in the
N-terminal pilin domain region and, as in TcpA, are most likely
also disulfide bonded and are critical for TcpB structure and func-
tion. Although altering either of the cysteines did not completely
render the protein unstable, as for TcpA (9), these two Cys resi-
dues are partially responsible for TcpB stability and the ability of
TcpB to contribute to all TCP-associated functions.

In type IV pilins, the glutamic acid residue at position 5 of the
mature pilin is highly conserved and thought to aid in subunit
incorporation into the growing filament, where it neutralizes the
N-terminal positive charge so that pilins may assemble (35, 38, 39,
40). A mutation corresponding to E5V in the gene encoding the P.
aeruginosa major pilin PilA resulted in a loss of piliation in this
strain (35). An E5A mutant in V. cholerae TcpA also disrupted
efficient pilus formation (39). Strain RT4634 (TcpBE5V) produced
a stable TcpB protein but showed intermediate phenotypes for
autoagglutination (pellet at bottom of culture tube with turbid
supernatant) and phage transduction efficiency, and it had a se-
vere deficiency in its ability to secrete TcpF. Since this mutation is
located in the N-terminal helical region (Fig. 5A, orange), it likely
does not disrupt the overall structure of TcpB, hence the normal
steady-state level of TcpB, but it could disrupt the possible ability
of TcpB to be incorporated into the pilus. It is possible that proper
TcpB incorporation into a growing pilus is particularly critical for
TcpF secretion.

This mutagenesis study has identified four additional TcpB
residues (K278, D281, S353, and H366) that appear important

TABLE 3 CTX-Km� transduction of tcpB chromosomal missense
mutants

Strain Alteration(s)
Transduction
frequency

Transduction
efficiency

WT 1.02E�02 1
�tcpB mutant 
4.50E�10 
4.41E�08
RT4634 E5V 1.42E�04 1.39E�02
RT4635 R26E 2.49E�04 2.44E�02
RT4637 E83R 2.97E�02 2.91
RT4638 C85A 3.48E�07 3.42E�05
RT4639 C85S 5.87E�07 5.75E�05
RT4640 C107A 1.47E�06 1.44E�04
RT4641 C107S 6.67E�07 6.54E�05
RT4644 C250A 
2.18�10 
2.14E�08
RT4645 C250S 
2.18E�09 
2.14E�07
RT4646 W251A 
1.27E�10 
1.25E�08
RT4648 C261A 
1.16E�09 
1.14E�07
RT4649 C261S 
1.43E�09 
1.40E�07
RT4650 K278A 2.66E�03 0.261
RT4651 D281A 4.47E�04 4.38E�02
RT4652 F307A 9.95E�07 9.75E�05
RT4653 K314A 4.08E�04 4.00E�02
RT4654 C321A 
6.20E�10 
6.08E�08
RT4655 C321S 
3.20E�10 
3.14E�08
RT4656 KD351-2AA 
1.14E�09 
1.12E�07
RT4657 S353A 3.92E�03 0.384
RT4658 H366A 1.66E�03 0.163
RT4659 W383A 2.56E�06 2.51E�04
RT4660 �392-401,

RNPK408-11AKNA

3.17E�10 
3.11E�08

RT4662 C421A 
5.91E�10 
5.79E�08
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primarily for TcpF secretion. Altering the K278, D281, and S353
residues (strains RT4650, RT4651, and RT4657, respectively) re-
duced the secretion of TcpF, as some TcpF remained in the WCE,
while the H366A (strain RT4658) alteration completely abolished
TcpF secretion. Based on the predicted TcpB structure, these res-
idues are located on one side of the �-sandwich region (Fig. 5B [all
four fall within the top plane of this region]), which may be an
important interaction domain for TcpB with TcpF, TcpB with

TcpB, or between TcpB and other components of the pilus bio-
genesis apparatus that enable TcpF secretion.

Other notable alterations include F307A and W383A (strains
RT4652 and RT4659, respectively). Both mutants produced
stable TcpB and WT-like pili when viewed under TEM, but do
not autoagglutinate or secrete TcpF, and are deficient in phage
transduction. Although they produce WT-like pilus super-
twists, these mutants also produce many singular pilus frag-

FIG 5 Selected residues mapped onto predicted TcpB structural models. Residues that do not affect the stability of TcpB but impact the phenotypic profile of
TCP, as well as the cysteine residues, are mapped onto the predicted secondary structure (A) and tertiary structure (B). (A) Cysteines (blue), E5 (orange), residues
that primarily affect TcpF secretion (red), and residues that have an intermediate effect (green) are highlighted on the mature TcpB amino acid sequence. The
predicted secondary structure of the protein generated using Phyre2 (33) is shown below the amino acid sequence. Green coils represent �-helices, blue arrows
represent �-sheets, and gray lines indicate coils. (B) Theoretical structural cartoon model of TcpB created using Phyre2. The predicted structure was modeled
largely on the crystal structure of CofB; however, the N-terminal region was modeled based on the full-length PAK pilin. Residues of interest are highlighted using
the same color code as in panel A. The image was generated in PyMOL (http://www.pymol.org/).
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ments and some looser-appearing supertwists. Based on the
predicted TcpB structural model, F307 is located near the C-
terminal end of the �-sandwich region, and W383 is also lo-
cated on the same side of the �-sandwich region, falling within
a �-sheet (Fig. 5B). Since some supertwists appeared loosely
packed, the F307 and W383 residues may be located in a region
of TcpB that is important for assisting pili in tightly and effi-
ciently supertwisting (although the single point mutations may
not be sufficient to completely abolish these tight twists, as
some were still observed), and these tight supertwists may be
necessary for the other TCP functions (TcpF secretion, phage
transduction, and autoagglutination). It is possible that this
region of TcpB also stabilizes pili in a way that allows the tight
supertwists to form.

The individual residues (K278, D281, S353, H366, W383,
and F307) within the �-sandwich region appear to be of par-
ticular importance to TcpB function, as additional selected res-
idues that were screened in our original plasmid mutagenesis
(Table 1) were located in this region as well and did not affect
TcpB stability or function. In the initial screen, we selected
many more residues in the C-terminal region because of their
conservation in TcpB orthologs and their polar or charged
properties. Among the residues tested, many are located near
the four residues that affected only TcpF secretion (K278,
D281, S353, and H366), and these mutant proteins all exhib-
ited characteristics identical to those of the wild type. Similarly,
the F307 and W383 residues that are important for tight super-
twist formation are also surrounded by amino acids with bio-
chemical properties that potentially play a role in protein-pro-
tein interaction or pilus stabilization, but from our plasmid
mutagenesis screen, none of them seem to contribute to TcpB
stability or function (Table 1). The set of six mutations we
tested on the chromosome appear to be uniquely critical for
TCP function, as surrounding mutations (on the plasmid) did
not share the same functional effects. Future immunoprecipi-
tation or two-hybrid assays using these mutants will allow us to
study TcpB interaction with TcpF and other proteins in the
TCP biogenesis apparatus, providing more insight into the
mechanisms underlying TcpB function.

Through this study, we have identified 20 residues of TcpB
which affect either the steady-state level of TcpB or one or more
in vitro functions of TCP. Now that the structure of CofB has
been deduced (28, 29), the model for TcpB will aid in deter-
mining potential residues of interest for further studies in TcpB
interaction and function. In CofB, the flexible C-terminal re-
gion is required for CofB to initiate pilus assembly, likely by
recruiting the initial major pilin CofA to the assembly appara-
tus (28). Recently, it has also been proposed that CofB may
form a homotrimer that acts as a tip complex to initiate pilus
formation (29). The proposed model suggests that the CofB
complex forms largely through the hydrophobic interactions of
the �-repeat and �-sandwich domains. This new model further
illustrates the importance of the C-terminal domains of these
minor pilins and provides insight into the potential mechanism
that TcpB may adopt for its role in TCP functions.

We propose that TcpB is necessary for efficient TCP formation,
as a �tcpB mutant strain and many of the mutants tested still
produce a pilus, but it is nonfunctional. It is possible that TcpB
helps to stabilize the major pilin TcpA for assembly, contributing
to the ability to form supertwists and perform associated pilus

functions. Additionally, current efforts to determine the crystal
structure of TcpB will provide the opportunity to map these im-
portant residues onto the true structure of TcpB and might further
allow us to explore the role of TcpB in V. cholerae pathogenesis,
while providing new insights into minor pilin functions in other
pilus systems.
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