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P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no
effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system
for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly
antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known
abiotic biofilm formation genes flgK and pilB. Treatment of P. aeruginosa biofilms with tobramycin reduced the
virulence of the biofilms both by reducing bacterial numbers and by altering virulence gene expression. We
performed microarray analysis of these biofilms on epithelial cells after treatment with tobramycin, and we
compared these results with gene expression of (i) tobramycin-treated planktonic P. aeruginosa and (ii) tobramycin-
treated P. aeruginosa biofilms on an abiotic surface. Despite the conservation in functions required to form a biofilm,
our results show that the responses to tobramycin treatment of biofilms grown on biotic versus abiotic surfaces are
different, as exemplified by downregulation of genes involved in Pseudomonas quinolone signal biosynthesis specif-
ically in epithelial cell-grown biofilms versus plastic-grown biofilms. We also identified the gene PA0913, which is
upregulated by tobramycin specifically in biofilms grown on CF airway cells and codes for a probable magnesium
transporter, MgtE. Mutation of the PA0913 gene increased the bacterial virulence of biofilms on the epithelial cells,
consistent with a role for the gene in the suppression of bacterial virulence. Taken together, our data show that analysis
of biofilms on airway cells provides new insights into the interaction of these microbial communities with the host.

Pseudomonas aeruginosa is adept at establishing chronic in-
fections in the lungs of individuals with cystic fibrosis (CF). CF
is a common inherited genetic disorder, and pathology in the
disease is brought about by improper chloride secretion due to
mutations in the CF transmembrane conductance regulator
(CFTR) (4, 14, 23). In the lung, this chloride transport defect,
and the resulting altered airway physiology, lead to impairment
of mucociliary clearance and production of thick mucus plugs
in the airways (14, 16, 38, 51). These reactions predispose the
CF patient to chronic microbial infection, and P. aeruginosa
eventually becomes the dominant infecting microorganism
from childhood through adulthood (14, 30). Despite the avail-
ability and aggressive use of antibiotics, P. aeruginosa coloni-
zation often becomes lifelong and is a major factor contribut-
ing to CF patient complications, including respiratory failure
and death (14, 30, 38).

Current evidence suggests that one significant reason for the
persistence of P. aeruginosa is its ability to form antibiotic-
resistant biofilms in the lungs of CF patients. Indeed, antibiotic
resistance profiles, quorum-sensing studies, and microscopic
examination of microcolonies in CF patient lungs support this
hypothesis (16, 22, 25, 38, 43). Biofilm formation is the result
of global regulatory changes within the bacterium as a result of
the harsh lung environment, and the appearance of P. aerugi-
nosa biofilms correlates with chronic infection (18). Investiga-

tion into the genetic regulatory networks governing this tran-
sition between acute and chronic infection might assist in our
understanding of P. aeruginosa persistence in the CF lung.

P. aeruginosa biofilm formation has been extensively studied
on abiotic surfaces using a variety of static and flow cell assays
(35). These investigations have revealed a multistep process
leading to formation of bacterial communities attached to the
abiotic substratum. However, a more relevant model system in
which to study P. aeruginosa biofilm formation and virulence in
the context of CF airway cells would be useful in order to
understand airway infection in CF.

To better understand P. aeruginosa infection in the context of
the CF airway epithelium, we developed a tissue culture-based
system in which to study P. aeruginosa biofilm formation on hu-
man CF-derived lung epithelial cells in vitro. We report that
tobramycin decreases the virulence of P. aeruginosa growing on
human CF airway epithelial cells. Microarray analysis showed that
the genes required for biogenesis of Pseudomonas quinolone sig-
nal (PQS), an important signaling molecule regulating virulence
gene expression, are downregulated upon tobramycin treatment,
specifically within the context of a biofilm grown on airway cells.
We also identified a putative magnesium transporter that is in-
volved in bacterial virulence toward the epithelial cells. Further-
more, our results show that the responses of P. aeruginosa to
tobramycin treatment are markedly different depending upon
whether the microbe is growing planktonically, in a biofilm on an
abiotic surface, or in a biofilm on epithelial cells.

MATERIALS AND METHODS

Bacterial strains and plasmids. The strains and plasmids used in this study are
listed in Table S1 in the supplemental material. For all experiments, except for
pyoverdine assays, bacteria were grown in LB overnight with appropriate anti-
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biotics. Pyoverdine assays were performed using cultures grown overnight in
King’s B medium (20 g/liter proteose peptone, 10 g/liter glycerol, 1.5 g/liter
KH2PO4, 1.5 g/liter MgSO4), and overnight cultures were adjusted to similar
optical densities at 600 nm (OD600) prior to assays. Wild-type P. aeruginosa PA14
and �PA0913 strains exhibited similar growth kinetics (data not shown).

Static coculture biofilm assay. CFBE41o� cells (CFBE cells) are human
bronchial epithelial cells that are homozygous for the �F508 mutation of CFTR
(5, 8). P. aeruginosa biofilms were grown on CFBE cells using a coculture model
system. In this model, epithelial cells were seeded at a concentration of 106

cells/well in 6-well tissue culture plates or 2 � 105 cells/well in 24-well tissue
culture plates and maintained in minimal essential medium (MEM) (Mediatech,
Herndon, VA) with 10% fetal bovine serum, 2 mM L-glutamine, 50 U/ml peni-
cillin, and 50 �g/ml streptomycin. The cells were grown at 37°C and 5% CO2 for
7 to 10 days before inoculation with bacteria. These conditions have been shown
to lead to confluent cell monolayers and to allow the formation of tight junctions
(5, 8). P. aeruginosa was inoculated at a concentration of approximately 2 � 107

CFU/ml into 1.5 ml MEM/well (without fetal bovine serum, penicillin, or strep-
tomycin) for 6-well plates or 1.2 � 107 CFU/ml in 0.5 ml MEM/well for 24-well
plates. These concentrations were equal to a multiplicity of infection of approx-
imately 30:1 for both plate sizes relative to the number of epithelial cells origi-
nally seeded. The plates were incubated for 1 h at 37°C and 5% CO2. After 1 h,
the supernatant was replaced with fresh MEM supplemented with 0.4% arginine,
and the system was incubated at 37°C and 5% CO2 for the times indicated for
each experiment. Epithelial-monolayer integrity was assessed by phase-contrast
microscopy using a Leica DM IRB inverted microscope (Leica Microsystems,
Wetzlar, Germany), and PA14 biofilm formation on CFBE cells was visualized by
fluorescence microscopy examination of cocultures inoculated with P. aeruginosa
PA14 carrying plasmid pSMC21, which constitutively expresses green fluorescent
protein (GFP) (2). Images were analyzed with OpenLab 4.0.4 software (Impro-
vision, Lexington, MA). To determine the numbers of biofilm CFU, we washed
the cells two or three times with phosphate-buffered saline (PBS) to remove
planktonic bacteria and treated the cells with 0.1% Triton X-100 for 10 to 15 min
to lyse the epithelial cells. The lysate was vortexed for 3 min, serially diluted, and
plated on LB. Calcofluor staining was accomplished by diluting a 1% solution of
calcofluor (Fluorescent Brightener 28; Sigma, St. Louis, MO) 1:1,000 in the static
coculture supernatant (52). Staining was assessed by microscopic examination
after incubation with calcofluor for 1 h at 37°C.

Microarray analysis. For microarray analysis of CFBE/P. aeruginosa biofilms,
coculture static biofilms were grown for 9 h in six-well tissue culture plates,
whereupon the cells were washed two or three times with 2 ml PBS, and then
fresh MEM was added. Replicate samples were then incubated in the presence
or absence of 500 �g/ml tobramycin, a concentration approximately one-half that
observed in the lungs of CF patients treated with tobramycin (13), for 30 min.
The cells were then washed two or three times with 2 ml PBS, and RNA was
harvested using a modification of the protocol from the RNeasy RNA isolation
kit (Qiagen, Valencia, CA). Specifically, the cells were incubated with 600 �l of
1 �g/ml lysozyme in Tris-EDTA buffer for 10 min at room temperature. Then,
the cells were homogenized with 600 �l RLT lysis buffer from the Qiagen
RNeasy kit, and the homogenate was vortexed for several seconds and drawn
through a 20-gauge needle 10 times. Six hundred microliters of 100% ethanol
was then added, and the solution was applied to an RNeasy column. From this
point, we followed the manufacturer’s protocol for isolation of bacterial RNA.
Mammalian RNA was removed using the MicrobEnrich kit (Ambion, Austin,
TX) according to the manufacturer’s protocol. cDNA synthesis and microarray
preparation, scanning, and analysis were carried out as previously described (24).
Importantly, the multiwell format of the static model system allowed us to
combine the RNAs harvested from several identical wells into one sample in
order to increase the yield. In this manner, we were able to obtain sufficient
high-quality RNA from the bacterial biofilm to carry out microarray analysis.

For microarray analysis of planktonic bacteria, we used mid-exponential phase
cultures of P. aeruginosa PA14. This was achieved by growing P. aeruginosa in 10
ml MEM/2% LB until mid- to late exponential phase, diluting this bacterial
culture 1:4 in fresh MEM/2% LB, and growing it for an additional 3 to 4 h to
reach mid-exponential phase. Replicate cultures were incubated in the presence
or absence of 5 �g/ml tobramycin for 30 min at 37°C. Bacterial RNA was then
isolated and prepared for microarray analysis as previously described (24).

Raw microarray data were processed using a Bayesian analysis, as previously
described (24). We chose a �2.0-fold cutoff, as well as a natural log (ln) P value
of �0.05, to identify significantly upregulated and downregulated genes. Data
sets were compared using VennMaster (http://www.informatik.uni-ulm.de/ni
/staff/HKestler/vennm/doc.html).

RT-PCR analysis. For transcriptional analysis of abiotic biofilms, we grew
PA14 in six-well tissue culture plates using MEM supplemented with 0.4%

arginine, as described above for biofilms on CFBE cells, except without epithelial
cells. The abiotic biofilms were grown for 24 h at 37°C and 5% CO2 to reach
approximately 107 to 108 CFU/well, similar to conditions for CFBE biofilm and
planktonic microarray experiments as described above. These abiotic biofilms
were washed twice with PBS and treated with 1 �g/ml tobramycin for 30 min at
37°C and 5% CO2. RNA was harvested, and cDNA was synthesized as described
above. Notably, we found that the MicrobEnrich procedure was not needed to
obtain bacterial RNA of sufficient concentration and quality for reverse trans-
criptase (RT) PCR (data not shown). Quantitative RT-PCR (qRT-PCR) was
carried out as previously described (24) using primer pairs 913forRT/913revRT,
3330for/3330rev, 4326forRT/4326revRT, 4635for/4635rev, 4761forRT/4671revRT,
PA5110for/PA5110rev, 5470for/5470rev, fptA1/fptA2, pqsAF1/pqsAR1, PA0044f/
PA0044r, PA1706f/PA1706r, and PA1707F/PA1707R (see Table S2 in the supple-
mental material). Primers for fbp (PA5110, encoding fructose bisphosphatase)
were used as a normalization control, because analysis of several data sets in our
laboratory indicated that the transcript levels of the gene remained constant,
regardless of the growth conditions tested (data not shown).

Transcriptional analysis of PA0913 was accomplished by semiquantitative RT-
PCR. RNA was harvested from 6- to 9-h CFBE/PA14 biofilms or mid-exponen-
tial-phase planktonic PA14 cultures treated with tobramycin for 30 min, as
described above for microarray analysis. cDNA synthesis and semiquantitative
RT-PCR were performed as previously described (24, 32), using primer pair
913forRT/913revRT (see Table S2 in the supplemental material) at an annealing
temperature of 56°C. We assayed fbp as a constitutive control.

Genetic constructs. (i) Gene deletions. Isogenic deletion mutants were created
by allelic replacement, using suicide vectors that were assembled by single-step
recombination of PCR fragments in Saccharomyces cerevisiae (41). Briefly, ap-
proximately 1,000 bp of 5� and 3� flanking regions for the target genes were PCR
amplified using primer pairs 913Lfor/913Lrev, 913Rfor/913Rrev, 4635Rfor/
4635Rrev, 5470Lfor/5470Lrev, 5470Rfor/5470Rrev, 3819Lfor/3819Lrev, 3819Rfor/
3819Rrev, 4690igLfor/4690igLrev, 4690igRfor/4690igRrev, 4825Lfor/4825Lrev,
4825Rfor/4825Rrev, 3531Lfor/3531Lrev, 3531Rfor/3531Rrev, 4826Lfor/4826Lrev,
and 4826Rfor/4826Rrev (see Table S2 in the supplemental material). Allelic-re-
placement vector pMQ30 (41) was digested with BamHI and EcoRI, and the di-
gested vector, as well as 5� and 3� PCR fragments, was transformed into S. cerevisiae
strain InvSc1 (Invitrogen, Carlsbad, CA) using an improved “lazybones” protocol, as
previously described (41). This technique resulted in in vivo homologous recombi-
nation of vector and PCR fragments, thus creating deletion plasmids for the target
genes (see Table S1 in the supplemental material). The isolated plasmids were
transformed by electroporation into Escherichia coli strain S17-1. S17-1 transfor-
mants were conjugated with P. aeruginosa PA14 using standard techniques (24), and
PA14 exconjugants were selected on LB plates containing gentamicin and nalidixic
acid. At this point, the deletion constructs were integrated onto the bacterial chro-
mosome at the gene locus via a single-crossover recombination event. These strains
were grown overnight in liquid culture, and excision of the insert was accomplished
by plating them on LB plates containing 10% sucrose to select for strains that had
lost the sacB gene located on the suicide vector. This indicated that an allele
replacement had occurred. The gene deletion was confirmed by PCR using primer
pairs 913for/913rev, 4635For/4635Rev, 5470For/5470Rev, 3819for/3819rev, 4690for/
4690rev, 4825for/4825rev, 3531for/3531rev, and 4826for/4826rev (see Table S2 in the
supplemental material).

(ii) Complementation vectors. To complement the isogenic PA0913 deletion
strain, the full-length PA0913 gene was PCR amplified using primer pair
913Cfor/913Crev (see Table S2 in the supplemental material). This fragment
included approximately 500 bp upstream of the start codon, so that the natural
promoters might be incorporated into the complementing construct. We di-
gested this PCR fragment with EcoRI and ligated it into the EcoRI-restricted
expression vector pMQ72 (41). The orientation of the fragment was determined
by PCR and sequencing with primers F-t1t2 and R-Pbad (41). The insert ori-
ented in the same direction as the PBAD promoter was considered an inducible
complementing clone (pSMC235), and insertion in the opposite orientation was
used as a natural promoter expression clone (pSMC237). Cloning was carried out
in E. coli strain DH5	. The PA0913 (mgtE) isogenic deletion mutant was trans-
formed with these constructs by electroporation.

Cytotoxicity assays. The cytotoxicity of PA14 and the isogenic mutants was
assessed by measuring lactate dehydrogenase (LDH) released from epithelial
cells in coculture with the bacteria. Static biofilms were developed on CFBE cells
for the times indicated in the text, and 400 �l of the culture medium was
harvested. This medium was centrifuged to pellet bacteria and cell debris, and
300 �l of the supernatant was saved. LDH levels within this cell-free supernatant
were assayed using the CytoTox 96 nonradioactive cytotoxicity assay (Promega,
Madison, WI) according to the manufacturer’s instructions. Assays were per-
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formed in triplicate or quadruplicate, and the data represent at least three
identical assays.

Exofactor assays. Pyoverdine was assayed from density-matched overnight
cultures grown in King’s B medium. Culture supernatants were passed through
0.22-�m filters, and the relative pyoverdine concentration was determined by
measuring the OD404 (12). Pyocyanin production was assayed similarly to pub-
lished methods (9). Briefly, density-matched overnight cultures grown in LB were
filtered through 0.22-�m filters. Pyocyanin was chloroform extracted using equal
volumes of culture filtrate and chloroform. After being vortexed for 30 seconds,
the solutions were centrifuged for 2 min, and 200 �l of the bottom, organic layer
was collected. The solutions were vortexed a second time for 30 seconds and
centrifuged for 2 min; 300 �l of the organic phase was recovered and added to
the previously collected 200 �l, 500 �l of 0.1 N HCl was added to this organic
phase, and pyocyanin was extracted into the aqueous phase by 30 seconds of
vortexing. Four hundred microliters of the upper, aqueous phase was combined
with 600 �l 200 mM Tris-HCl, pH 8.0, and the relative pyocyanin concentration
was determined by measuring the OD376. Protease and lipase activities were
assessed by measuring the zone of clearance after overnight incubation of 5 �l of
density-matched overnight cultures in 3% skim milk/LB agar plates or 0.5%
tributyrin emulsion agarose plates, respectively (12, 20). Tributyrin agarose
plates were made by sonicating 1% tributyrin in 20 mM HEPES-500 mM NaCl,
pH 7.4, for 3 min. The resultant emulsion was mixed with an equal volume of 20
mM HEPES-500 mM NaCl, pH 7.4, and 2% melted agarose, and the solution
was poured into petri plates to solidify. Each of these assays was performed a
minimum of three times using triplicate cultures.

Biofilm formation. Bacterial viable counts in biofilms in coculture with CFBE
cells were determined as described above (see “Static coculture biofilm assay”).
Formation and assessment of bacterial biofilms on polyvinyl chloride (PVC)
plastic microtiter plates were performed using the crystal violet assay as previ-
ously described (34).

Microarray data accession number. Full microarray data for both the CFBE
biofilm and planktonic experiments were deposited in the NCBI (GEO accession
no. GSE10030).

RESULTS

Biofilm formation on CFBE cells. To investigate the inter-
actions between P. aeruginosa and CF airway cells, we devel-
oped an in vitro model system of biofilm formation on epithe-
lial cells. We grew CFBE cells, a human bronchial epithelial
cell line with a CFTR �F508/�F508 genotype (5, 8), in stan-
dard multiwell (6-well and 24-well) tissue culture plates, in
which they formed monolayers. These monolayers were inoc-
ulated with P. aeruginosa strain PA14 (referred to throughout
as “PA14”), and biofilm formation was monitored in this static
system over time by phase-contrast microscopy.

In initial studies, uninfected epithelial cells formed confluent
monolayers (Fig. 1A), but after 4 to 6 h of exposure to PA14,
most epithelial cells had lifted off the plastic, leaving only small
patches of cells separated by large sections of empty space
(Fig. 1B). This cell death presumably arose from bacterial
killing of the airway cells and precluded the formation of bio-
films. The type III secretion system (T3SS) of P. aeruginosa
greatly affects bacterial virulence, and it is known to exert
cytotoxic effects on epithelial cells (37, 39, 49). Based on data
presented below, it seems likely that the T3SS might have been
involved in the cell death we observed in our assays.

In an effort to identify conditions that delay bacterial killing
of epithelial cells and thus support biofilm formation, we
looked to models of biofilm formation on abiotic surfaces. The
addition of arginine to minimal growth medium enhances the
formation of P. aeruginosa biofilms on PVC plastic surfaces (6).
We predicted by analogy that arginine might exert a similar
biofilm-stimulatory effect in our CFBE biofilm cell culture
model. Indeed, addition of arginine to the tissue culture me-
dium resulted in the preservation of monolayer integrity after

incubation with PA14 for up to 
9 h (Fig. 1C). Incubation for
longer than 9 h resulted in monolayer destruction, even in the
presence of arginine (data not shown). Enumeration of bacte-
rial CFU bound to the epithelial cells after 1 h of incubation in
the presence or absence of arginine revealed the same number
of P. aeruginosa cells bound under both conditions, suggesting
that arginine might affect downstream events in biofilm forma-
tion or might otherwise impact epithelial cell cytotoxicity (data
not shown). We have termed this model of P. aeruginosa
growth on epithelial cells the “static coculture biofilm system.”

We next sought to determine whether the extended CFBE
cell viability afforded by arginine was sufficient to support bio-
film formation. We inoculated the static coculture biofilm sys-
tem with PA14/pSMC21 (plasmid pSMC21 expresses GFP
constitutively) (2). Fluorescence microscopy revealed clusters
of P. aeruginosa cells scattered across the epithelial cell mono-

FIG. 1. Arginine and tobramycin prevent bacterial killing of CFBE
epithelial cells. (A) An uninfected monolayer. (B and C) CFBE cell
monolayers 6 h after inoculation with PA14 in the absence (B) or
presence (C) of 0.4% arginine. (D) Intact CFBE cell monolayer after
8 h of biofilm development with arginine followed by 24 h of incuba-
tion with 1,000 �g/ml tobramycin. The tobramycin treatment did not
clear the bacteria, which typically persisted at approximately 103 to 104

CFU/well. The images were taken by phase-contrast microscopy and
are representative fields of view from several wells studied. Scale
bars � 120 �m. (E) Treatment of 5-h coculture biofilms with 1 �g/ml
tobramycin (Tb) for 2 h resulted in a small but significant reduction in
bacterial virulence toward the CFBE cells compared to untreated
samples. *, P � 0.05. (F) CFU determination of the biofilm cultures in
panel E revealed equal bacterial titers in tobramycin-treated and un-
treated biofilms. The difference between the 0-�g/ml tobramycin and
1-�g/ml tobramycin samples was not statistically significant. The error
bars indicate 1 standard deviation.
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layer within 6 to 8 h after inoculation (Fig. 2A). These clusters
appeared to be attached to the epithelial cells, and they exhib-
ited a mushroom-like morphology reminiscent of large P.
aeruginosa macrocolonies developed on abiotic surfaces (7,
40). This structured architecture differentiated these macro-
colonies from the “flat” biofilm phenotypes that P. aeruginosa
can also form (21). We also observed PA14 as planktonic
bacteria and in a variety of other biofilm stages, including
reversibly and irreversibly bound individual bacteria and mi-
crocolonies of various sizes (Fig. 2B and data not shown).

These morphological observations suggested that PA14 forms
biofilms on the CFBE cells. We next conducted additional exper-
iments to determine whether the clusters of P. aeruginosa dis-
played properties typical of biofilms. One of the key features of
bacterial biofilms is the production and secretion of an exo-
polysaccharide matrix that surrounds the biofilm bacteria (7). To
demonstrate the presence of a polysaccharide matrix around the
microcolony-like structures attached to the epithelial cells, we
stained the bacteria with calcofluor, a fluorescent dye that binds
to �(1-3) and �(1-4) polysaccharide linkages found in the biofilm
matrices produced by many microorganisms (52). As expected,
calcofluor stained these microcolonies (Fig. 2C).

To provide additional support for the view that the micro-
colonies on CFBE cells were biofilms, we inoculated CFBE cell
monolayers with PA14 strains carrying mutations in the flgK or
pilB gene, which encode components of flagella and the type
IV pilus, respectively (34). Mutations that disrupt the biogen-
esis of these organelles negatively impact biofilm formation on
abiotic surfaces (34). The type IV pilus is also an important

attachment factor for epithelial cell binding (48). After inocu-
lation in the static CFBE coculture system with the flgK and
pilB mutant strains, we assessed biofilm formation at 7 h by
determination of the numbers of bacterial CFU attached to the
epithelial cells. Similar to abiotic biofilm systems, the flgK and
pilB mutants exhibited a marked decrease in bacterial CFU
bound to the CFBE cells compared to wild-type PA14 (Fig.
2D). These findings underscore the similar requirements for
biofilm formation on biotic and abiotic surfaces.

Bacterial colonies on the CFBE cells were extremely resis-
tant to antibiotic treatment, another hallmark of biofilms. We
treated static CFBE/PA14 biofilms for 24 h with up to 1,000
�g/ml tobramycin, a concentration measured in the lungs of
CF patients (13). In this experiment, we measured 103 CFU/
well remaining on the cells after antibiotic treatment (data not
shown), suggesting that the minimum bactericidal concentra-
tion was greater than 1,000 �g/ml tobramycin. CFU counts
before the antibiotic treatment were comparable to those in
Fig. 2D (approximately 108 CFU/well). The antibiotic concen-
trations used during this treatment surpassed the minimum
bactericidal concentration of tobramycin for planktonic PA14
and for abiotically grown PA14 biofilms (8 �g/ml and 400
�g/ml, respectively), as measured in a previous study from our
group (32). We have also tested the antibiotic resistance of
CFBE-grown biofilms by adding tobramycin at early time
points in the presence and absence of arginine with no appar-
ent difference in tobramycin resistance. PA14 grown on CFBE
cells in the presence and absence of arginine displayed similar
high-level tobramycin resistance (data not shown). Visualiza-
tion of the epithelial monolayer after treatment of static
CFBE/PA14 biofilms for 24 h with up to 1,000 �g/ml tobra-
mycin showed that the CFBE cell monolayer was intact, and
the CFBE cells appeared similar to uninoculated epithelial
cells (Fig. 1D). Thus, even though 
103 CFU/well of viable
PA14 remained in the biofilm on the CBFE cells after tobra-
mycin treatment, the bacteria did not kill the epithelial cells for
at least 24 h.

The data above suggested that tobramycin treatment of P.
aeruginosa biofilms on CFBE cells results in a decrease in the
virulence of the microorganism toward the epithelial cells.
Alternatively, decreased killing of the epithelial cells might
have resulted from a lower number of bacteria. To distinguish
between these possibilities, we tested a range of tobramycin
concentrations for their effects on CFBE/PA14 biofilm CFU
and cytotoxicity. We found that incubation of CFBE/PA14
biofilms with 1 �g/ml tobramycin elicited a small but significant
decrease in bacterial cytotoxicity toward CFBE cells as mea-
sured by release of LDH from the epithelial cells (Fig. 1E) but
had no effect on the biofilm CFU (Fig. 1F). Tobramycin con-
centrations above 1 �g/ml resulted in a decrease in both cyto-
toxicity and biofilm CFU (data not shown). These results sug-
gest that tobramycin may exert two separable effects upon P.
aeruginosa biofilms on CFBE cells: a decrease in viable bacte-
ria and a decrease in bacterial virulence.

Microarray analysis of tobramycin-treated airway cells. The
preceding results suggested that tobramycin might reduce the
virulence of P. aeruginosa biofilms growing on CF-derived air-
way cells. Accordingly, microarray studies were conducted to
identify genes that regulate virulence in response to tobramy-
cin treatment. To accomplish this goal, we performed a mi-

FIG. 2. PA14 forms biofilm microcolonies on a CFBE epithelial
cell monolayer. (A and B) Incubation of CFBE cells with PA14/
pSMC21 (GFP) resulted in clusters of GFP-PA14 scattered across the
monolayer (A) that appeared as microcolonies bound to the surfaces
of the cells (B). Panels A and B are phase-contrast images overlaid
with the GFP channel. (C) Staining with calcofluor resulted in blue
fluorescence of the microcolonies, as seen in a phase-contrast image
overlaid with the blue channel. Scale bars � 120 �m (A) or 35 �m (B
and C). (D) CFBE cells were inoculated with wild-type PA14 or strains
carrying mutations in the flgK or pilB gene. Bacterial CFU determined
at 7 h postinfection revealed 10-fold reduction in bacterial popula-
tions on cells infected with the flgK or pilB mutant. *, P � 0.05
compared to PA14. The error bars indicate 1 standard deviation.
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croarray analysis of PA14 biofilms grown on CFBE cells
treated with tobramycin. While treatment with 1 �g/ml tobra-
mycin resulted in a significant decrease in bacterial cytotoxicity
(Fig. 1E), this change was small, and we suspected that many
transcriptional responses to tobramycin might be obscured by
this low antibiotic dose. We therefore chose to treat CFBE/
PA14 biofilms with 500 �g/ml tobramycin, and 30 min was
chosen for the treatment time to be able to capture the early
responses of PA14 biofilms to tobramycin. This concentration
of tobramycin was 50% of the minimum bactericidal concen-
tration for CFBE-grown biofilms (see above). Furthermore,
CFBE/PA14 biofilms displayed antibiotic resistance pheno-
types and epithelial cell viabilities when treated with 500 �g/ml
tobramycin at 24 h similar to those in the experiments with
1,000 �g/ml tobramycin treatment described above (Fig. 1D).

To generate RNA for microarray studies, PA14 biofilms
were grown on CFBE monolayers using the static system for
9 h. At that time, replicate samples were incubated in the
presence or absence of 500 �g/ml tobramycin for 30 min,
whereupon bacterial RNA was harvested and prepared for
microarray analysis as described in Materials and Methods.

The microarray study was performed with triplicate samples,
and a Bayesian analysis was used to provide a statistical assess-
ment of significance (19, 24, 28). We chose cutoffs of �2.0-fold
and an ln P value of �0.05. Overall, we found 338 bacterial
transcripts that were upregulated upon tobramycin treatment
and 500 transcripts that were downregulated (see Tables S3
and S4 in the supplemental material). Because tobramycin
reduced PA14 virulence toward CFBE cells (Fig. 1D), we pre-
dicted that virulence-related genes would be downregulated by
tobramycin. Most notably, we found that PQS biosynthesis was
highly downregulated (Table 1). We also observed a decrease
in transcript levels for phenazine synthesis (phnA, �15.3;
phnB, �7.2), hydrogen cyanide synthesis (hcnA, �2.6; hcnB,
�3.2; hcnC, �3.9), pyoverdine activity (pvdA, �4.2; pvdD,
�3.1; pvdE, �4.8; pvdS, �4.3; fpvA, �26.3), and a probable
phospholipase (PA3487, �3.0) (see Tables S3 and S4 in the
supplemental material). However, there were no changes in
the transcript levels of other known lipases or proteases. Three
transcripts related to type III secretion were downregulated
(pscE, �3.2; pscI, �2.6; and PA1692, �3.0), but no other type
III gene was significantly changed (see Tables S3 and S4 in the
supplemental material).

Intriguingly, we found very little change in known antibiotic
resistance-related genes. Transcript levels for a probable drug
efflux transporter gene (PA1541) were increased 2.9-fold (see
Table S3 in the supplemental material), but the efflux trans-
porter gene mexB was downregulated 2.4-fold and the mexR
repressor was upregulated 2.5-fold. Furthermore, we saw no
change in transcript levels for any other known or probable
antibiotic-related genes, including aph, bacA, cat, str, and other
mex genes (see Tables S3 and S4 in the supplemental material).
These results suggest that the antibiotic resistance of P. aerugi-
nosa biofilms on epithelial cells may involve the expression of
other, unknown factors.

One theory put forth to explain increased antibiotic resis-
tance of biofilms is the presence of specialized “persister” cells
(26, 44). While few genes associated with this persister pheno-
type have been identified, none of these genes, including glpD,

gpsA, and plsB (45), displayed any change in transcript level in
response to tobramycin in our study.

Despite modest changes in antibiotic and virulence gene
expression, several interesting trends arose from our microar-
ray analysis. For instance, several genes in the alginate regu-
latory cascade were highly upregulated by tobramycin (Table
1), including algU, mucA, and algZ (33, 36). However, there
was no significant change in the expression of the core alg
biosynthetic genes (e.g., algD), indicating that the increased
expression of alginate-regulatory genes we observed in our

TABLE 1. Selected genes stimulated or repressed by tobramycin in
CFBE/PA14 biofilmsa

Gene Fold
change Description

PQS
PA0996 �2.5 pqsA (biosynthesis of PQS)
PA0997 �19.5 pqsB (biosynthesis of PQS)
PA0998 �15.0 pqsC (biosynthesis of PQS)
PA0999 �10.1 pqsD (biosynthesis of PQS)
PA1000 �13.8 pqsE (biosynthesis of PQS)

Alginate
PA0762 �8.6 algU (sigma factor)
PA0763 �6.5 mucA (anti-sigma factor)
PA5262 �3.6 algZ (alginate biosynthesis protein)
PA5255 �2.8 algQ (alginate biosynthesis regulator)
PA5261 �2.8 algR (alginate biosynthesis regulator)
PA5253 �2.1 algP (alginate biosynthesis regulator)
PA0764 �2.0 mucB (alginate biosynthesis negative

regulator)

Iron
PA3531 �16.5 bfrB (bacterioferritin)
PA4764 �4.2 fur (ferric uptake regulation)
PA0362 �2.1 fdx1 (ferridoxin)
PA4131 �2.0 Probable iron-sulfur protein
PA3491 �2.0 Probable ferredoxin
PA5217 �2.3 Probable binding protein component

of ABC iron transporter
PA5216 �2.4 Probable permease of ABC iron

transporter
PA3812 �2.5 iscA (probable iron-binding protein)
PA3813 �2.8 iscU (probable iron-binding protein)
PA2399 �3.1 pvdD (pyoverdine synthetase)
PA3809 �3.4 fdx2 (ferridoxin)
PA2386 �4.2 pvdA (pyoverdine synthesis)
PA2426 �4.3 pvdS (sigma factor, iron responsive)
PA4231 �4.4 pchA (salicylate biosynthesis, pyochelin

biosynthesis)
PA2397 �4.8 pvdE (pyoverdine synthesis)
PA4225 �6.1 pchF (pyochelin synthetase)
PA4226 �7.7 pchE (pyochelin synthesis)
PA4228 �13.9 pchD (pyochelin synthesis)
PA4221 �25.3 fptA (pyochelin receptor precursor)
PA2398 �26.3 fpvA (ferripyoverdine receptor)
PA4229 �28.9 pchC (pyochelin synthesis)
PA4230 �29.9 pchB (salicylate biosynthesis, pyochelin

synthesis)

Magnesium
PA4635 �8.2 hypothetical MgtC protein
PA0913 �3.9 mgtE (magnesium transport)
PA4825 �2.8 mgtA (magnesium transport)

a The table shows the overall trends of several metabolic activities. Full mi-
croarray data can be found in the supplemental information.
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microarray might not result in a corresponding increase in
alginate production.

Finally, numerous genes related to the synthesis and export
of iron chelators were highly downregulated by tobramycin
treatment, including pchB, pchC, pchA, fptA, fpvA, and pvdD
(Table 1). Iron siderophores have been associated with the
virulence of a number of different bacterial species, and thus,
a reduction in the expression of these genes could account, at
least in part, for the observed decrease in virulence (27).

The impacts of tobramycin on gene expression differ in
planktonic cells, biofilms grown on abiotic surfaces, and bio-
films grown on airway cells. To determine the impact of to-
bramycin treatment on planktonic bacteria, we performed fur-
ther microarray analysis of planktonic P. aeruginosa treated
with a subinhibitory concentration of tobramycin. Exponential-
phase bacteria were treated with 5 �g/ml tobramycin for 30
min, and RNA was prepared for microarray analysis as
described in Materials and Methods. This tobramycin concen-
tration was chosen because it is approximately 50% of the
planktonic minimum bactericidal concentration for the micro-
organism (32), analogous to the tobramycin dose used in the
microarray studies of biofilm-grown bacteria described above.
This planktonic subinhibitory concentration did not affect bac-
terial CFU during the time course of the experiment (data not
shown). RNA from untreated planktonic cultures was used as
a control.

We observed that far fewer genes were regulated under
these conditions, with only 23 transcripts upregulated and 21
transcripts downregulated (see Tables S5 and S6 in the sup-
plemental material). Additionally, the magnitude of these
changes was much lower. The most highly upregulated gene
from the planktonic microarray data set (PA4762) was in-
creased only 3.6-fold, compared to the 37.5-fold increase ob-
served for PA5471 in the CFBE/PA14 biofilm microarray (see
Tables S3 and S5 in the supplemental material). Similarly, the
maximally downregulated gene in the planktonic microarray
(PA0284) was decreased 5.8-fold, compared to the maximum
decrease of 29.9-fold (PA4230) found in the biofilm microarray
(see Tables S4 snd S6 in the supplemental material). The
decreased number of genes regulated and the lower magnitude
of transcriptional changes seen in this planktonic data set may
be due to the relatively low level of antibiotic treatment (5
�g/ml tobramycin) compared with treatment of CFBE-grown
biofilms (500 �g/ml tobramycin). Many of the genes upregu-
lated in the planktonic microarray encode heat shock-related
proteins, such as grpE, hslU, and dnaK (see Table S5 in the
supplemental material). The downregulated genes included a
locus encoding sulfate binding and transport (PA0280 to
PA0283), as well as a gene cluster encoding a probable ABC
transport system (PA3441 to PA3446) (see Table S6 in the
supplemental material).

When we compared the response of CFBE/PA14 biofilms
treated with tobramycin to that of planktonic bacteria treated
with tobramycin, we found little similarity between the two
groups of data (Table 2; see Fig. S1 in the supplemental ma-
terial). There were only two genes upregulated and only five
genes downregulated under both conditions. Eight genes
showed opposite effects between planktonic and biofilm cul-
tures (upregulated in planktonic culture but downregulated in
biofilms). These results suggest that the bacteria in biofilms on

epithelial cells react very differently to tobramycin than their
planktonic P. aeruginosa counterparts.

Several years ago, Whiteley et al. published a microarray
study of P. aeruginosa biofilms on granite surfaces treated with
tobramycin (47). While this study reported transcriptional
changes in only 20 genes, a comparison of their results on an
abiotic surface with our CFBE/P. aeruginosa microarray results
revealed several differences in transcriptional profiles between
tobramycin-treated biofilms grown on abiotic surfaces and
CFBE cells (see Table S7 and Fig. S1 in the supplemental
material). Only four genes were upregulated in both data sets,
and we found no overlap among downregulated genes. On the
other hand, two of the tobramycin-upregulated genes on abi-
otic surfaces were downregulated in our study (the stress re-
sponse factor genes groES and dnaK). Similar differences were
seen when we compared the Whiteley et al. data with our
planktonic microarray data (see Table S7 and Fig. S1 in the
supplemental material). When we compared all three microar-
ray studies, we discovered that no genes were upregulated
under all conditions or downregulated under all conditions,
although two genes that were downregulated in CFBE/PA14
biofilms during tobramycin treatment were upregulated in
both abiotic biofilms and planktonic cultures during tobramy-
cin treatment (see Table S7 and Fig. S1 in the supplemental
material).

The differences we observed between our microarray data
set of tobramycin-regulated genes in CFBE/PA14 biofilms and
the microarray data of Whiteley et al. could be due to the very
different experimental conditions in these studies (such as dif-
ferent abiotic surfaces, different media, and different tobramy-
cin concentrations used). To address this issue, we assessed the
expression of a select set of genes from bacteria grown in a

TABLE 2. Comparison of biofilm and planktonic microarrays

Overlap Gene Description

CFBE up/planktonic
up

PA0320 Conserved hypothetical
protein

PA4205 Hypothetical protein

CFBE down/planktonic
down

PA0283 sbp (sulfate-binding protein)
PA0284 Hypothetical protein
PA2204 Probable component of ABC

transporter
PA3330 Probable short-chain

dehydrogenase
PA3931 Probable protease

CFBE down/planktonic
up

PA0779 Probable ATP-dependent
protease

PA1596 htpG (heat shock protein)
PA4385 groEL (chaperone-heat shock)
PA4386 groES (chaperone-heat shock)
PA4761 dnaK (chaperone-heat shock)
PA4762 grpE (heat shock protein)
PA5052 Hypothetical protein
PA5054 hslU (heat shock protein)

1428 ANDERSON ET AL. INFECT. IMMUN.



biofilm on an abiotic surface under conditions very similar to
those used for the CFBE biofilm microarray and planktonic
microarray experiments. PA14 biofilms were grown on a PVC
plastic surface (six-well tissue culture plates without CFBE
cells) for 24 h in MEM tissue culture medium with arginine
supplementation, resulting in a bacterial CFU similar to that of
CFBE/PA14 biofilms and planktonic PA14 populations used in
the microarray experiments described above. The abiotic bio-
films were treated for 30 min with 200 �g/ml tobramycin. This
concentration of tobramycin was analogous to that used for the
planktonic and CFBE-grown biofilms, that is, 50% of the min-
imum bactericidal concentration for abiotic PA14 biofilms
(32). Thirty minutes after treatment with the antibiotic, bac-
terial RNA was harvested as described in Materials and
Methods.

Using qRT-PCR, we showed that PA0913 (mgtE), PA4635
(mgtC), PA4326, and PA5470 were upregulated in abiotic-
grown biofilms in response to tobramycin treatment (see Fig.
S2 in the supplemental material). We also observed a down-
regulation in PA3330 and PA4221 (fptA) expression. These
tobramycin-induced changes are similar to those observed in
the microarray analysis of CFBE/PA14 biofilms (see Tables S3
and S4 in the supplemental material).

qRT-PCR analysis of abiotic biofilms also revealed an up-
regulation of PA4761 (dnaK) and no change in PA0996 (pqsA)
expression in abiotic biofilms in response to tobramycin (Fig.
3A and B), as was observed in the study by Whiteley et al. (47),
in contrast to the downregulation seen in the microarray anal-
ysis with both of these genes in CFBE/PA14 biofilms (see
Table S4 in the supplemental material). We confirmed the
downregulation of dnaK and pqsA expression in CFBE/PA14
biofilms by qRT-PCR analysis of tobramycin-treated CFBE/
PA14 biofilms (Fig. 3C and D). Thus, while it is evident that
similarities exist between the responses of biotic and abiotic P.

aeruginosa biofilms to tobramycin, clearly there are responses
unique to tobramycin-treated CFBE/PA14 biofilms, such as
pqsA transcriptional downregulation.

Mutational analysis. We next created isogenic deletion mu-
tants in a number of genes in PA14 that were upregulated in
the CFBE/PA14 biofilms upon tobramycin treatment. We
tested these mutants for biofilm formation on CFBE cells (by
CFU count), antibiotic sensitivity of the CFBE-grown biofilms,
and virulence toward CFBE cells. While most of these deletion
mutants displayed wild-type phenotypes, we discovered that a
mutant in the gene PA0913 (mgtE) showed increased virulence
on epithelial cells (see Table S8 in the supplemental material).
When inoculated into culture with CFBE cells for 8 h, the
PA0913 mutant damaged the CFBE monolayer, whereas
PA14-infected monolayers remained intact at this time point
(Fig. 4A).

We quantified this virulence effect by measuring the release
of LDH from the epithelial cells to obtain a measure of the
cytotoxicity of the bacteria. Over time, P. aeruginosa elicited a
steady increase in the amount of LDH released from CFBE
cells (see Fig. S3A in the supplemental material), and this
experiment allowed us to choose the optimal time points at
which to assess the cytotoxicity of wild-type and mutant strains
in our system. When we compared LDH release from CFBE
cells incubated with wild-type PA14 or with the PA0913 mu-
tant, we discovered much greater cytotoxicity of the PA0913
mutant compared to wild-type PA14 (Fig. 4B). Complementa-
tion with the full-length gene on a multicopy plasmid attenu-
ated the cytotoxicity of this mutant strain to a level indistin-
guishable from that of the wild type, and these effects were
seen when PA0913 expression was driven from its natural
promoter or a constitutive promoter (Fig. 4B and data not
shown).

As mentioned above, PA0913 is a probable homolog of
mgtE, encoding the magnesium transporter MgtE. Therefore,
we tested isogenic deletion mutants in other predicted magne-
sium transporters in PA14, but we did not observe any viru-
lence phenotypes, except with double and triple mutants in-
volving mutation of PA0913 in combination with mutation of
other putative magnesium transporter genes (see Table S8 in
the supplemental material).

Varying biofilm biomass on epithelial cells may alter cyto-
toxicity due to changing numbers of bacteria. For instance, we
noticed that decreased biofilm formation exhibited by flgK and
pilB mutants (Fig. 2D) also resulted in significantly diminished
cytotoxicity as determined by LDH release from CFBE cell
monolayers (see Fig. S3B in the supplemental material). To
investigate biofilm formation by the PA0913 mutant, we mea-
sured bacterial CFU of the biofilm 5 h after inoculation, the
same time at which LDH measurements were made. We found
no difference in numbers of bacteria between the wild type and
the PA0913 mutant biofilms (Fig. 4C), indicating that the cy-
totoxicity of the PA0913 mutant was increased independently
of the bacterial numbers. We also observed little to no differ-
ence in the formation of biofilms between the wild type and the
PA0913 mutant over time using a 96-well PVC plastic plate as
an abiotic surface for biofilm formation (Fig. 4D).

The PA0913 (mgtE) mutant requires the T3SS for increased
virulence. As mentioned above, expression of the T3SS of P.
aeruginosa contributes to the cytotoxicity of epithelial cells.

FIG. 3. Abiotic biofilms respond differently to tobramycin than bio-
films on CFBE cells. Quantitative RT-PCR revealed that PA14 bio-
films on PVC plastic plates demonstrated an increase in transcriptional
expression of dnaK (A) but no change in pqsA expression (B) in
response to tobramycin (Tb) treatment. On the other hand, tobramy-
cin treatment of CFBE/PA14 biofilms resulted in a decrease in both
dnaK (C) and pqsA (D) expression, as determined by qRT-PCR. *, P �
0.05. The error bars indicate 1 standard deviation.
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The T3SS is also an important virulence factor in lung patho-
genesis (31, 42), and considering the contact between P. aerugi-
nosa and CFBE cells in our assays, it seemed likely that T3SS
might be involved in biofilm-dependent cytotoxicity. To inves-
tigate the possible involvement of the T3SS in cytotoxicity, we
inoculated CFBE cells with a �pscC deletion mutant, which is
defective for the T3SS (17, 47a). As expected, this �pscC strain
exhibited significantly attenuated cytotoxicity compared to the
wild type in terms of LDH released from the CFBE epithelial
cell monolayer (Fig. 5A). Intriguingly, a double deletion mu-
tant in both pscC and PA0913 demonstrated low-level cytotox-
icity, similar to the �pscC strain. Furthermore, release of LDH
from cells incubated with either the �pscC strain or the double
mutant was significantly abrogated compared to the single
�PA0913 mutant (Fig. 5A), suggesting that the increased vir-
ulence phenotype of the PA0913 mutant requires a functional
T3SS. In support of this hypothesis, we measured PA0913 gene
expression in wild-type and �pscC biofilms by qRT-PCR, and
we found a small but significant decrease in PA0913 transcript
levels in the �pscC mutant (the relative expression level for
�pscC was 0.104 � 0.008 compared to 0.126 � 0.015 for PA14;
P � 0.05). On the other hand, qRT-PCR analysis of wild-type
and �PA0913 biofilms revealed no difference in transcript lev-
els of pcrV (PA1706, encoding a component of T3SS) or of
exoT (PA0044, encoding a T3SS-secreted effector protein)
(data not shown). However, we did observe a slight but signif-
icant increase in the transcript levels of pcrH (PA1707, encod-
ing a component of T3SS; relative expression in �PA0913,
14.7 � 2.9 compared to 11.8 � 2.3 for the wild type; P � 0.05).

As a control experiment, we inoculated wild-type or mutant
bacteria into MEM tissue culture medium in a Transwell cup

FIG. 4. The PA0913 (mgtE) gene affects virulence on CFBE epithelial cells. (A) Microscopic analysis revealed that monolayers infected with
an isogenic deletion mutant in the PA0913 gene (right) were destroyed more quickly than monolayers infected with wild-type PA14 (left) at 8 h
postinoculation. Scale bar � 120 �m. (B) The cytotoxicity of the �PA0913 mutant on the CFBE cells was analyzed at 5 h, as described in Materials
and Methods. The �PA0913 mutant was significantly more cytotoxic than PA14 (*, P � 0.05), and this effect could be rescued by complementation
with the full-length gene in trans (pPA0913). pMQ72 is the empty vector control. The error bars indicate 1 standard deviation. (C) Determination
of the number of CFU in the biofilms on the CFBE cells demonstrated that a PA0913 isogenic deletion mutant developed bacterial CFU at 5 h
postinoculation similar to that for wild-type PA14. (D) Wild-type PA14 and the �PA0913 mutant displayed similar biofilm formation kinetics on
PVC plastic. Black diamonds, PA14; gray triangles, �PA0913.

FIG. 5. Roles of T3SS and secreted virulence factors in the PA0913
(mgtE) mutant phenotype. (A) Mutation of PA0913 in the type III
secretion-defective �pscC mutant background eliminates the cytotox-
icity observed for the single �PA0913 strain. This cytotoxicity of the
�PA0913 �pscC double mutant is similar to that of the single �pscC
mutant. *, P � 0.05 compared to wild-type PA14; #, P � 0.05 com-
pared to PA14 and to �PA0913. The error bars indicate 1 standard
deviation. (B and C) We measured pyoverdine (B) and pyocyanin
(C) secreted by PA14 and the �PA0913 mutant in overnight cultures
using colorimetric assays, as described in Materials and Methods.
Slight but significant decreases were seen in pyocyanin and pyoverdine
production in the �PA0913 (mgtE) mutant. *, P � 0.05.
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suspended above the epithelial cells. In this assay, the Trans-
well membrane prevented direct contact between the bacteria
and the epithelial cells, but the bacterial supernatants (and
hence, any secreted factors) could freely diffuse across the
Transwell membrane and interact with the monolayer. Simi-
larly, low-molecular-weight epithelial cell products could
diffuse across the Transwell and stimulate bacterial gene ex-
pression. We measured the LDH released from Transwell-
inoculated coculture and found essentially no cytotoxicity with
the wild type or the mutants within the time frame of the
experiment (data not shown). Thus, virulence effects observed
with the PA0913 mutant appear to largely require contact-
dependent mechanisms, such as the T3SS.

Mutating the PA0913 (mgtE) gene alters pyoverdine and
pyocyanin production. As further controls, we also tested the
levels of known secreted factors in wild-type and PA0913 mu-
tant strains. Using spectrophotometric assays (see Materials
and Methods), we measured pyoverdine and pyocyanin levels
secreted in overnight cultures. Mutation of PA0913 resulted in
a slight but significant decrease in the production of pyover-
dine (Fig. 5B) and pyocyanin (Fig. 5C). We found no differ-
ences in protease and lipase expression between wild-type and
mutant strains (data not shown), indicating that mutation of
PA0913 did not have broad effects on the production of se-
creted virulence factors.

Regulation of the PA0913 gene by tobramycin. Our microar-
ray analysis of CFBE/PA14 biofilms treated with tobramycin
indicated that the antibiotic stimulates increased expression of
the PA0913 gene (see Table S3 in the supplemental material).
However, measurement of the cytotoxicity of the PA0913 mu-
tant, as discussed above, was carried out in the absence of
tobramycin, suggesting that regulation of the gene is complex.
To begin to investigate the regulation of the PA0913 gene, we
performed semiquantitative RT-PCR on RNA isolated from
CFBE/PA14 biofilms treated with tobramycin for 30 min. We
found that tobramycin treatment led to a dramatic increase in
the levels of the PA0913 transcript compared to untreated
biofilms (Fig. 6A, left), increasing transcript levels to approx-
imately those observed in planktonic-culture-grown cells (see
below). This result was confirmed by qRT-PCR analysis, re-
vealing a 38-fold (�4.0 standard deviation) increase in the
transcriptional levels of PA0913 in CFBE/PA14 biofilm treated
with tobramycin (Fig. 6B). Importantly, low-level expression of

the PA0913 gene was observed in the absence of antibiotic
treatment. This basal expression of PA0913 is likely to account,
at least in part, for the virulence effects seen with biofilms of
wild-type P. aeruginosa versus the PA0913 mutant in coculture
biofilms (Fig. 4).

We next tested whether a similar tobramycin effect on
PA0913 gene expression could be produced in planktonic cul-
tures of PA14. Exponential-phase cultures were treated with a
subinhibitory tobramycin concentration for 30 min, and we
measured RNA levels of the PA0913 transcript by RT-PCR, as
described above. Contrary to the biofilm phenotype observed
above, high-level expression of the gene was observed in un-
treated planktonic cultures (Fig. 6A, right), and tobramycin
had minimal effects upon the transcript levels of the gene. The
fbp gene was used as a constitutive control in these reactions,
and its transcript level remained unchanged regardless of ex-
perimental conditions.

DISCUSSION

We developed a static coculture tissue culture system in
which P. aeruginosa biofilms form directly on human CF-de-
rived airway cells in vitro. Some studies have suggested that P.
aeruginosa initiates biofilm formation within the thick mucus
layer of the CF airways (14). While P. aeruginosa biofilm for-
mation may indeed occur in this mucus layer, it is also known
that P. aeruginosa can interact with and bind to the epithelial
cell surface of the lung, especially in the early stages of lung
colonization (15, 31). Our study demonstrates that bacterial
binding to the epithelial surface can lead to growth of biofilm
microcolonies on the epithelial cells in culture (Fig. 2). The
biofilms that formed on CFBE cells appeared similar to struc-
tured, mushroom-like biofilms formed under certain condi-
tions on abiotic surfaces, including glass and mucin (21). The
bacteria were bound to a surface (CFBE cells), were encased in
a polysaccharide matrix (Fig. 2C), required factors necessary
for abiotic-grown biofilms (Fig. 2D), and were extremely resis-
tant to the antibiotic tobramycin. Our coculture biofilm model,
therefore, may be useful for dissecting the early stages of the
intricate relationship between P. aeruginosa and the CF airway
epithelium.

Using our coculture biofilm model, we have discovered two
conditions that influence bacterial virulence: arginine supple-

FIG. 6. Tobramycin stimulates expression of the PA0913 (mgtE) gene in biofilms on CFBE cells. (A) Semiquantitative RT-PCR demonstrated
that tobramycin exposure led to an increase in PA0913 transcript levels in CFBE/PA14 biofilms (left) but not in planktonic cultures (right). fbp
is a constitutively expressed control gene. Tb, tobramycin; � and � indicate that cDNA was prepared from untreated samples or tobramycin-
treated samples, respectively. (B) qRT-PCR revealed a 38.3-fold enhancement of PA0913 gene transcription in PA14 biofilms on CFBE cells
treated with 500 �g/ml tobramycin (�Tb). *, P � 0.05. The error bars indicate 1 standard deviation.
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mentation and tobramycin treatment (Fig. 1). In regard to
arginine, it is presently unclear why this amino acid inhibits
bacterial virulence (Fig. 1) and promotes biofilm formation on
both biotic and abiotic surfaces. Also unknown is whether
arginine reduces virulence gene expression or upregulates bio-
film formation pathways, although several recent studies sug-
gest that these events may be linked (11). It is known that P.
aeruginosa can metabolize arginine via several different path-
ways (29). Downstream signaling through these metabolic net-
works might influence the expression of virulence factors. On
the other hand, arginine may act independently of known
mechanisms. Furthermore, it is possible that arginine might
affect the ability of the host cells to resist bacterial toxins and
virulence factors. In any case, it is clear that arginine inhibits
epithelial cell death sufficiently to allow biofilms to form, at
least in the short term (Fig. 2). The role of arginine in biofilm
formation and virulence is the subject of ongoing studies.

Our data indicate that tobramycin treatment of the biofilms
likely impacts virulence in two ways: (i) by decreasing bacterial
viability and (ii) by decreasing virulence. Although this de-
crease in virulence might be a result of a decreased number of
bacteria after tobramycin treatment, we identified a tobramy-
cin concentration (1 �g/ml) that inhibits virulence without
affecting the number of biofilm CFU (Fig. 1E and F). Thus, we
were able to separate these two phenotypes to demonstrate
that tobramycin can specifically inhibit the virulence of P.
aeruginosa biofilms on CF-derived airway cells in culture.

To identify tobramycin-regulated virulence factors, we ex-
posed biofilms grown on airway cells to the antibiotic and
monitored the response via microarray. To our knowledge, this
is the first example of examining the gene expression of P.
aeruginosa grown in biofilms on airway cells. In the wild-type
strain, treatment of biofilms grown on CFBE epithelial cells
with tobramycin induced the expression of a number of genes,
including those that code for the AlgU/MucA/AlgZ regulators
and PA0913, a predicted homolog of the magnesium trans-
porter encoded by mgtE (Fig. 6). While there was no evidence
that tobramycin positively regulated the genes required for
alginate biosynthesis, it is intriguing to speculate that tobramy-
cin treatment of P. aeruginosa infections in the CF lung might
increase production of non-alginate-related genes regulated by
the AlgU/MucA/AlgZ regulatory system.

In regard to the predicted mgtE homolog PA0913, because
mutating the PA0913 gene results in increased virulence but
does not impact the biofilms formed on airway cells (Fig. 4), we
infer that the role of this gene and its product might be the
down-modulation of virulence when bacteria are growing on
airway cells in a biofilm. Consistent with this idea, treatment of
the biofilm with tobramycin both increased PA0913 expression
and decreased virulence. Given that the PA0913 gene codes
for a putative magnesium transporter, we postulate that mag-
nesium homeostasis might be important in the interaction be-
tween P. aeruginosa and the host. MEM contains 0.812 mM
Mg2�, and it would be interesting to investigate the effects of
altering the magnesium concentration on biofilm formation
and virulence. Interestingly, our genetic studies indicate that
increased virulence of PA0913 requires the T3SS, although the
relationship between PA0913 and the secretion system is un-
clear. It is important to note that we performed functional
studies on just a small number of the genes that were differ-

entially expressed upon tobramycin treatment of the biofilms.
Therefore, other genes besides PA0913 may participate in vir-
ulence, biofilm formation, or antibiotic resistance in the con-
text of biofilms on airway cells.

Tissue culture systems are often used to investigate host/
pathogen interactions in place of suitable animal models. In-
triguingly, there have been a few studies demonstrating bacte-
rial biofilm formation on cultured epithelial cells, including
studies of Haemophilus influenzae and Mycobacterium avium
biofilm formation on cultured human airway cells and Salmo-
nella enterica biofilm formation on HEp-2 liver cells (3, 46, 50).
While many researchers have looked at acute interactions of
planktonic P. aeruginosa with cultured cells in vitro, to our
knowledge, P. aeruginosa biofilm formation on epithelial cells
has not been demonstrated in in vitro systems. Frisk et al. have
reported interactions between P. aeruginosa and primary nor-
mal human airway epithelial cells grown as polarized mono-
layers on transwell inserts in vitro, and they observed these
interactions up to 16 h after inoculation (10). However, no
mention was made of biofilm formation, and the images pre-
sented depict individually binding bacteria. Considering our
results, it is unclear why microcolony structures were not ob-
served in the Frisk et al. study, although they used a different
bacterial strain and grew epithelial cells on Transwell supports
instead of on the well bottom, as in our study. Intriguingly,
these researchers used normal airway cells as opposed to the
�F508 homozygous cell line that we used here, pointing to a
possible difference in the ability of P. aeruginosa to form bio-
films on airway cells depending upon CFTR status. Current
studies in our laboratories are investigating the formation of P.
aeruginosa biofilms on other epithelial cell lines.

The different responses we observed between planktonic
bacteria, CFBE/PA14 biofilms, and abiotic biofilms suggest
physiological differences in P. aeruginosa depending upon en-
vironmental conditions (Tables 1 and 2; see Table S3 to S7 in
the supplemental material). Similar to previous findings (1, 7,
47, 50), our results indicate that planktonic P. aeruginosa and
biofilm P. aeruginosa populations are quite distinct from each
other. Most intriguingly, the surface upon which a biofilm
forms appears to influence responses to antibiotics. Taken
together, our analysis of these three microarray experiments
suggests that biofilm-grown P. aeruginosa reacts very differently
to tobramycin than planktonic P. aeruginosa. While there are
several experimental differences between our CFBE biofilm
microarray study and the abiotic biofilm microarray analysis
published by Whiteley et al., our analysis also indicates that P.
aeruginosa biofilms behave differently when formed on CFBE
epithelial cells versus an abiotic surface (see Table S7 in the
supplemental material). Furthermore, our results suggest that
the use of our coculture biofilm system can reveal novel viru-
lence factors that studies of abiotic biofilms may have missed.
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