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The liver- and blood-stage-expressed serine repeat antigen (SERA) of Plasmodium falciparum is a candidate
protein for a human malaria vaccine. We compared the immune responses induced in mice immunized with
SERA-expressing plasmid DNA vaccines delivered by intramuscular (i.m.) injection or delivered intradermally
by Gene Gun immunization. Mice were immunized with a pcdna3 plasmid encoding the entire 47-kDa domain
of SERA (amino acids 17 to 382) or the N-terminal domain (amino acids 17 to 110) of SERA. Minimal antibody
responses were detected following DNA vaccination with the N-terminal domain of SERA, suggesting that the
N-terminal domain alone is not highly immunogenic by this route of vaccine delivery. Inmunization of mice
by Gene Gun delivery of the 47-kDa domain of SERA elicited a significantly higher serum antibody titer to the
antigen than immunization of mice by i.m. injection with the same plasmid did. The predominant isotype
subclass of the antibodies elicited to the SERA protein following i.m. and Gene Gun immunizations with SERA
plasmid DNA was immunoglobulin G1. Coimmunization of mice with SERA plasmid DNA and a plasmid
expressing the hepatitis B surface antigen (pCMYV-s) by the i.m. route resulted in higher anti-SERA titers than
those generated in mice immunized with the SERA DNA plasmid alone. Vaccination with DNA may provide a
viable alternative or may be used in conjunction with protein-based subunit vaccines to maximize the efficacy

of a human malaria vaccine that includes immunogenic regions of the SERA protein.

Human malarial infections caused by Plasmodium falcipa-
rum claim more than 2 million lives annually (particularly chil-
dren). Current strategies for the control and treatment of ma-
laria are compromised by several factors including the
resistance of mosquitoes to insecticides and the resistance of
parasites to antimalarial drugs. While a human malaria vaccine
is highly desirable, the current strategies for developing a ma-
laria vaccine are complicated by the existence of multiple,
potentially variable, parasite antigens and parasite develop-
mental stages to which distinct immune responses must be
targeted in order to attain clinically effective protection.
Progress towards a human malaria vaccine has been slow,
largely due to a lack of available information on appropriate
adjuvant and parasite antigen combinations that induce pro-
tective immunity in humans.

The P. falciparum serine repeat antigen (SERA) is a 120-
kDa protein that is highly expressed in trophozoite and schi-
zont blood stages of the P. falciparum life cycle (19). SERA is
also synthesized during liver stages of infection (53). This liver-
and blood-stage antigen is a candidate human malaria vaccine
blood-stage antigen, in part, because it is highly conserved
among clinical and field isolates of P. falciparum (3, 7, 19, 43).

In schizont stages, SERA is abundantly synthesized and se-
creted into the parasitophorous vacuole (13, 37). At the time of
parasite egress from infected erythrocytes, a fraction of the
accumulated 120-kDa pool of SERA protein is proteolytically
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processed into 47-kDa (an N-terminal fragment), 50-kDa (an
interior fragment that contains a strong homology to the ac-
tive-site domain of cysteine/serine proteinases), and 18-kDa
fragments which accumulate in culture medium (10-12, 17). A
pool of full-length SERA protein (the 120-kDa form) remains
unprocessed, associates as a nonintegral membrane protein
with the surfaces of free infectious merozoites (45-47), and
retains the capacity to bind to inner-leaflet erythrocyte plasma
membrane phospholipids (47). The 120-kDa SERA protein
also associates with high-molecular-weight rhoptry proteins
(47). These observations have led to the dual hypothesis that
the SERA protein is likely to play a role in parasite invasion
and parasite egress (12, 33, 37, 38, 44, 45, 47).

Consistent with this hypothesis, rodent and goat polyclonal
antibodies directed against amino acids 24 to 285 or the 47-
kDa domain of the SERA protein effectively block parasite
growth in vitro (1, 2, 6, 20, 27, 44, 45). The mechanism of in
vitro parasite growth inhibition appears to rely on some com-
bination of agglutination of schizonts and merozoites (45),
complement-mediated lysis of late-stage schizonts (44), or in-
hibition of parasite invasion of erythrocytes. A mouse mono-
clonal antibody specific to SERA (43ES5) inhibits parasite
growth in vitro (1, 2, 6, 27). The SERA epitope that is reactive
with the parasite-inhibitory mouse monoclonal antibody 43ES
is localized to the N-terminal SERA domain spanning amino
acids 17 to 110 (20). Protective immunity to P. falciparum is
induced in Aotus monkeys immunized with a recombinant
SERA protein comprising amino acids 24 to 285 (28-30) or in
squirrel monkeys immunized with the 47-kDa domain (52).
Protection after vaccination with the SERA protein in com-
plete Freund’s adjuvant (CFA) in the primate model is non-
sterile (28-30, 52). Protection in the primate model is adjuvant
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specific, with protection being observed with adjuvants that are
not approved for use in humans (28-30). Interestingly, in the
rodent model, recombinant SERA protein corresponding to the
47-kDa domain was nearly as effective at stimulating parasite-
inhibitory antibodies with or without the use of adjuvant (44).

The ability to induce an immune response to a protein an-
tigen by administration of plasmid DNA encoding the antigen
has been successfully demonstrated in many different disease
and animal models. For some antigens, a single immunization
suffices in eliciting long-lasting immunity (8, 9, 21, 23, 34, 36,
40, 54, 57). However, for other antigens, repeated administra-
tion of DNA is required to attain either long-lasting or any
detectable immune response (4, 8, 14, 39, 50). Malaria DNA
vaccines based on sporozoite stage or hepatocyte stage anti-
gens from rodent malaria have recently been evaluated (15, 16,
22, 24-26, 35, 42, 50). Immunization of mice with a plasmid
encoding the circumsporozoite protein or the PyHep17 liver-
stage antigen of Plasmodium yoelii confers protection to mice
from a subsequent challenge with this rodent-specific species.

In this study, we have analyzed a potential blood-stage hu-
man malaria DNA vaccine that expresses SERA from P. fal-
ciparum. We chose the 47-kDa domain of SERA because
amino acids 24 to 285 of this domain can confer protective
immunity in the Aofus monkey model (28-30). In addition, we
examined an N-terminal fragment consisting of amino acids 17
to 110 of the 47-kDa subunit because a parasite growth-inhib-
itory epitope mapped to this region (20). This is the first report
of humoral immune responses elicited by a potential human
malaria DNA-based vaccine derived from a malaria parasite
blood-stage antigen.

MATERIALS AND METHODS

Construction of DNA vectors. The SE47' gene was excised from the pET
vector utilizing the Ndel site on the 5’ end and the BamHI site on the 3’ end of
the gene (51). It was then cloned into the pcDNA I:Neo eucaryotic expression
vector by blunting the 5’ end of the gene into the blunted HindIII site of the
vector, while the 3’ end was ligated to the compatible BarmHI site in the vector.
The blunted Ndel site at the 5’ end of the gene and the blunted HindIII site of
the vector, when ligated, regenerate a HindIII site. The SE47’ gene was excised
from the pcDNA I:Neo vector by using HindIII (partial digest) and BamHI and
inserted into the pcdna3 vector (InVitrogen). This new plasmid construct was
named pcdna3 SERA 17-382. The pcdna3 SERA 17-110 plasmid construct was
generated by utilizing the Bsp120I sites located at amino acid 110 of SERA and
in the polylinker of pcdna3. All plasmid ligation junctions were confirmed by
DNA sequence analysis (5). Heather Davis supplied the pCMV-s plasmid that
served as a positive control (41). Large-scale plasmid DNA preparations were
purified twice with cesium chloride gradients.

Protein expression. The expression of the SE47' gene constructs was verified
in vitro, by transfection into either Cos cells or P815 HTR cells (data not shown).
All of the constructs were transfected into cells with Lipofectin (GIBCO/BRL),
and protein expression was measured by an immunofluorescence assay.

Animals. Female BALB/c mice 4 to 6 weeks of age, were used for all of the
vaccine trials in this study. BALB/c mice have been successfully used in several
protective models of DNA immunization (50, 54, 56, 57).

Immunizations. In the first study, 100 wg of DNA resuspended in 50 ul of
0.9% saline was injected in each quadriceps muscle at each time point; in total,
each mouse received 600 wg of DNA. In this experiment, we followed the
immunization schedule used by Sedegah et al., which includes three immuniza-
tions at 0, 5, and 8 weeks (50). Polyethylene tubing (inner diameter of 0.38 mm)
was placed over the syringe needles so that only 2 to 3 mm protruded (55). This
procedure helps to ensure that during the injection the needle can be inserted
only 2 to 3 mm and cannot pass through the entire muscle mass. Eight mice
were coimmunized with pcdna3 and pCMV-s, eight were coimmunized with
pcdna3 and pcdna3 SERA 17-382, eight were coimmunized with pCMV-s and
pcdna3 SERA 17-382, and the last eight were coimmunized with pCMV-s
and pcdna3 SERA 17-110. The pcdna3 vector was included in order to maintain
the same concentration of DNA in all of the mice. Fifty micrograms of each
plasmid was combined for each injection. Mice were anesthetized with Meto-
fane before the injections and remained anesthetized for 15 min after the injec-
tions (55).

In the next study, 12 mice were immunized by intradermal Gene Gun inocu-
lation (31). Two DNA vaccine plasmids, pcdna3 SERA 17-382 and pcdna3
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SERA 17-110 were coated onto gold particles. Plasmid DNA was precipitated
onto 1-pm-diameter gold beads using a solution of 1.0 M CaCl, and 100 mM
spermidine as previously described (18, 48). DNA-coated gold particles were
delivered to the shaved abdomens of ketamine- and xylazine-anesthetized mice.
Each mouse received six shots of DNA-coated gold particles with an Accell
instrument (Agrecetus, Middleton, Wis.) at a helium discharge pressure of 400 to
450 Ib/in®. Mice were immunized at weeks 0 and 4. Serum was obtained from the
animals at 4, 8, 12, and 23 weeks. In the third study, 70 BALB/c female mice were
used. Twenty-five mice were immunized with pcdna3 SERA 17-382 by using the
Gene Gun, and 25 mice were immunized with the same plasmid by intramuscular
(i.m.) injection. In this experiment, small incisions were made in the skin in order
to expose the quadriceps muscles before inoculation. Ten mice were immunized
with pcdna3 SERA 17-110 by using the Gene Gun. Negative controls for both
Gene Gun and i.m. were also incorporated. Five mice received pcdna3 vector by
Gene Gun delivery, and five mice received the vector by i.m. injections. All of the
mice were immunized at 0 and 4 weeks. Serum samples were taken at 6, 8, and
18 weeks.

Antibody measurements. Serum was collected from the mice by tail bleeding
or by cardiac puncture at the time mice were sacrificed. Antibody responses to
the different SE47" constructs were analyzed by enzyme-linked immunosorbent
assay (ELISA) as previously described (20). Briefly, 100 ng of recombinant
SERAT1 (2) (SERA amino acids 24 to 285 expressed in yeast)/well in 50 wl of 50
mM carbonate buffer (pH 9.6) was bound to each well of a 96-well plate over-
night at 4°C. Wells were blocked with 200-ul portions of 5% bovine serum
albumin (BSA) in phosphate-buffered saline (PBS) for 2 h at 20°C. Serum
samples were added in PBS plus 0.1% BSA plus 0.05% Tween 20, and serial
dilutions were performed directly in the wells. The secondary antibody, biotin-
ylated anti-mouse immunoglobulin G (IgG) and IgM (Pierce) was used at a
1:5,000 dilution. Biotinylated secondary antibodies (Zymed) were used to deter-
mine antibody isotype subclasses at dilutions of 1:2,500 to 1:5,000. The Vec-
tastain Elite kit avidin-horseradish peroxidase conjugate was used in PBS plus
0.05% Tween 20. The Vector Laboratories 2,2'-azinobis(3-ethylbenzthiazoline
sulfonic acid) (ABTS) detection kit reagent was used as the substrate. Antibody
responses to the hepatitis B surface antigen were measured by ELISA with
recombinant hepatitis B surface antigen (Genzyme). SERA antibody ELISA
titers were read at 405 nm with a microtiter plate reader (Molecular Devices,
Inc.). Serial dilutions were used to measure the end point-positive titers. The
cutoff point for a positive ELISA value reading was set at an absorbance of 0.3.
The titer of each serum sample is the inverse of the largest dilution at which the
substrate colorometric development absorbance is above (>0.3) that of a nega-
tive control (<0.3). The variation in the end point-positive titers was always
within 1 “twofold serial dilution.” Preimmune serum titers for the SERA protein
were <80 in this assay.

RESULTS

Immune responses induced by i.m. injection of DNA vac-
cines. Mice were immunized by i.m. injection in each quadri-
ceps muscle with 100 pg of plasmid DNA and given booster
injections twice at 5 and 8 weeks after the primary inoculation.
As a positive control for immunization by i.m. injection, the
pCMV-s DNA plasmid was coinjected with SERA DNA plas-
mid in some groups of mice. The pCMV-s plasmid, a successful
DNA vaccine, elicits humoral and cell-mediated immune re-
sponses to the hepatitis B surface antigen (8, 9). Two SERA
DNA vaccines with which we obtained good protein expression
in transiently transfected Cos cells and P815 HTR cells (data
not shown) were evaluated. The first pcdna3 SERA 17-382,
encodes the full-length SE47’ recombinant protein, and the
second expresses only the N-terminal SERA amino acids 17 to
110. Serum was collected 1 to 2 weeks after the last booster
injection. Four of eight mice immunized with the pcdna3
SERA 17-382 plasmid responded to the SERA protein with
end point titers ranging from 200 to 800 (Fig. 1, left panel).
Five of eight mice coimmunized with pCMV-s and pcdna3
SERA 17-382 responded with titers ranging from 200 to 4800
(Fig. 1, middle panel). Seven of those eight mice also re-
sponded to the hepatitis B surface antigen (data not shown).
Six of eight mice coimmunized with pCMV-s and pcdna3
SERA 17-110 responded to the SERA protein with titers rang-
ing from 200 to 800 (Fig. 1, right panel). All of the mice in this
coimmunized group also responded to the hepatitis B surface
antigen, as well as mice immunized only with pCMV-s (data
not shown). Mice immunized by i.m. injection with only pcdna3
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FIG. 1. Antibody titers from mice immunized with pcdna3 SERA 17-382 or pcdna3 SERA 17-110 DNA vaccines by i.m. injection. Where indicated, mice groups
were coimmunized with the pPCMV-s DNA plasmid, which was used as a positive control. Mice were immunized at 0, 5, and 8 weeks, and serum samples were collected
at week 10. Serial dilutions were used to measure the end point-positive titers. The results presented are the averages of two separate ELISAs. The titer of each serum
sample is the inverse of the largest dilution at which the substrate colorometric development is above that of a negative control. The variation in the end point-positive
titers was always within one “twofold serial dilution.” Preimmune serum titers for the SERA protein were <80 in this assay.

plasmid DNA or pCMV-s plasmid DNA had undetectable
anti-SERA titers of <80 (data not shown).

Following i.m. injection, an antibody response to hepatitis B
surface antigen was observed in 23 of 24 mice that were im-
munized with pCMV-s. The antibody titers generated to the
hepatitis B surface antigen in pCMV-s-immunized mice were
equivalent to those generated in pCMV-s-pcdna3 SERA-co-
immunized mice. On the other hand, the hepatitis B surface
antigen, a strong immunogen encoded on the pCMV-s plas-
mid, had adjuvant-like activity that resulted in the generation
of higher anti-SERA antibody titers in the groups of coimmu-
nized mice (Fig. 1).

Immune responses induced by Gene Gun injection of SERA
DNA vaccines. The same SERA-expressing plasmids were used
to immunize mice via Gene Gun. Mice were immunized at 0
and 4 weeks. Serum samples collected at the 4-week time point
before the booster dose showed that none of the mice re-
sponded to SERA after one immunization (data not shown).
At 8 weeks, 4 weeks after the final Gene Gun injection, five of
the six mice that received pcdna3 SERA 17-382 plasmid DNA
had generated antibodies with end point-positive titers ranging
from 1,600 to 25,600 (Fig. 2, top panel). These titers are up to
32-fold higher than the highest titer that was generated by i.m.
injections of the same plasmid (compare Fig. 1 and Fig. 2). All
of the mice immunized with pcdna3 SERA 17-110 by Gene
Gun injection had low but detectable antibody responses to the
SERA protein, and all measured responses were less than or
equal to a titer of 400 at all time points analyzed. Although it
has been demonstrated that parasite growth-inhibitory
epitopes lie within the SERA 17-110 region (20), it appears
from this data that effective T-cell helper epitopes may not.
Therefore, in the absence of adequate T-cell helper epitopes
and without adjuvant, the mice cannot effectively respond to
the parasite growth-inhibitory epitope(s) within this region of
the SERA protein. These results are also consistent with the
lower anti-SERA titers observed after i.m. injection with
pcdna3 SERA 17-110 plasmid DNA.

In the pcdna3 SERA 17-382 Gene Gun-injected mice, the
12-week time point titers ranged from 800 to 12,800. At the
23-week time point, the maximum titers had decreased to 4,000
(Fig. 2, top panel).

Comparative immune responses induced by i.m. injection or
Gene Gun delivery of SERA DNA vaccines. The Gene Gun
immunizations were repeated and directly compared with i.m.
immunizations in the same experiment. In this study, like the
Gene Gun group, the i.m.-vaccinated mice received only two
immunizations at 0 and 4 weeks; thus, the vaccination sched-
ules were the same for both the Gene Gun and im. delivery
systems. In addition, the i.m. immunization protocol differed
slightly from previous experiments in that small incisions were
made on the back legs of the mice in order to expose the
quadriceps muscles prior to injection. This experiment allowed
us to more directly compare the responses generated to SERA
DNA vaccine delivery by the i.m. and intradermal (Gene Gun)
routes.

Serum samples were taken at 6 weeks, and ELISA analysis
showed that about half of the mice immunized by i.m. injection
with pcdna3 SERA 17-382 had generated low but detectable
levels of anti-SERA antibodies with titers ranging from 200 to
800 (Fig. 3, right panel). Mice that were immunized by i.m.
injection with pcdna3 SERA 17-110 had no detectable anti-
body responses (titers <80) (data not shown). In contrast, at
the 6-week time point, each of the 25 mice immunized by Gene
Gun with pcdna3 SERA 17-382 had generated positive titers to
SERA, with 22 of 25 mice having ELISA titers between 1,000
and 8,000 (Fig. 3, left panel). At the 8-week time point, serum
samples were collected from a subset of the immunized mice.
The responses (titers) were not significantly different between
the 6-week and 8-week time points in either the groups of mice
immunized i.m. or with Gene Gun (Fig. 3).

Analysis of antibody isotype subclasses generated following
i.m. injection or Gene Gun injection of pcdna3 SERA 17-382
plasmid DNA. In addition to determining the end point-posi-
tive titers, we also examined the isotype subclasses of the an-
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FIG. 2. Antibody titers from mice immunized with pcdna3 SERA 17-382 or
pcdna3 SERA 17-110 DNA vaccines by intradermal Gene Gun injection. Serum
samples were collected at weeks 4, 8, 12, and 23 from mice immunized at weeks
0 and 4. Serial dilutions were used to measure the end point-positive titers. The
results presented are the averages of two separate ELISAs. The titer of each
serum sample is the inverse of the largest dilution at which the substrate coloro-
metric development is above that of a negative control. The variation in the end
point-positive titers was always within one “twofold serial dilution.” Preimmune
serum titers for the SERA protein were <80 in this assay.

tibodies that were generated following vaccination. Twelve
mice of each group (i.m. or Gene Gun) with variable end
point-positive ELISA titers to SERA (Fig. 3) were assessed to
determine the relevant antibody isotypes. The predominant
isotype subclass of the antibodies generated in response to the
Gene Gun immunizations was IgG1 (Table 1). The predomi-
nant subclass generated in response to the i.m. immunizations
was [gG1 for the SERA protein, but there were also significant
levels of IgM even 4 weeks after the last immunization. The
ratio of isotypes was consistent in all of the mice evaluated,
regardless of the overall level of the total IgM and IgG anti-
SERA titer. Therefore, both methods of immunization using
the SERA DNA vaccine stimulated Th2-type responses to the
SERA protein. In contrast, IgG2a was the predominant sub-
class of the anti-hepatitis B surface antigen antibodies gener-
ated in response to the pCMV-s positive-control vector in-
jected by the i.m. route in both mice immunized with pCMV-s
alone and mice coimmunized with pcdna3 SERA 17-382. In-
jection of pCMV-s by the i.m. route also elicited significant
levels of IgM (Table 1).

INFECT. IMMUN.

DISCUSSION

The anti-SERA antibody responses generated to the SERA
DNA vaccines are moderate compared to the antibody re-
sponses that are generated with recombinant protein and ad-
juvant (2, 20, 44, 51). The highest anti-SERA titer generated
via i.m. injection, 4,800, was generated in a mouse that was
coimmunized with the hepatitis B DNA vaccine. This titer is
about 50-fold lower than antibody titers generated to the cor-
responding glutathione S-transferase (GST)-SERA fusion pro-
tein delivered together with CFA to mice intraperitoneally
(titers were generated in the same ELISA). Even when mice
were vaccinated by Gene Gun, which is optimal for generating
high antibody titers in DNA-mediated immunization systems,
the highest anti-SERA titer was 25,600, a titer that is signifi-
cantly lower than we observed previously with recombinant
protein antigen and adjuvant (20).

The predominant isotype subclass of the antibodies gener-
ated to the SERA DNA vaccines by Gene Gun immunization
is IgG1. Gene Gun immunizations commonly elicit Th2-type
responses of which IgG1 is a hallmark (18, 42). Surprisingly,
IgG1 was the predominant subclass from immunization with
SERA DNA vaccines by i.m. injection. To date, there are no
published reports of a dominant Th2-type response being gen-
erated from immunization of mice with any DNA vaccine by
i.m. injection. Immunization of mice with the SERA 17-382
DNA vaccine by i.m. injection also produced a moderate level
of IgM antibodies. This Th2-type response is specific to the
SERA protein, because IgG2a is the predominant isotype sub-
class of the antibodies generated to the hepatitis B surface
antigen from the pCMV-s positive-control DNA vaccine in the
coimmunized mice. This indicates that the immune response to
the hepatitis B surface antigen was mediated by a Th1-type and
not by Th2-type helper T-cell response. These mice also had
significant levels of anti-hepatitis B surface antigen IgM anti-
bodies. It would be interesting to determine whether the Th2
response to the SERA protein is specific to BALB/c mice or if
i.m. immunization of other mouse strains also results in the
induction of Th2-type responses. It is interesting to note that
IgG2a antibodies to SERA can be generated in BALB/c mice
when they are immunized with recombinant SERA protein
and CFA (44, 45). Furthermore, anti-SERA IgG2a, IgG2b,
and IgG3 are significantly more potent in in vitro parasite
growth inhibition assays than is anti-SERA IgG1 (44, 45). It is
not known what type of response is protective during a human
malaria infection; hence it will be valuable to determine the
isotypes of the anti-SERA antibodies generated during a hu-
man infection.

Preliminary data suggest that a single injection of recombi-
nant SERA protein can only boost anti-SERA titers in Gene
Gun-immunized mice. One mouse originally immunized via
Gene Gun received a booster dose with recombinant GST-
SERA 17-382 protein in incomplete Freund’s adjuvant at 18
weeks. The mouse generated antibody titers to SERA which
were 15- to 20-fold higher than the preboost titer. The final
titer of 51,200 was four- to fivefold higher than the original
titers found in that same mouse 2 to 4 weeks after immuniza-
tion with the SERA DNA vaccine via Gene Gun. Even later, at
26 weeks, another Gene Gun pcdna3 SERA 17-382-immu-
nized mouse received one protein booster injection; the titer
before the booster injection of 800 rose 40-fold to 32,000 2
weeks after the booster injection (data not shown). In contrast,
no increase in anti-SERA antibody titers was observed in three
im. pcdna3 SERA 17-382 immunized mice, and no antibody
response was generated in pcdna3 plasmid vector-immunized
mice or naive mice. Although these data are generated from a
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FIG. 3. Antibody titers from mice immunized with the pcdna3 SERA 17-382 DNA vaccine. Mice were immunized by i.m. injection or Gene Gun, as indicated.
Serum was collected at weeks 6 and 8; all mice were immunized at weeks 0 and 4. Serial dilutions were used to measure the end point-positive titers. The results
presented are the averages of two separate ELISAs. The titer of each serum sample is the inverse of the largest dilution at which the substrate colorometric development
is above that of a negative control. The variation in the end point-positive titers was always within one “twofold serial dilution.” Preimmune serum titers for the SERA

protein were <80 in this assay.

small group of animals, they do suggest that for the SERA
protein, Gene Gun delivery is more successful than i.m. deliv-
ery, especially at stimulating memory responses to the SERA
protein. Our observation that antibody titers are significantly
boosted by a single delivery of protein antigen in Gene Gun-
immunized mice several months after DNA vaccination is sig-
nificant for two reasons. First, natural exposure to malaria
antigens may boost immune responses following Gene Gun
DNA vaccination. Second, these data suggest that improved

TABLE 1. Anti-SERA antibody isotypes generated by i.m. and
Gene Gun DNA immunizations

Distribution of antibody isotypes

. H
Immunization (1) generated by immunization

IgM  IgGl IgG2a IgG2b IgG3
Gene Gun pcdna3 SERA 17-382 (12) — ++++ — - —
i.m. pcdna3 SERA 17-382 (12) + +++ — — _
im. pCMV-s (4) + +/- +++ - —

“ End point-positive titers were compared. The total amount of immunoglob-
ulin detected is represented by +. A single + indicates that antibody isotype
represented approximately 25% of the total reactive IgM and IgG in each mouse.
The isotype ratios were nearly identical for every mouse in each group.

malaria vaccines may be developed by further exploring com-
bined DNA and protein vaccination protocols.

A SERA DNA vaccine could be further improved by the
addition of immunostimulatory CpG motifs to the plasmid.
CpG motifs preferentially stimulate the production of Thl
cytokines such as interleukin 12 and gamma interferon (32,
49). The pcdna3 plasmid does contain some CpG motifs, but
those motifs do not provide immunostimulatory activity in our
system. The SE47’ gene itself does not contain any CpG mo-
tifs. Addition of optimal motifs to the plasmids may favor
Thl-type responses and may also improve the efficacy of the
vaccine.

The diminution of responses generated to the SERA 17-110
fragment, found only in DNA immunizations that, by defini-
tion occur without adjuvant, may indicate that this fragment
does not contain the adequate helper T-cell epitopes required
to stimulate a strong antibody response. This N-terminal do-
main, when delivered as a recombinant GST-SERA 17-110
fusion protein in CFA, elicits significantly higher ELISA titers
against SERA 24-285 than those observed following immuni-
zation with a GST-SERA 17-382 protein, containing the com-
plete SE47’ domain (18a, 20). These data suggest that this
region of SERA contains relevant B-cell epitopes, but the use
of adjuvant would obviate the need for helper T-cell epitopes
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(20). Additional experiments are required to delineate the
helper T-cell epitopes in the 47-kDa domain of the SERA
protein. Known T-helper cell epitopes could be incorporated
into the SERA 17-110 DNA vaccine. This is potentially an
important avenue for vaccine discovery because a major par-
asite-inhibitory epitope maps to the N-terminal amino acids 17
to 110 of SERA (20).

Our results suggest that the SERA protein is a viable can-
didate as a component of a DNA-based human malaria vac-
cine. Primate studies are currently in progress to evaluate
other malaria DNA vaccine antigens (22). Further studies in
primates are planned to examine protective immune responses
to the 47-kDa subunit of the SERA protein elicited by DNA
vaccination and to evaluate whether combined immunization
protocols employing both SERA plasmid DNA and recombi-
nant SERA protein improve the efficacy of a SERA malaria
vaccine.
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