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Stage conversion between bradyzoites and tachyzoites was investigated in C57BL/6 mice chronically infected
with the ME-49 strain of Toxoplasma gondii. In order to promote bradyzoite-tachyzoite conversion, mice were
treated in vivo with neutralizing doses of anti-gamma interferon (IFN-g) or anti-tumor necrosis factor alpha
(TNF-a) antibodies. Expression of parasite-specific antigens SAG-1, SAG-2, and heat shock protein 70 (Hsp-
70) was visualized in the central nervous system by immunocytochemistry and measured by photometric assay.
The immunosuppressive effect of anti-IFN-g or anti-TNF-a treatment was immediate, leading to parasite stage
conversion as indicated by the increased expression of tachyzoite-specific antigens (SAG-1 and SAG-2) and by
rapid parasite replication. We also observed expression of high levels of Hsp-70 during a short period of
conversion of bradyzoites to tachyzoites. Our data suggest that Hsp-70 may have an important role in the
process of bradyzoite-tachyzoite conversion during the reactivation of chronic toxoplasmosis.

Toxoplasma gondii is an infectious pathogen that causes tox-
oplasmosis. During the acute phase of infection, the tachyzoite
stage of the parasite undergoes an initial period of rapid mul-
tiplication. In immunocompetent individuals, tachyzoite mul-
tiplication is inhibited by the immune response. The outcome
of this immunologic response to the tachyzoite results in the
development of bradyzoites, the hallmark of chronic infection.
In selected immunodeficiencies, and in particular AIDS, bra-
dyzoites may escape from the cyst and revert to tachyzoites
that multiply unhampered, resulting in the extensive and often
fatal tissue damage associated with toxoplasmic encephalitis
(23). In vivo studies in experimental models indicate that
gamma interferon (IFN-g) is a major cytokine that mediates
resistance against T. gondii infection (35). CD41 and CD81

lymphocytes are involved in the prevention of disease reacti-
vation, probably through the production of IFN-g (10, 11, 19,
20). In vivo and in vitro experiments also suggest a crucial role
for both IFN-g and tumor necrosis factor alpha (TNF-a) in the
induction of nitric oxide-mediated microbicidal activity (1, 8,
15, 22, 29, 32).

Reactivation of a latent infection culminates in the conver-
sion of bradyzoites to tachyzoites, an event that has been in-
vestigated in vitro (4, 5, 33). In vitro studies demonstrated that
differentiation from the tachyzoite to the bradyzoite stage can
be induced by external stress factors, such as increased pH of
the cell culture medium, a shift of the temperature from 37 to
43°C, or treatment with sodium arsenite (34). During stage
differentiation from tachyzoite to bradyzoite, a stage-specific

heat shock protein (Hsp)/BAG-1 antigen is expressed. This
bradyzoite-specific protein showed similarity to the small Hsp
from plants (6). In vitro exposure of tachyzoites of T. gondii
ME-49 to pH 8.1 facilitates their conversion to bradyzoites,
during which time the parasites may express a 72-kDa protein
that is believed to be part of the Hsp-70 family (38).

The molecular events surrounding the conversion of the
bradyzoite to the tachyzoite during reactivation of chronic in-
fection with T. gondii have not been explored. In mice, relaps-
ing toxoplasmic encephalitis is associated with an increased
expression of SAG-1 and SAG-2 mRNAs in the central ner-
vous system (CNS) (12, 13). In this study, C57BL/6 mice
infected with the ME-49 strain of T. gondii were immunosup-
pressed by treatment with anti-IFN-g or anti-TNF-a monoclo-
nal antibody (MAb), and the effect on expression of SAG-1
and SAG-2 as well as Hsp was examined.

Female C57BL/6 mice, 4 to 5 weeks old, were infected with
10 to 20 cysts of the ME-49 strain of T. gondii and received
weekly treatment with 3 mg of rat immunoglobulin G1 MAb
specific for either IFN-g (XMG-6), TNF-a (HT-11-22), or
control b-galactosidase (GL-113), beginning at 4 weeks postin-
fection (11, 12). The animals treated with anti-IFN-g antibody
were killed in a CO2 chamber and decapitated at 0, 1, 3, 5, 7,
9, 10, and 12 days after the initiation of the immunosuppressive
treatment, and those treated with anti-TNF-a were killed at 12
days. The brains were removed and fixed in Bouin-Hollande
fixative for 24 h and transferred to 70% ethanol before pro-
cessing for paraffin sectioning (12). For immunocytochemistry
(14), mouse brain sections, 4 mm thick, were obtained from
paraffin blocks. To localize SAG-1, SAG-2, and 70-kDa Hsp,
paraffin sections were deparaffinized and antigenic unmasking
was done with a microwave oven (31). The sections were in-
cubated for 30 min at 37°C in 2% unlabeled sheep serum to
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reduce nonspecific binding and then incubated in polyclonal
rabbit primary antibody against SAG-1 or SAG-2 antigen or
Hsp-70 (1:25) at 4°C overnight. The polyclonal antibody to Hsp
was raised against the 3/4 C-terminal region of Hsp-70 from
Leishmania (Viannia) braziliensis, the most polymorphic por-
tion of this molecule (2). Secondary biotinylated antibodies
were sheep anti-rabbit antibodies. The sensitivity was im-
proved with the avidin-biotin technique (ABC kit, PK-4000;
Vector Laboratories, Inc., Burlingame, Calif.). The reaction
was visualized by incubating the section with 3,39-diaminoben-
zidine tetrahydrochloride (Sigma) for 5 min. The slides were
studied with an Olympus light microscope and photographed
with Kodak film (100 ASA). Control slides were incubated in
the unlabeled rabbit serum. The measurement of the staining
intensity was done with the UTHSCSA Image Tool program
from the University of Texas Health Science Center, San An-
tonio.

Morbidity was assessed by histochemical enumeration of
cyst numbers and determination of sizes as well as distribution
within the CNS with brain sections from chronically infected
mice. Periodic acid-Schiff stain (PAS) was used as a specific
stain to identify the cyst membrane that contains the brady-
zoite stage of T. gondii. Polyclonal antibodies against SAG-1 or
SAG-2 were used as specific markers for tachyzoites (16–18,
24). The expression of parasite Hsps during bradyzoite-tachy-
zoite conversion was evaluated because these proteins may be
involved in the stage transformation of parasites (38). The
parameters measured to determine T. gondii stage conversion
included (i) the frequency of free tachyzoites; (ii) the average
number of cysts within the brain; (iii) cyst diameters; and (iv)
the intensity of SAG-1, SAG-2, Hsp-70, or PAS staining during
bradyzoite-tachyzoite conversion in brains of chronically in-
fected animals, analyzed before and after the treatment with
anti-IFN-g or anti-TNF-a MAb (Table 1 and Fig. 1 and 2).

Rapid parasite replication was observed between days 5 and
7 after treatment with anti-IFN-g MAb, as indicated by the
presence of free tachyzoites and PAS-negative pseudocysts
(20%), which represent newly formed cysts (Table 1). Mor-
phologic analysis indicated that the maximum parasite burden
occurred between days 7 and 9. Increased numbers of free
tachyzoites and pseudocysts (Table 1) were observed in sam-
ples of brain tissue, suggesting cyst rupture, bradyzoite-tachy-

zoite conversion, tachyzoite replication, and active infection of
host cells. Of note was an increase in the percentage and
absolute number of PAS-positive cysts after day 9 of treatment
with anti-IFN-g MAb, indicating that the transformation of
tachyzoites to bradyzoites persisted in spite of immunosup-
pressive treatment. Although the relative numbers of pseudo-
cysts decreased, there was an increase in the absolute numbers
of pseudocysts and free tachyzoites. These observations dem-
onstrate that development of new cysts as well as maximal
tachyzoite replication occurred after day 9 of treatment with
anti-IFN-g.

In contrast to a previous study (39), the results of the im-
munocytochemistry analysis demonstrated the expression of
stage-specific tachyzoite antigens on parasites within the cyst
membrane (14, 31). Some cysts from infected mice treated with
MAb had few parasites expressing SAG-1 and SAG-2 antigens.
The discrepancy between our observations and the previous
report may be explained in part by our use of T. gondii ME-49.
During chronic infection in highly susceptible C57BL/6 mice
(7, 36), this strain can maintain a continuous and more dy-
namic cyst turnover (9, 26). Nevertheless, our data also show
that in vivo neutralization of either IFN-g or TNF-a in mice
chronically infected (for 4 weeks) with T. gondii ME-49 re-
sulted in a dramatic enhancement and homogeneous expres-
sion of SAG-1 and SAG-2 inside the brain cysts. This suggests
that the majority of the parasites inside cysts begin to express
tachyzoite-specific antigens after cytokine neutralization. A
photometric assay was used to measure the expression of
SAG-1 and SAG-2 in brain cysts. As shown in Fig. 1A, 1 day
after initiation of anti-IFN-g treatment, the expression of
SAG-1 was enhanced. The highest expression of SAG-1 by
parasites in the CNSs of animals was recorded at 7 to 9 days
after treatment with anti-IFN-g MAb (Fig. 1A and 2B). A
decrease in the intensity of SAG-1 expression was observed
after day 10 of treatment with anti-IFN-g. Similar kinetics were
observed when the expression of SAG-2 by T. gondii during
treatment with anti-IFN-g MAb was evaluated (Fig. 1B). An
increase in SAG-1 and SAG-2 expression was also observed in
parasites in the CNSs of mice chronically infected with T.
gondii and treated with anti-TNF-a MAb (Fig. 1A and B).

In order to study the expression of T. gondii Hsp-70 during
stage conversion from bradyzoites to tachyzoites, we used rab-

TABLE 1. Free tachyzoites, cyst numbers, cyst diameters, and cyst PAS staining in brains of C57BL/6 mice chronically infected with T. gondii
and treated with various MAbsa

MAb treatment and day after initiation Free-tachyzoite scoreb No. of cysts per section Diameter of cysts (mm) % PAS-positive cysts

Anti-b-galactosidase (control) 11 3.5 6 2.1c 45.4 6 14.4d 96
Anti-IFN-g day 0 11 6.8 6 3.8c 39.8 6 14.2d 100
Anti-IFN-g day 1 — 10.1 6 1.3 46.7 6 23.5 100
Anti-IFN-g day 3 — 8.6 6 4.4 43.6 6 12.0 81
Anti-IFN-g day 5 21 11.8 6 5.8 46.8 6 19.7 80
Anti-IFN-g day 7 31 30.0 6 20.5 29.1 6 17.1 60
Anti-IFN-g day 9 41 49.5 6 0.7 25.6 6 14.2 27
Anti-IFN-g day 10 31 21.6 6 7.4 31.1 6 12.5 45
Anti-IFN-g day 12 51 128.5 6 49.4e 25.6 6 14.0 50
Anti-TNF-a day 12 41 31.6 6 28.3 23.3 6 12.7 80

a The results are the means and standard deviations of assays performed on three mice/group.
b 11, one lesion containing few tachyzoites in three to five histopathologic sections; 21, one or more lesions containing tachyzoites in two sections; 31, one or more

parasite-containing lesions per section; 41, one or more parasite-containing lesions per section and at least one extensive lesion containing abundant tachyzoites; 51,
more than one extensive lesion containing abundant tachyzoites. —, not detected.

c Significantly different from values obtained for mice treated with IFN-g and sacrificed on day 1 and days 5 to 12 and mice treated with TNF-a and sacrificed on
day 12 (P # 0.0295).

d Significantly different from values obtained for mice treated with IFN-g and sacrificed on days 7 to 12 and mice treated with TNF-a and sacrificed on day 12 (P #
0.0255).

e Significantly different from values obtained for mice with all other conditions of immunosuppression (P # 0.0290). For the methodological details, see the text.
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bit polyclonal antibodies raised against the last three quarters
of the C-terminal region of Hsp-70 from L. (V.) braziliensis (2).
Neutralization of endogenous IFN-g or TNF-a in chronically
infected C57BL/6 mice resulted in homogeneous expression of
Hsp-70 in some brain cysts (Fig. 1C and 2E). Interestingly,
some of the cysts from immunosuppressed animals did not
express this protein. By photometric assay, increased expres-
sion of Hsp-70 was observed in animals receiving anti-IFN-g
MAb after 7 days of treatment. These mice had an increase in
number of free tachyzoites in relation to cyst numbers (Table
1). Fully differentiated free tachyzoites in the brain tissue did
not express Hsp-70 (Fig. 2F). Thus, our data indicate that
maximal expression of Hsp-70 occurs in encysted parasites
during a short period of parasite stage conversion. We were
unable to determine whether expression of Hsp-70 occurs dur-

ing bradyzoite-tachyzoite conversion or tachyzoite-bradyzoite
conversion. The fact that the maximal intensity of Hsp expres-
sion was observed at late stages of reactivation may indicate
that Hsp-70 is primarily expressed during tachyzoite-brady-
zoite conversion.

The Hsps have been shown to be highly conserved among a
wide variety of organisms. Although Hsp functions are not
completely understood, these proteins are essential for survival
of the cell (3, 30) and are involved in a variety of biological
functions within the cell, including preservation and recovery
of various protein complexes and degradation of denatured
proteins. Environmental stresses, such as heat shock, starva-
tion, and alkaline pH, can induce cell differentiation, a process
associated with induction of Hsp expression (21, 28). In nature,
transfer of parasites from one environment to another or par-

FIG. 1. Detection of SAG-1 (A), SAG-2 (B), and Hsp-70 (C) antigens by photometric assay in brain cysts from mice chronically infected with T. gondii. The data
were obtained from several cysts analyzed from groups of three mice. Intensities of expression under the indicated treatment conditions are shown in absorbance units.
Asterisks indicate values significantly different from those obtained with controls (P , 0.05).
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asite stage conversion is frequently associated with expression
of Hsp (3, 27, 37). Hsps are also important immunologic tar-
gets in response to pathogens (25). In vitro, environmental
stresses, such as alkaline pH, can drive the transformation of
tachyzoites to bradyzoites. Associated with this transformation
is the expression of a T. gondii-specific antigen that has some
homology to the small Hsp from plants (6). In our study,
neutralization of endogenous IFN-g or TNF-a or depletion of
T-cell subsets (data not shown) enhanced expression of Hsp-70
inside brain cysts from immunosuppressed mice. Interestingly,
Hsp-70 was not intensively expressed by bradyzoites from im-
munocompetent mice or by free tachyzoites in brain lesions
from immunosuppressed animals. These findings suggest that
Hsp-70 may have an important role in T. gondii adaptation
during this differentiation event.

We thank Joao Kazuyuki Kajiwara from the Laboratory of Mor-
phology at the Faculdade de Medicina de Ribeirao Preto at the Uni-
versidade de Sao Paulo, where the photometric and morphometric
assays were performed, for helpful discussions. We also thank Antonio
Gomes de Amorim Filho from the Escola Paulista de Medicina for
providing us with anti-Hsp antiserum.

This work was supported by grants from Brazilian Research Coun-
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