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The interatomic distance distribution, P(r), is a valuable tool for evaluating the

structure of a molecule in solution and represents the maximum structural

information that can be derived from solution scattering data without further

assumptions. Most current instrumentation for scattering experiments (typically

CCD detectors) generates a finely pixelated two-dimensional image. In contin-

uation of the standard practice with earlier one-dimensional detectors, these

images are typically reduced to a one-dimensional profile of scattering inten-

sities, I(q), by circular averaging of the two-dimensional image. Indirect Fourier

transformation methods are then used to reconstruct P(r) from I(q). Substantial

advantages in data analysis, however, could be achieved by directly estimating

the P(r) curve from the two-dimensional images. This article describes a

Bayesian framework, using a Markov chain Monte Carlo method, for estimating

the parameters of the indirect transform, and thus P(r), directly from the two-

dimensional images. Using simulated detector images, it is demonstrated that

this method yields P(r) curves nearly identical to the reference P(r). Further-

more, an approach for evaluating spatially correlated errors (such as those that

arise from a detector point spread function) is evaluated. Accounting for these

errors further improves the precision of the P(r) estimation. Experimental

scattering data, where no ground truth reference P(r) is available, are used to

demonstrate that this method yields a scattering and detector model that more

closely reflects the two-dimensional data, as judged by smaller residuals in cross-

validation, than P(r) obtained by indirect transformation of a one-dimensional

profile. Finally, the method allows concurrent estimation of the beam center and

Dmax, the longest interatomic distance in P(r), as part of the Bayesian Markov

chain Monte Carlo method, reducing experimental effort and providing a well

defined protocol for these parameters while also allowing estimation of the

covariance among all parameters. This method provides parameter estimates of

greater precision from the experimental data. The observed improvement in

precision for the traditionally problematic Dmax is particularly noticeable.

1. Introduction
The interatomic distance distribution, P(r), is a valuable tool

for evaluating the structure of a molecule from small-angle

solution scattering (SAS) data and is a common starting point

for three-dimensional shape reconstructions. P(r) is typically

reconstructed from a one-dimensional profile of scattering

intensities, I(q) [q = (4�/�)sin#, where # is half the scattering

angle and � is the wavelength of the incident radiation], on the

basis of the Fourier relationship,

PðrÞ ¼ ð2=�Þr
R1

0

qIðqÞ sinðqrÞ dq: ð1Þ

However, I(q) is observed only in a finite interval [qmin, qmax].

Because of the missing information at q < qmin and q > qmax

indirect Fourier transform (IFT) methods are employed to

reconstruct P(r). That is, a linear combination of basis func-

tions is used to estimate P(r),

PðrÞ ¼
PNmax

i¼1

ai’iðrÞ; ð2Þ

with the coefficients ai determined by fitting the linear

combination of Fourier-transformed functions, f iðqÞ; i ¼

1; 2; . . . ;Nmaxg, to the observed I(q). Although there are

several implementations of indirect transformation employing

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5586&bbid=BB23
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different basis functions and fitting restraints (Glatter, 1977;

Moore, 1980; Svergun et al., 1988; Svergun & Koch, 2003), it is

well known that this indirect approach is ill-conditioned

because of the limited resolution of the scattering data

(Svergun et al., 1988). In fact, we have shown that a set of P(r)

curves better represents the measured data (Kavathekar et al.,

2010). However, as a practical matter, it is often advantageous

to determine a single ‘best’ P(r) curve for use in further

analysis.

Current instrumentation for solution scattering employs a

two-dimensional detector (typically CCD). These detectors

give an orthogonal grid of finely spaced pixels, typically one to

two thousand on an edge, that display a radially symmetric

scattering pattern around a beam center. To remove the effect

of scattering by the solution, a set of scattering images is

obtained both for the molecule of interest dissolved in the

solution and for the solution only. Typically 10–15 images of

each type are generated at current synchrotron sources using

short exposures (�1–5 s) to maximize total counts while

limiting radiation damage.

To obtain the one-dimensional scattering profile, a beam

center for all the data is first determined based on the scat-

tering pattern of a standard sample with strong rings of scat-

tering intensity (typically silver behenate or rat tail collagen).

The center is generally determined from calibration images

before data collection on the experimental samples and is

possibly checked for consistency later. I(q) profiles are then

obtained from the experimental images by averaging the pixel

intensities in concentric bands around the beam center, and a

corresponding profile of standard errors is calculated. The I(q)

profiles from the 10–15 images of each type are averaged, and

the solution average is subtracted from the molecule-in-solu-

tion average yielding a reduced molecule-only scattering

profile. The corresponding standard errors are propagated

accordingly.

Although well established and productive, these data

reduction procedures result in the loss of some information,

especially of the spatial relationship among the detector pixels.

They are also based on strong a priori assumptions about the

distribution of pixel intensities (e.g. proportionality between

the mean and variance of a pixel intensity and also indepen-

dence between neighboring pixels), which can result in

incorrect standard errors and possibly a biased P(r) estimate.

Considering these limitations, we propose determining P(r)

directly from the images rather than first reducing the two-

dimensional image data to a one-dimensional I(q) profile. Our

approach can incorporate any indirect transform method, and

the indirect transform coefficients are determined directly

from the image pixel values without intermediate reduction.

Bayesian inference, enabled by a Markov chain Monte Carlo

(MCMC) method, is used to estimate the indirect transform

coefficients. MCMC is a class of algorithms based on the

construction of a Markov chain (where the future state

depends only on the current state) that provide samples from

a desired distribution (Brooks et al., 2011). In this case, the

MCMC method provides us with samples from the Bayesian

posterior distribution of P(r) coefficients. The posterior

distribution can be used to summarize a family of P(r) curves

consistent with the data or to compute a single ‘best’ P(r)

curve. Using the image data directly allows us to account for

spatial correlation among the pixel intensities (and potentially

better model the pixel intensity and variance).

A Bayesian approach to the evaluation of solution scat-

tering data has been applied to the estimation of Dmax, the

magnitude of the longest interatomic vector in P(r), and the

smoothing parameter for the indirect transformation (Hansen,

2000; Vestergaard & Hansen, 2006). However this approach

assumes a fixed form for the probability of these two para-

meters and this probability is only evaluated at the vector of

IFT coefficients that maximizes the desired combination of

smoothness and fit to the data. Since it starts with the I(q)

curve, this approach also does not consider all the information

inherent in the two-dimensional detector images.

Our proposed Bayesian–MCMC approach extends the

integration over the entire set of parameters (including Dmax

and beam center) without presupposing a particular form for

their error structure. It allows us to directly estimate Dmax and

quantify its uncertainty by simply including it as an additional

unknown parameter. Finally the location of the beam center

can also be included as a model parameter, thereby reducing

experimental effort and eliminating the possibility of a

systematic difference between the data and calibration images.

Estimating Dmax, the beam center and the coefficients all at

one time allows appropriate estimation of their uncertainty

and their interactions (covariances), which can then be

propagated into the P(r) curve. Although we have simulated

and tested this procedure on solution small-angle X-ray scat-

tering (SAXS), it should apply equally well to solution small-

angle neutron scattering, where the improved estimation of

uncertainty may prove especially useful because of the lower

flux and greater counting errors.

2. Methods

2.1. P(r) reconstruction from the two-dimensional images

In our Bayesian–MCMC approach (Fig. 1), we start with a

molecule-in-solution and a solution-only detector image.

These raw images are first normalized by the flux of the

incident beam and masked appropriately to remove intensities

from the four edges and the beam stop region of the image.

Finally, corrections are applied to account for the flatness of

the detector and varying distance from sample to pixel.

Initial alignment of the two images utilizes the radially

symmetric scattering pattern inherent in each image. We first

fit our Bayesian model, which assumes spatial independence

between pixels (to be described later), on each image using a

reduced data range (q < 0.05). At this stage, the integer pixel

corresponding to the mean value of the MCMC sample for the

beam center is used as that image’s center pixel. (Note that, as

an alternative, we have also searched for the pixel that mini-

mized the variance within concentric rings around that center;

this yielded similar results.) The solution-only image is then

aligned with the molecule-in-solution image using their center
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pixels and subtracted to obtain the molecule-only two-

dimensional image.

Using the molecule-only image, we then fit our spatially

independent Bayesian model to the entire image to estimate

the inherent spatial autocorrelation. After estimating the

spatial autocorrelation (see x2.3), we fit a second Bayesian

model, which accounts for spatial dependence between pixels,

to obtain the final joint posterior distribution of parameters.

Our Bayesian approach uses an indirect transform model

and accounts for spatial correlation among the pixels. Let YM

represent the vector of the n pixel intensities of the molecule-

only image. We assume these intensities are multivariate

normal with mean intensity vector lM and covariance matrix

�M. Although any set of basis functions could be used to

model the mean intensities, we here employ the basis func-

tions of Moore (1980) for computational ease in this initial

development of our approach. Thus for pixel i with associated

scattering vector magnitude qi,

�M;i ¼
PNmax

j¼1

aj jðqiÞ; where

 jðqÞ ¼ �jDmax �1ð Þ jþ1 sinðqDmaxÞ �jð Þ
2
� qDmaxð Þ

2
� ��1

:

ð3Þ

Here, Nmax is determined by Shannon sampling (Shannon &

Weaver, 1949).

To account for the possibility of spatial correlation among

pixels, we consider a simultaneous autoregressive (SAR)

model and define an n� n proximity matrix, W, whose entries,

wij, identify neighboring pixels (Cressie, 1993). We assign wij =

1 if pixels i and j are considered neighbors and wij = 0 other-

wise, and then standardize each row of W by dividing by the

sum of the row,
P

j wij. On the basis of observed experimental

correlograms, we consider either ‘queen’ (lateral and diag-

onal) or ‘rook’ (lateral only) neighbors (Besag, 1974). Under

the SAR model structure, the covariance matrix of YM is

�M ¼ I � �Wð Þ
�1VM I � �Wð Þ

�1
� �T

; ð4Þ

where VM represents the n � n diagonal matrix of pixel

variances for the molecule-only difference image, and I is the

n� n identity matrix. The parameter � denotes the first-order

spatial autocorrelation parameter. The larger this value, the

greater the correlation among the pixels.

Since the pixel variances in each image are assumed to be

proportional to their expected intensity, the variance in the

molecule-only image VM equals VMS þ VS, the sum of the

variances in the observed molecule-in-solution and solution-

only images, and is proportional to the sum of their expected

intensities, ŶYMS þ ŶYS. Since only the expected intensities in

the molecule-only image, ŶYM, are modeled directly and not

the separate ŶYMS and ŶYS intensities, we assume that VMS þ VS

is approximately proportional to 2YMS � ŶYM, where YMS are

the observed molecule-in-solution intensities. VM thus

becomes a function of the parameters used to estimate the

mean intensity in the molecule-only image and the observed

pixel intensities of the molecule-in-solution image.

2.2. Estimation of model parameters

The parameters of our spatially dependent model,

� ¼ fan: n ¼ 1; 2; . . . ;Nmax; Dmax; ðcx; cyÞ; �g, include the

indirect transform coefficients an, the maximum length of the

molecule Dmax, the beam center ðcx; cyÞ and the spatial auto-

correlation parameter �. The exact log-likelihood of a set of

parameter values can be expressed as

ln f ðYM j �Þ
� �

¼ � 1
2 n lnð2�Þ þ ln jI � �Wj � 1

2 ln jVMj

� 1
2 ðYM � lMÞ

T��1
M ðYM � lMÞ; ð5Þ

where | | means determinant and VM, ��1
M and �M are func-

tions of �. We employ Bayesian inference, enabled by an

MCMC method (Gilks et al., 1995), to estimate the joint

posterior distribution of all model parameters except the

autocorrelation parameter �, which is estimated from the data

using a two-step procedure (see x2.3). We adopt relatively

non-informative lognormal priors for the indirect transform

coefficients, an (needed to support positive coefficients for the

Moore indirect transform), a more informative Gaussian prior

(centered around the center of the physical beam stop) for the

beam-center location ðcx; cyÞ and a gamma prior for Dmax (also

positive). Analysis of the resulting MCMC samples showed

these choices of priors had little influence on the final esti-

mates; instead the data dominate (results not shown).

As a result of structural constraints in the basis functions,

Dmax and the first few coefficients (e.g. a1; a2; a3) are highly

correlated and their individual Metropolis–Hastings updates
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Figure 1
Flowchart of our proposed data preprocessing and methodology.



suffered from poor mixing. To improve this, we adopted an

adaptive joint update scheme by sampling from a multivariate

normal proposal distribution (Gilks et al., 1995; Hanson &

Cunningham, 1998). We start with an MCMC algorithm using

individual Metropolis–Hastings parameter updates and run

the chain for a sufficient number of iterations (�25 000),

discarding the first 5000 as burn-in. The elements of the

covariance matrix of Dmax, a1 and a2 are estimated from the

remaining post-burn-in samples and used in the multivariate

normal proposal distribution. The chain then continues, using

this joint proposal update for these three parameters and the

remaining individual updates (further details of proposal

distributions and acceptance ratios will be published else-

where). Only the iterations from the joint proposal phase are

used for further analysis. The joint proposal is employed in

both the spatially independent and the spatially dependent

Bayesian models.

2.3. Estimation of the autocorrelation parameter a

We estimate � and then hold it fixed during MCMC

modeling for two reasons. First, simultaneous estimation of

the spatial correlation parameter � within our MCMC algo-

rithm is computationally expensive. High-resolution images of

dimension 1024� 1024 (or 2048� 2048) result in a proximity

matrix W of dimension over one (four) million by one (four)

million with sparse nonzero off-diagonal terms. Computing

ln jI � �Wj and ��1
M in the log-likelihood is then extremely

expensive computationally. However if � is fixed, ln jI � �Wj

is simply a constant in the log-likelihood and can be ignored.

We discuss ��1
M under fixed � in the next section. Second,

previous research has shown little change in the distribution of

parameters for small differences in the correlation structure

(Furrer et al., 2006; Zhang & Du, 2008).

The estimate of � is obtained by first fitting our spatially

independent Bayesian model [i.e. fix � = 0 in equation (5) and

estimate the remaining parameters using our MCMC

approach] to the entire molecule-only image. The posterior

means from this chain are used to calculate the standardized

residual matrix. The spatial correlation among these standar-

dized residuals is then quantified using the sp.correlogram

function in the spdep package (Bivand, 2010) and the chosen

neighborhood structure for W. Since second-order effects are

weak in the data we have examined, the estimated correlation

among neighboring pixels is used as our estimate of �.

2.4. Composite likelihood approximation

Another computationally intensive component in our log-

likelihood is ��1
M . In order to improve the efficiency of our

method, we employ a composite likelihood approximation to

equation (5) that is frequently used in modeling high-dimen-

sional geospatial data (Lindsay, 1988; Vecchia, 1988). With this

method, the full likelihood is replaced by a product of pixel-

specific likelihoods (or sum over pixel-specific log-like-

lihoods), each evaluated over a much smaller region of the

image. Here, these likelihoods are based on the information

for each pixel and its direct neighborhood, involving a total of

k observed intensities. Thus,

ln f ðY j �Þ½ � ’
P

No: of
pixels

i¼1

ln fiðY j �Þ
� �

; where

fiðY j �Þ / j�iðkÞj
�1=2 exp

�
� 1

2 ðYiðkÞ � ŶYiðkÞÞ
T��1

iðkÞ

� ðYiðkÞ � ŶYiðkÞÞ
�

and

�iðkÞ ¼ ðIiðkÞ � �WiðkÞÞ
�1ViðkÞ½ðIiðkÞ � �WiðkÞÞ

�1
�
T:

ð6Þ

When using a ‘rook’ style neighborhood structure, k = 5; for

‘queen’ style, k = 9. We should note that a composite like-

lihood approach also allows for ready parallelization of this

time-consuming step in the MCMC approach (see below).

2.5. Estimation of Dmax

Estimation of Dmax from SAS data has been a challenging

problem (Jacques & Trewhella, 2010). Previous methods for

P(r) reconstruction have shown that the indirect model

parameter estimates and resulting P(r) are sensitive to the

choice of Dmax. Our Bayesian approach allows for easy

inclusion of Dmax as an additional parameter, thereby avoiding

possible biases that can occur when fixing Dmax before esti-

mating the other parameters. Including Dmax also allows

incorporation of the additional uncertainty arising from this

parameter into our results.

For the value of Nmax, the number of coefficients in our

indirect transform model, we adopt a procedure similar to

Moore (1980) and use Shannon sampling theory (Shannon &

Weaver, 1949). Specifically, Nmax is the largest integer less than

Dmax(qmax � qmin)/�. While this approach could potentially

result in the number of parameters varying over our MCMC

iterations, our experience has been that Dmax varies little

enough (provided we start with a reasonable initial Dmax) that

Nmax remains constant at the initial value.

2.6. Replicating traditional one-dimensional data reduction

For our experimental data analysis comparison, the one-

dimensional scattering profile for an image is obtained after

preprocessing (see x2.1) by calculating the unweighted

average intensity among pixels within concentric rings around

the specified beam center determined with a silver behenate

standard. The widths of the rings were selected to match the q

values employed in a traditional one-dimensional data

reduction generated at BioCAT. Standard errors were calcu-

lated based on the assumption that the variance was propor-

tional to the mean with a proportionality constant of 10 to

roughly match the standard errors found in the reduced

profiles generated at BioCAT. The solution-only profile was

subtracted from the molecule-in-solution profile and the

standard errors propagated to obtain the one-dimensional

difference profile.

2.7. Simulating a molecule-only image

An initial IðqÞ for the simulated data study was developed

from the crystal structure of a monomer from orotidine
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monophosphate decarboxylase complex with XMP (PDB

code 1lol; Wu & Pai, 2002). Using a Dmax of 58.5 Å and a q

range of 0.006–0.47 Å�1, Shannon sampling suggests Nmax = 8

basis functions to appropriately model P(r). These basis

functions were fitted to the initial I(q) curve to obtain the

reference indirect transform coefficients, which were then

used to generate a reference P(r). These reference coefficient

values were also used along with a spatial autocorrelation

value of � = 0.5, a queen-style neighborhood structure and an

assumed beam center of ðcx; cyÞ = (50, 50) to generate a

100� 100 molecule-only simulated image YM, where

YM ¼ lM þ�1=2
M e; with

lM ¼
P8

n¼1

an nðqÞ and

�M ¼ ðI � �WÞ
�1

VM½ðI � �WÞ
�1
�
T:

ð7Þ

The e vector is a set of independent random variables, each

drawn from a standard normal distribution. To ensure an error

structure similar to experimental data, VM contains only

diagonal elements calculated to match the relative errors

found in experimental data from a 1.0 mg ml�1 sample of a

21 kDa protein collected at the BioCAT undulator beamline

18-ID at the Advanced Photon Source (APS) (Fischetti et al.,

2004) fitted with a high-sensitivity CCD detector (Phillips et

al., 2002). The diagonal elements of VM are proportional to lM,

with the proportionality constant determined so that the

relative standard errors in a ring were comparable to those

observed in the real detector image. Computational limita-

tions in simulating the spatial dependency make it difficult to

simulate an image with more pixels. While the smaller size

proved sufficient for developing and testing our methodology,

calculating a one-dimensional reduction from the simulated

image for comparison may lead to undersampling.

2.8. Implementation, availability and timing

The calculations were performed using software packages in

R (http://www.r-project.org/) and MATLAB (The MathWorks

Inc., Natick, MA, USA). Our R code is available as supple-

mentary material.1

On a dual core 2.8 GHz Xeon processor with 12 Gbytes

RAM, spatially independent MCMC simulation on a 1024 �

1024 detector image (25 000 iterations) took 1 h, while the

spatially correlated MCMC (25 000 iterations) took 10 h.

Since our code was not optimized for efficiency, several

changes to the MCMC algorithm would probably improve it.

For example, additional group updates of parameters may

reduce this time. Also, the time could be shortened by paral-

lelization, either by running several shorter independent

Markov chains and combining results or by parallelization of a

single chain, in particular the time-consuming inner loop of

composite likelihood computations (Jacob et al., 2011).

3. Results

We apply our method first to simulated and then to experi-

mental data to test its performance relative to one-dimen-

sional data reduction. Since one-dimensional data reduction

followed by estimation of the basis function coefficients is a

proven approach for estimating the IFT coefficients, we are

particularly interested in our novel capabilities to estimate the

beam center location ðcx; cyÞ, the maximum length of the

molecule Dmax and the detector spatial autocorrelation para-

meter �, in addition to changes in the standard errors of

ðcx; cyÞ, Dmax and the IFT coefficients. By calculating a set of

potential P(r) curves, we examine the impact of all the vari-

ables and their covariances on P(r) reconstruction.

3.1. Simulated data study

Initially our model was fitted to the simulated image data

under the assumption of spatial independence and the corre-

sponding standardized residuals were obtained. As described

in Methods, these residuals were used to determine the first-

order autocorrelation parameter �, and then the model was

run under spatial dependence to obtain the final parameters.

Fig. 2 shows the standardized residuals (left) and the corre-

sponding correlogram plot (right) for both the spatially

independent model (top row) and the spatially dependent

model (bottom row). Under the independent model, the

neighboring residuals display the expected correlation, which

quickly dies off with ‘distance’. The first-order autocorrelation

parameter � is estimated to be 0.45, close to the simulation

value of � = 0.50. This � = 0.45 value was then used to fit our

spatially dependent model.

Regardless of the choice of spatial model, all parameters

were very close to their reference values (Table 1). The

spatially dependent model estimates were more accurate for

seven of the 11 parameters as judged by the mean and median

of their MCMC distribution. Greater accuracy is seen espe-

cially in Dmax and the first few indirect transform coefficients.

The greater accuracy seen in this single simulation probably

arises from the enhanced precision of the spatially dependent
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Table 1
Estimates of MCMC parameters for simulated data obtained under
spatially independent and spatially dependent model assumptions.

Spatially independent Spatially dependent (� = 0.45)

Parameter
True
value Mean† Median† SD† Mean† Median† SD†

a1 5.282 5.256 5.256 0.007 5.274 5.274 0.004
a2 4.178 4.181 4.181 0.002 4.177 4.177 0.001
a3 1.686 1.698 1.699 0.004 1.689 1.689 0.002
a4 0.545 0.553 0.553 0.002 0.549 0.549 0.001
a5 0.337 0.337 0.337 0.001 0.338 0.338 0.000
a6 0.301 0.301 0.301 0.000 0.301 0.301 0.000
a7 0.206 0.206 0.206 0.001 0.206 0.206 0.001
a8 0.084 0.089 0.088 0.001 0.086 0.086 0.001
Dmax 58.5 58.712 58.720 0.056 58.566 58.567 0.032
cx 50 50.000 50.000 0.003 50.001 50.001 0.002
cy 50 49.999 49.999 0.003 50.000 50.000 0.002

† The mean, median and standard deviation of the posterior distribution of each
parameter are based on 25 000 MCMC iterations with joint updating.

1 The code discussed in this paper is available from the IUCr electronic
archives (Reference: HE5586). Services for accessing this material are
described at the back of the journal.



model as reflected in the reduction in

uncertainty [Table 1, standard devia-

tion (SD) of the posterior distribution]

in the parameter estimates. Improved

fit is also seen in the removal of spatial

correlation from the standardized resi-

duals (Fig. 2, compare top and bottom

rows), although there is no improve-

ment in the mean-square residual since

both methods effectively model the

underlying simulated signal. The P(r)

estimates based on samples of para-

meters from the spatially dependent

MCMC model and the 99% credible

interval of the P(r) estimates show

small variations around the reference

(Fig. 3). Because of the coarse

(100� 100 pixel) sampling of the

simulated data used in this develop-

mental-stage simulation, comparison

with one-dimensional reduction might

be artificially unfavorable to the one-

dimensional method. As a result, such

comparisons are only made below using

our experimental data, which involves

images of 1024� 1024 pixels.

For the spatially independent model,

the MCMC chain was started at values

far away from the true parameters, and

this model demonstrates good conver-

gence and stability (Fig. 4). These

profiles also demonstrate strong corre-

lations (both negative and positive)

between Dmax and the first three direct
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Figure 3
(a) A set of 10 000 PðrÞ curves (gray) calculated from the parameters of the last 10 000 MCMC iterations for the simulated data using the spatially
dependent model with � = 0.45. (b) The 99% credible interval based on the last 10 000 iterations (dashed lines) observed to encompass the reference PðrÞ
curve (solid gray).

Figure 2
Standardized residuals of the simulated two-dimensional detector image (left) and the spatial
correlogram of the standardized residuals (right), showing autocorrelation values for nearest
neighbors (lag = 1), second-order neighbors (lag = 2) etc. Residuals after running MCMC simulations
assuming spatial independence are shown on the top row and residuals after running MCMC
simulations with spatial dependence and an autocorrelation parameter of � = 0.45 on the bottom
row.



transform coefficients (r1D ¼ �0:992, r2D ¼ 0:890 and

r3D ¼ 0:990) but weak correlation among the other para-

meters. These strong correlations substantially reduce the

efficiency of MCMC sampling. To improve mixing of the

variables during the later stages of MCMC sampling, we

jointly updated Dmax, a1 and a2 using a multivariate normal

distribution with a covariance matrix based on the initial

MCMC chain. The improvement in sample mixing is evident in

the reduction of the correlation between Dmax and the first

three coefficients (Fig. 5) before and after the joint updating

(left and right columns, respectively). Although the joint

updating is shown here for the spatially independent model, it

was applied to the spatially dependent model as well with an

equally good effect.

3.2. Application to experimental data

As an example of high-quality experimental data, a set of 15

high-resolution (1024� 1024 pixels) molecule-in-solution and

solution-only SAXS images of horse heart myoglobin were

collected using a mar165 detector with 2� 2 binning (Fischetti

et al., 2004) installed at BioCAT at the Advanced Photon

Source (http://www.bio.aps.anl.gov/facilities.html). A beam

center ðcx; cyÞ = (138, 362) for these images was obtained by

the traditional method using a silver behenate standard. The

images provided scattering intensities in a q range of 0.007–

0.377 Å�1.

In preparation for our Bayesian–MCMC analysis, the raw

images were normalized by the flux of the transmitted beam

(I1), the beam stop was masked, and corrections for distance

and angle of incidence were applied to the images to correct

for a flat detector geometry (Fig. 1). One image each was

chosen from the 15 images of the molecule-in-solution and

solution-only data sets. For initial alignment, the center pixels

of the molecule-in-solution and solution-only images were

determined by the MCMC method using only data with

q< 0:05 Å�1. In this case, the posterior means of the beam

center in the two selected images were found to be almost

identical. Since the center pixels matched, a difference image

(Fig. 6) was then calculated by subtraction of corresponding

pixels without adjustment or interpolation.

The one-dimensional scattering profile was calculated (see

Methods) using the silver behenate center and fitted to

Moore’s basis functions for indirect transformation using
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Figure 5
Trace plots of selected parameters of the spatially independent MCMC
model using the simulated data after burn-in. The left panel shows the
MCMC samples with individual parameter updates and the right panel
shows the MCMC samples with a joint update of a1, a2 and Dmax.

Figure 6
Molecule-only image of myoglobin of size 1024� 1024 pixels used for
MCMC evaluation. This image was obtained by taking 1024� 1024
molecule-in-solution and solution-only images, applying corrections and
normalizing, and then aligning these images to the nearest pixel and
taking the difference.

Figure 4
Trace plots of selected parameters of the spatially independent MCMC
model using the simulated data. The chains started out at arbitrary initial
values but quickly converged to the steady state.



various values of Dmax. The value Dmax = 46.11 was selected on

the basis of minimizing the �2 statistic for the fit.

To obtain parameter estimates by our MCMC method that

would be comparable to those obtained using one-dimen-

sional data reduction and indirect transformation, we first

fixed the center at the silver behenate value and Dmax = 46.11

(the values used for the one-dimensional procedure) and fitted

our spatially independent model. This scenario is closest to

approximating traditional one-dimensional data reduction,

where the center and Dmax are held constant and correlation

among the pixels is ignored. Table 2 summarizes the fitted

values and standard errors (SE) for the concentric averaging

one-dimensional approach and the mean, median and stan-

dard deviation of the posterior distribution for the two-

dimensional approach. The different estimates are close to

each other, suggesting that under similar conditions the one-

and two-dimensional methods will result in almost identical

P(r) reconstructions. Since we do not know the underlying

true P(r), we cannot say which is better.

The key observable difference between the one- and two-

dimensional estimates lies in the uncertainties. The standard

deviations of the IFT coefficients under the two-dimensional

method are less than half the standard errors arising from the

IFT fit under the one-dimensional model. Since an identical

relationship between pixel intensity and variance is employed

for both, the standard errors can still be compared fairly, even

though the two procedures employ the data quite differently.

This comparison thus reveals that information is retained and

precision improved in the two-dimensional method.

Having completed our comparison to the one-dimensional

method, we then fit our spatially independent model to obtain

estimates of all parameters including Dmax and beam center.

Standardized residuals from the spatially independent model

were used to estimate the spatial correlation. Because of the

size of the image, 100 sub-images of size 64� 64 covering the

entire image were randomly selected to estimate the first-

order autocorrelation parameter �. These estimates ranged

between 0.45 and 0.56, with a mean of 0.50. The mean was

used to fit our spatially dependent model.

Table 3 compares the parameter estimates under the

spatially independent and spatially dependent models with

both adjustable Dmax and adjustable beam center. Similar to

our earlier simulation study, the parameter estimates do not

vary substantially between the two models. In that case,

knowledge of the reference values showed improved accuracy

under spatial dependence, suggesting that the spatially

dependent procedure may be performing equally well here.

The standard deviations of the parameters are also consis-

tently lower when spatial dependence was incorporated into

our model. Specifically, accounting for spatial correlation

results in a further 1.5- to twofold reduction in the standard

errors of the parameters (Table 3). It is also noteworthy that

both analyses suggest a shift in the center of approximately

one-half of a pixel in the x direction and one pixel in the y

direction compared to the silver behenate value.

Since it is a persistently problematic parameter (Jacques &

Trewhella, 2010), which our method evaluates directly, further

examination of Dmax is warranted. The value of Dmax under

our spatially independent model was estimated to be 46.18 Å

with a 95% confidence interval of (46.05, 46.31) versus 46.31 Å

(46.23, 46.37) under the spatially dependent model and versus

46.11 (confidence interval to be estimated below) previously

obtained for the one-dimensional approach by minimizing the

fit to Moore’s basis functions. The value of Dmax determined

from the crystal structure of horse heart myoglobin (PDB

code 1wla; Maurus et al., 1997) was 46.49 Å based on all atoms,

but this value provides only a crude comparison which may

not reflect the state of the molecule and its associated solvent

in solution.

While our earlier comparison between the one-dimensional

and two-dimensional methods under a fixed beam center and

Dmax revealed significant reduction in the standard errors for

the IFT parameters, a more sophisticated analysis is needed

here to evaluate the uncertainty in Dmax under the one-

dimensional approach. We have adopted the profile likelihood

confidence interval method (Venzon & Moolgavkar, 1988).

This approach (Fig. 7) suggests a 95% confidence interval of

(44.96, 47.22), which accords with the general intuition of

experimenters in the uncertainty of this parameter. This

interval (length 2.25 Å) is substantially wider than the credible
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Table 2
Comparison of Moore’s indirect transform coefficient estimates for the
experimental myoglobin data between our implementation of a weighted
least-squares fit to concentric averages of the difference image (one-
dimensional approach) and our two-dimensional spatially independent
model.

Concentric averaging Spatially independent

Parameters† Estimate SE Mean Median SD

a1 7.546 0.012 7.551 7.551 0.002
a2 3.844 0.018 3.852 3.852 0.004
a3 0.838 0.025 0.840 0.840 0.004
a4 0.759 0.033 0.765 0.765 0.006
a5 0.827 0.048 0.830 0.830 0.010

† Both approaches assume the same fixed center ðcx; cyÞ = (138, 362) and Dmax =
46.11 Å.

Table 3
Parameter estimates for the experimental myoglobin data fitted using our
spatially independent and spatially dependent models (� = 0.5) with
adjustable beam center ðcx; cyÞ and Dmax.

Spatially independent model Spatially dependent model

Parameters Mean† Median† SD† Mean† Median† SD†

a1 7.533 7.532 0.013 7.506 7.506 0.008
a2 3.853 3.854 0.010 3.870 3.871 0.006
a3 0.841 0.842 0.005 0.846 0.846 0.003
a4 0.764 0.764 0.007 0.759 0.760 0.004
a5 0.831 0.831 0.009 0.830 0.831 0.005
Cx 138.654 138.650 0.080 138.568 138.563 0.054
Cy 361.070 361.072 0.070 361.045 361.043 0.038
Dmax 46.176 46.183 0.068 46.308 46.309 0.042

† The mean, median and standard deviation of the posterior distribution of each
parameter are based on 25 000 MCMC iterations with joint updating.



region under the spatially dependent two-dimensional

approach (length 0.14 Å).

The estimated P(r) curves from our spatially dependent

method as well as from the one-dimensional data reduction

are shown in Fig. 8. The combination of different basis func-

tion coefficients and beam center and Dmax parameters yield

slight differences in the resulting P(r) curves.

In the absence of known reference parameter values for

comparison, we utilized a single-set cross-validation approach

to compare the performance of our model versus the one-

dimensional data reduction method. A random test sample

(N = 17 363) of data points (detector pixels) was generated

and parameters estimated (by both approaches) based on the

remaining training data. The weighted squared error (WSE)

for the predicted value of the pixels in the test data set was

computed. The best linear unbiased predictors were used for

both methods. This means that the neighboring pixel inten-

sities and estimated correlation structure were utilized in the

predictions from our two-dimensional approach, while this

information is unavailable in the traditional one-dimensional

approach. The WSE under the one-dimensional approach was

4.111 � 10�2. This was reduced more than twofold using our

two-dimensional approach to 1.326 � 10�2.

It should be noted that the one-dimensional approach is

using a Dmax and beam center very close to those estimated

from our two-dimensional approach. Since the estimation of

Dmax can be difficult (Jacques & Trewhella, 2010) and mis-

estimation may artificially favor our method, we have

explored the WSE of the test set as a function of Dmax in the

one-dimensional approach and found that the minimum WSE

is indeed at the value used for the one-dimensional reduction.

3.3. Discussion

The Bayesian–MCMC approach that we describe here

offers a flexible general framework for reconstructing P(r)

curves from SAS images. This approach is based on modeling

the two-dimensional scattering images directly and obtaining

beam characteristics and parameters for indirect transform

basis functions directly from the detector pixels. Comparing

the spatially dependent MCMC model with either the one-

dimensional approach or the spatially independent MCMC

model, we demonstrate here more accurate parameters for

simulated data (Table 1), and more precise parameters for

(smaller standard errors, Table 2 and Fig. 7) and a better fit

(smaller WSE in cross-validation) to the experimental data.

Parameter estimation by our MCMC-based method is

completely data dependent, with minimal prior information

and restraints on the parameters. Simultaneous estimation of

additional parameters including the beam center location

ðcx; cyÞ and the maximum length in the P(r) distribution

(Dmax) becomes possible in our method. As expected, intro-

ducing additional parameters increases the variability in the

individual parameter estimates (compare Tables 2 and 3). In

particular, by introducing Dmax and the beam center, we see a

fivefold increase in the standard error of a1 and a threefold

increase for a2. However, the greater calculated uncertainty

from the additional parameters better represents their true

experimental uncertainty and avoids potentially biased esti-

mation of the other parameters. Other beam and detector

characteristics (e.g. beam divergence and detector tilt) could

also be evaluated under this approach.

The adjustment for spatial correlation among neighboring

pixels in our image model provides a way to account for the

dependence among the pixel intensities. We can accurately

recover a spatial correlation value built into simulated data
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Figure 8
Estimated PðrÞ using reduced data [ðcx; cyÞ = (138, 362), Dmax = 46.11
fixed] (dashed) and median PðrÞ curve from the spatially dependent
MCMC method (solid). In the insets, (a) the peak region (17 < r < 28) and
(b) the (right) tail region (34 < r < 47) of the PðrÞ curves are shown.

Figure 7
Plot of the profile log-likelihood versus Dmax under the one-dimensional
method (circles). For all considered values of Dmax, Nmax = 5. The
maximum occurs at Dmax = 46.11. The 95% confidence interval for Dmax

(vertical dashed lines) is (44.96, 47.22). The 95% credible region based on
the marginal posterior distribution of Dmax from the two-dimensional
method is (46.23, 46.37) (vertical solid lines).



and use it to account for the effects on individual pixels. We

have also demonstrated that a simple first-order spatially

correlated error structure is sufficient to model pixel correla-

tion in at least one real detector. Adjusting for spatially

correlated errors (Table 3) that are present in the detector

data reduces the standard errors of the individual parameters

and thus reduces the width of the credible interval of (the

potential uncertainty in) P(r). Results from cross-validation

further indicated that the spatially correlated model fitted the

data well and resulted in smaller WSE compared to a standard

weighted least-squares method based on reduced data.

Although this awaits explicit evaluation, we expect the

present MCMC approach to be especially valuable in situa-

tions where the measurement error is greater (signal-to-noise

ratio is low). This might include low concentrations of mate-

rials and weak sources, including neutrons. Furthermore, this

approach may help better evaluate the small intensity differ-

ences resulting from small structural changes, such as those

arising from ligand binding.

A challenge for any method of estimating P(r) is the

propagation of errors from the reciprocal space where the

data are fitted to the real space where P(r) is calculated. Using

Bayesian estimation, we obtain a distribution of acceptable

P(r)s from the MCMC iterations. This set of acceptable P(r)s

helps quantify and visualize (Fig. 3) the joint effects of

uncertainty in the model parameters on the P(r) estimate. This

set of P(r)s relates to our earlier work where a set of P(r)s is

generated from the one-dimensional I(q) curve by a linear

programming-based method (Jacques & Trewhella, 2010).

Unlike the earlier work, the present MCMC approach also

permits calculation of a single ‘best’ P(r) from central values

of the posterior distribution. This ‘best’ P(r) can be used for

further analysis, e.g. three-dimensional reconstruction.

One limitation of using the two-dimensional images

coupled to an MCMC-based parameter estimation procedure

is that it is computationally more intensive in both time and

memory. We develop here several approaches that reduce the

computational complexity, including joint parameter updates

using a multivariate normal proposal distribution, estimation

of the autocorrelation parameter prior to MCMC sampling

and the use of the composite likelihood. As a result, important

additional parameters can be estimated and their uncertainty

accounted for in the estimation of P(r) at relatively low

computing costs. An extensive MCMC evaluation of the real

detector image can be done in less than a day on readily

available software (even without parallelization).

We adopted Moore’s basis functions to demonstrate our

image-based spatial model as they are directly tied to Dmax

and are easily implemented. Our method is general, however,

and in the future, we plan to utilize more sophisticated basis

functions (Glatter, 1977; Svergun et al., 1988) in our MCMC

approach to improve P(r) estimation directly from image data.

3.4. Conclusions

We have developed a methodology to directly model SAS

image data to obtain the parameters needed for P(r) estima-

tion. Using simulated and experimental data, we show

improvements in parameter accuracy and/or reproducibility.

We also show the ability to evaluate spatial correlation among

pixels and an improved fit to the pixel data. Finally, we

demonstrate the ability to fit additional beam and detector

parameters not previously evaluated directly from the data.

While promising, the practical application of the method

awaits further testing, especially in molecules of different

shapes and sizes and under different error regimes.
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