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When tachyzoites were incubated with human peripheral blood leukocytes in vitro, more monocytes and
dendritic cells than neutrophils or lymphocytes were infected. Although tachyzoites were able to divide in each
of these cell types, monocytes and dendritic cells were more permissive to rapid tachyzoite division than

neutrophils or lymphocytes.

Toxoplasma gondii is an obligate intracellular parasite that
can infect any nucleated host cell by a process of active pene-
tration (7). Acute toxoplasmosis is characterized by dissemi-
nation and intracellular growth of the tachyzoite in a variety of
host organs. In the innate phase of the immune response,
nonspecific inflammatory cells, including neutrophils, mono-
cytes, and dendritic cells, are elicited to the site of infection.
The ensuing response of these cells allows for the establish-
ment of the specific cell-mediated immune response that pro-
vides for long-term protection in the host against recurrent
infection (13). Previous studies have reported that human neu-
trophils and monocytes become infected by tachyzoites. How-
ever, for each cell type there are conflicting reports of the
subsequent fate of these intracellular parasites; both parasite
stasis (14, 16, 30) and parasite division (15, 19) are described.
In a recent study it was shown that there was markedly less
uptake and division of tachyzoites in adherent monocytes than
in nonadherent monocytes (9). In the present study the re-
sponse of human peripheral blood leukocytes to tachyzoites
was evaluated.

Infection of human leukocytes is parasite dose dependent.
Dendritic cells, monocytes, lymphocytes, and neutrophils were
isolated from peripheral blood from toxoplasma-seronegative
donors under endotoxin-free conditions. To obtain dendritic
cells, mononuclear cells were isolated from blood by density
gradient centrifugation (2:1 [vol/vol] ratio of blood to 1.07 g of
Ficoll-Hypaque per ml; 500 X g for 20 min). Washed cells were
plated for 2 h at 37°C in tissue culture flasks, and then nonad-
herent cells were removed. The adherent cells were cultured in
medium supplemented with 2,000 U of recombinant human
granulocyte-macrophage colony-stimulating factor (rhGM-
CSF; generously supplied by Immunex, Seattle, Wash.) and 20
ng of recombinant human interleukin-4 (rhIL-4; PeproTech
Inc., Rocky Hill, N.J.) per ml. Every 3 days the medium in
these flasks was supplemented with thGM-CSF and rhIL-4. At
day 8, the cells demonstrating dendritic cell morphology (non-
adherent with projections) were harvested, and their pheno-
type was characterized by flow cytometry as described previ-
ously (27).

Monocytes and lymphocytes were isolated from peripheral
blood mononuclear cells obtained by cytophoresis carried out
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with volunteers as described previously (2). Briefly, monocytes
were enriched to 85 to 95% by aggregation of washed cyto-
phoresed cells at 4°C. Supernatants containing enriched lym-
phocytes were removed and purified further (see below). Plate-
lets were removed from monocytes by washing cells twice in
Versene buffer (0.2 g of EDTA per ml in phosphate-buffered
saline). Under these conditions monocytes in 24-well tissue
culture plates remain nonadherent. Lymphocytes were purified
further by incubation in serum-free medium in large tissue
culture flasks for 1 h at 37°C to adhere contaminating mono-
cytes. Nonadherent cells were then washed twice in medium
before use. Diff-Quik-stained cytospins of these nonadherent
cells were 95% enriched for lymphocytes (the other cells were
monocytes).

To isolate neutrophils, dextran (6% in saline; T500; Amer-
sham Pharmacia Biotech Inc., Piscataway, N.J.) was added to
blood at a ratio of 1:9 (vol/vol) to sediment erythrocytes (1 X
g for 30 min) at room temperature. The leukocyte-rich plasma
above the sedimented erythrocytes was removed and overlaid
onto a two-step gradient comprised of 1.07 g of Ficoll-Hypaque
(Winthrop Laboratories, New York, N.Y.) per ml underlaid
with 1.095 g of OptiPrep (Accurate Chemical & Scientific
Corp., Westbury, N.Y.) per ml in the ratio of 2:1:1 (vol/vol/vol).
After centrifugation (500 X g for 20 min), the neutrophil layer
was removed and washed twice in RPMI medium. Cells were
99% polymorphonuclear (3 to 5% eosinophils) and 1% mono-
nuclear (lymphocytes and monocytes) as determined from
stained cytospins.

Isolated leukocytes were resuspended in RPMI 1640 con-
taining 25 mM HEPES buffer with L-glutamine (Gibco Labo-
ratories), supplemented with gentamicin sulfate (50 pg/ml;
United States Biochemical Corp., Cleveland, Ohio) and 10%
(vol/vol) fetal bovine serum (with a low endotoxin concentra-
tion; HyClone Laboratories, Inc., Logan, Utah) which had
been heat inactivated at 56°C for 30 min. 7. gondii (PLK strain)
was maintained in human foreskin fibroblasts and isolated as
described previously (3). Parasites were added to each type of
leukocyte, and cytospin preparations were made after 2 and
24 h of incubation. Infection of peripheral blood cells and
dendritic cells by tachyzoites was parasite dose dependent, and
at each parasite dose more monocytes than neutrophils and
lymphocytes were infected (Fig. 1). Multiple infections of
monocytes, dendritic cells, and neutrophils were observed for
leukocyte-to-parasite ratios of =1:2. The percentage of leuko-
cytes infected after 24 h was never less than the percentage of
cells infected after 2 h (data not shown), with the exception
that overnight incubation of neutrophils with tachyzoites at
cell-to-parasite ratios of =1:2 led to increasing degeneration of
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FIG. 1. Infection of host cells is parasite dose dependent. Tachyzoites were
added to monocytes, neutrophils, and lymphocytes (5 X 10°/500 pl in 24-well
tissue culture plates) or in vitro-cultured dendritic cells (27) (1.4 X 10°/140 pl in
96-well tissue culture plates) at various cell-to-tachyzoite ratios. Triplicate cyto-
spin preparations (100,000 cells centrifuged for 5 min at 700 rpm using a Shan-
don Cytospin 3) of each infected cell type were made 2 and 24 h postinfection.
Cells were fixed and stained with Diff-Quik, and 200 to 300 cells were counted
per slide. For each cell the number of tachyzoites per vacuole was determined.
Cells with multiple vacuoles were scored for the highest number of tachyzoites
per single vacuole (i.e., as if they contained a single vacuole), and the cell-to-
tachyzoite ratios where multiple vacuoles occurred were recorded. Results from
24 h postinfection are reported as the mean + standard deviations of triplicate
samples for lymphocytes, neutrophils, and monocytes and as the mean of dupli-
cate samples for dendritic cells. Results are representative of two donors.

neutrophils. Similar results were seen when monocytes, neu-
trophils, and lymphocytes were mixed in equal numbers and
then infected with tachyzoites (data not shown).

Monocytes and dendritic cells are permissive to rapid par-
asite division. Tachyzoites divide through a type of binary
fission termed endodygeny, and a division time of 5 to 9 h is
characteristic of any toxoplasma strain (21). To determine
whether leukocytes were permissive to intracellular parasite
division, cells infected overnight were scored for numbers of
parasites per vacuole. Photomicrographs of these infected leu-
kocytes are presented in Fig. 2. Large vacuoles containing
small pieces of parasites, consistent with phagocytosis of par-
asites lysed extracellularly, were seen for a minority of mono-
cytes and neutrophils, particularly at higher multiplicities of
infection (Fig. 2A and C). The infected leukocytes were quan-
tified for numbers of intracellular parasites. Figure 3 shows
parasite division for each type of leukocyte. There is a striking
difference between the parasite division time in dendritic cells
and monocytes and that in neutrophils and lymphocytes. While
dendritic cells and monocytes support the characteristic rapid
parasite division time (21) with four to eight parasites per
vacuole, neutrophils and lymphocytes are less permissive for
parasite division, harboring mainly single parasites. For exam-
ple, at a cell-to-parasite ratio of 1:4, 92 and 36% of monocytes
and dendritic cells, respectively, had vacuoles containing two,
four, or eight parasites (Fig. 3). In contrast, 46% of neutrophils
were uninfected, 49% had one tachyzoite per vacuole, and 5%
had two tachyzoites per vacuole (Fig. 3). At the same multi-
plicity of infection 81% of lymphocytes were uninfected, 15%
had one tachyzoite per vacuole, and 4% had two tachyzoites
per vacuole (Fig. 3). Between 18 and 48 h of infection mono-
cytes and dendritic cells lysed following the egress of viable

NOTES 4823

intracellular tachyzoites. For monocytes, the number of
tachyzoites per vacuole was dependent on the multiplicity of
infection.

Parasites in infected neutrophils have a longer division
time. The majority of infected neutrophils contained one
whole parasite per vacuole (Fig. 2C) and the intracellular par-
asite was often distended. To determine whether distended
parasites could have been dividing, cytospins of infected neu-
trophils were fixed in 2% formaldehyde for 30 min and per-
meabilized in ice-cold acetone for 15 min. Parasites were
stained with a tachyzoite-specific antibody (30 min of incuba-
tion with 10 pg of fluorescein isothiocyanate-conjugated anti-
SAG-1 rabbit polyclonal immunoglobulin G, made in our lab-
oratory, per ml), and cell nuclei were stained with propidium
iodide (5 min of incubation with 2.5 wg/ml in phosphate-buff-
ered saline). Cells were examined using a Zeiss Axiophot mi-
croscope equipped with a fluorescein isothiocyanate-tetra-
methyl rhodamine isocyanate filter set. For 24-h-infected
neutrophils, all distended tachyzoites contained two daughter
nuclei, consistent with endodyogeny (21). Moreover, when the
samples were examined 48 h postinfection, the frequency of
infected neutrophils containing two tachyzoites per vacuole
was found to be increased (data not shown). These results
suggest that parasite division time in neutrophils is markedly
longer than the typical 5 to 9 h seen for nonadherent mono-
cytes and dendritic cells. Similar results were seen for intracel-
lular tachyzoites of lymphocytes (data not shown).

Parasites in infected neutrophils can reinfect fibroblasts,
where they show a rapid division time. To determine whether
parasites that exhibit a longer division time in neutrophils also
have a longer division time in a more permissive cell type,
infected neutrophils (sorted free of extracellular parasites us-
ing flow cytometry) were added to human fibroblasts. For these
experiments neutrophils were infected overnight with parasites
at a cell-to-parasite ratio of 1:1 and then stained for cell surface
expression of Fcy receptor III (murine monoclonal antibody
3G8 supernatant; generous gift of M. Fanger) and examined by
flow cytometry. Fcy receptor Ill-stained neutrophils fell into
two populations, a brightly stained viable population and a
dimly stained nonviable population. A gate was set on the
brightly stained cells, and cells were sorted using a FacStar flow
cytometer (Becton Dickinson) under sterile conditions. Cyto-
spin preparations of sorted brightly stained cells showed them
to be 100% viable, 12% tachyzoite infected, and free of extra-
cellular tachyzoites, whereas dimly stained cells were 100%
nonviable and uninfected. Serial dilutions of brightly stained
neutrophils were added to small flasks of confluent human
fibroblasts and incubated at 37°C. After 4 days, fibroblasts were
examined for plaques caused by tachyzoite infection and divi-
sion (24). Incubation of fibroblasts with 120,000 infected neu-
trophils (10° total neutrophils) resulted in the formation of
25,000 plaques. The efficiency of plating, i.e., the ability of
extracellular PLK strain tachyzoites to make plaques, was 50%.
Hence, at least 40% of the intracellular tachyzoites within
neutrophils were infective. Moreover, the majority of infected
fibroblasts contained four to eight parasites per vacuole.

We have demonstrated that tachyzoites differentially infect
and replicate in human monocytes, neutrophils, dendritic cells,
and lymphocytes. Although tachyzoites are able to infect each
of these cell types, they do not infect them equally. At low
multiplicities of infection more monocytes and dendritic cells
than neutrophils or lymphocytes are infected. At higher mul-
tiplicities of infection many more neutrophils, but not lympho-
cytes, become infected. Monocytes, dendritic cells, and neu-
trophils are all phagocytes. Both monocytes and neutrophils
have been reported to mediate significant lysis of extracellular
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FIG. 2. Photomicrographs of cytospin preparations of tachyzoite-infected host cells. Host cells were incubated for 24 h with tachyzoites at a cell-to-parasite ratio
of 1:4. Arrowheads indicate parasites. Arrows indicate vacuoles containing digesting tachyzoites. Magnification, X630. Bar = 2 pm. (A) Monocytes showing rapid
tachyzoite division, as evidenced by up to eight tachyzoites per vacuole (see arrowheads). (B) Dendritic cells showing rapid tachyzoite division. (C) Neutrophils showing
slow tachyzoite division, as seen by fewer than two tachyzoites per vacuole. rbe, red blood cells. (D) Lymphocytes showing slow tachyzoite division, even though
tachyzoites in the contaminating monocyte were dividing rapidly. Photomicrographs were made using Kodak Elite chrome ASA 100 slide film, and 35-mm slides were
scanned into Adobe Photoshop files using a SprintScan 35 (Polaroid Corp., Cambridge, Mass.).

tachyzoites (8). Since the percentage of cells infected after
overnight incubation was never less than the percentage of
cells infected after 2 h of incubation, it is unlikely that phago-
cytosis of whole parasites plays a role in eliminating
tachyzoites. Rather, the majority of these infected cells con-
tained dividing parasites. For a host cell to contain dividing

tachyzoites, the tachyzoites must have entered by active pen-
etration rather than by being phagocytosed, since fusion of
tachyzoite-containing phagosomes with endosomes would re-
sult in phagosome acidification, an event known to cause par-
asite death (28).

In vivo, tachyzoites are disseminated from the gut to a variety
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FIG. 3. Intracellular tachyzoites divide at a rapid rate in monocytes and dendritic cells but not in neutrophils or lymphocytes. Host cells were incubated with
parasites at various multiplicities of infection for 24 h and the number of tachyzoites per host intracellular vacuole was determined by light microscopy of cytospin
preparations. Results are reported as the cumulative percentage of cells that are uninfected (m), or have one (&), two (OJ), four (&), or eight (N) tachyzoites per

vacuole. Results are representative of two donors.

of organs during an acute infection. The survival of both the
host and parasite is dependent on some of these tachyzoites
becoming encysted as slowly dividing bradyzoites, while the
remaining tachyzoites are eliminated (13). The mechanisms
that control tachyzoite elimination and tachyzoite-to-brady-
zoite interconversion in host cells in vivo are not known, al-
though a role for the host’s specific immunity, in particular for
gamma interferon (IFN-v), has been suggested (29). Both he-
mopoietic and nonhemopoietic cell types have been shown to

TABLE 1. Division rate of intracellular tachyzoites in primary human cells in vitro

play a critical role in IFN-y-mediated immunity to 7. gondii
(33). From our studies and those of others, hemopoietic and
nonhemopoietic human cell types infected with tachyzoites in
vitro appear to fall into two categories: permissive cells in
which tachyzoites undergo rapid division and nonpermissive
cells in which tachyzoite division time is longer (Table 1).
Moreover, preincubation of most of these permissive cells with
IFN-y before infection switches them to a nonpermissive phe-
notype (Table 1). Reactive oxygen and nitrogen metabolites

a

Parasite division rate

Cell type Mechanism Reference(s)
Unprimed IFN-vy primed
Hemopoietic
Lymphocyte S ND This study
Neutrophil S ND This study, 19, 30
Adherent monocyte S ROM; not TS 5,9, 15-17, 30
Nonadherent monocyte R R This study, 9
Dendritic cell R N This study
Alveolar macrophage R S Partly TS 17
Peritoneal macrophage R S ND 31
Monocyte-derived macrophage R S ROM; not RNM 1, 5, 16, 17, 31
Nonhemopoietic
Neuron S ND 10
Foreskin fibroblast R S TS 22,23
Unmbilical vein endothelial cell R S Not RNM, TS, or ROM 16, 32
Retinal pigment epithelial cell R S TS 18
Fetal astrocyte R S RNM 10, 20
Fetal microglial cell R R 4

¢S, slow; R, rapid; ND, not determined; ROM, reactive oxygen metabolites; TS, tryptophan starvation; RNM, reactive nitrogen metabolites.
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and a lack of tryptophan have been implicated in restricting
tachyzoite division (Table 1).

If parasite dissemination from the gut to other organs occurs
via the bloodstream, peripheral blood monocytes, dendritic
cells, and neutrophils would be excellent candidates to trans-
port tachyzoites to other host tissues. Inflammation would
elicit neutrophils (12, 25, 26), monocytes, and dendritic cells to
the site of infection. Neutrophils are the first cells to be elicited
during an inflammatory response and appear within minutes of
chemokine release from the site of tachyzoite infection (refer-
ence 6 and unpublished observations). Our studies suggest that
neutrophils play a critical dual role in restricting tachyzoite
growth; they lyse extracellular tachyzoites and, when infected,
they retard intracellular tachyzoite division. Monocytes and
dendritic cells represent 4% and less than 0.1%, respectively,
of the peripheral blood leukocytes (11). Monocytes are elicited
to the site of infection a few hours later than neutrophils.
These cells would encounter lysed tachyzoites, infected neu-
trophils, and perhaps viable extracellular tachyzoites at the site
of infection. Since monocytes and dendritic cells are profes-
sional antigen-presenting cells, lysed or damaged extracellular
parasites would provide a pool of extracellular antigen that
could be presented in the context of either major histocom-
patibility complex class I or II. This antigen presentation is
critical for establishing specific immunity leading to the release
of IFN-y and the protection of tissue macrophages and non-
hemopoietic cells from rapid parasite division, overt stimula-
tion of the specific immune response, and consequent host
pathology.

This work was supported by grants AI19613 and AI30000 from the
National Institutes of Health. Flow cytometry and fluorescence mi-
croscopy were carried out at Dartmouth Medical School in the Herbert
C. Englert Cell Analysis Laboratory, which was established by a grant
from the Fannie E. Rippel Foundation and is supported in part by the
Core Grant of the Norris Cotton Cancer Center (CA 23108).
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