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Multiple studies have established that the ability of CD8™ T cells to act as cytolytic effectors and produce
gamma interferon is important in mediating resistance to the intracellular parasite Toxoplasma gondii. To
better understand the generation of the antigen-specific CD8* T-cell responses induced by 7. gondii, mice were
immunized with replication-deficient parasites that express the model antigen ovalbumin (OVA). Class I
tetramers specific for SIINFEKL were used to track the OVA-specific endogenous CD8* T cells. The peak
CD8™ T-cell response was found at day 10 postimmunization, after which the frequency and numbers of
antigen-specific cells declined. Unexpectedly, replication-deficient parasites were found to induce antigen-
specific cells with faster kinetics than replicating parasites. The generation of optimal numbers of antigen-
specific CD8* effector T cells was found to require CD4™ T-cell help. At 7 days following immunization,
antigen-specific cells were found to be CD62L'", KLRG1™", and CD127"°", and they maintained this phenotype
for more than 70 days. Antigen-specific CD8" effector T cells in immunized mice exhibited potent perforin-
dependent OVA-specific cytolytic activity in vivo. Perforin-dependent cytolysis appeared to be the major
cytolytic mechanism; however, a perforin-independent pathway that was not mediated via Fas-FasL was also
detected. This study provides further insight into vaccine-induced cytotoxic T-lymphocyte responses that
correlate with protective immunity to 7. gondii and identifies a critical role for CD4™ T cells in the generation

of protective CD8™ T-cell responses.

The intracellular parasite Toxoplasma gondii infects a wide
range of mammalian hosts and cell types and is an important
opportunistic pathogen in humans (25). Early following infec-
tion, the proinflammatory cytokine interleukin-12 (IL-12) is
produced by antigen-presenting cells, including macrophages
and dendritic cells, which induce NK cell production of gamma
interferon (IFN-v). This environment allows for the develop-
ment of a Thl-polarized CD4" and CD8" adaptive T-cell
response dominated by IFN-y, the maintenance of which is
critical for resistance to chronic toxoplasmosis (17). An addi-
tional function of CD8" T cells in mediating resistance to
intracellular pathogens is their capacity to be cytolytic, and
perforin-mediated cytolytic activity contributes to the control
of chronic toxoplasmosis (12). Consistent with this model, im-
munocompromised patients with suppressed T-cell numbers or
functionality can experience reactivation of latent 7. gondii
(25). Furthermore, multiple studies using murine models have
established the critical role of CD4" and CD8" T cells in
protective immunity to 7. gondii during primary and secondary
challenges (16, 17, 34).

Understanding how the adaptive immune response to 7.
gondii is generated will be helpful for the development of an
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effective vaccine. Numerous 7. gondii protein or DNA vaccines
have been tested in mice and have provided various levels of
protection (31, 37). Further, a vaccine against ovine toxoplas-
mosis is commercially available, but the strain is not suited for
human use because, although it is attenuated, it can still cause
disease in vaccinated animals (5). Perhaps the most effective
protection has been provided by infection with an attenuated
temperature-sensitive strain of parasite, called ts-4 (17, 34);
however, this strain possesses the ability to replicate and cause
disease in immunodeficient as well as immunocompetent hosts
(30). One possible solution to this safety issue is to genetically
modify parasites so that they are unable to replicate in vivo and
would be incapable of reverting to a virulent phenotype. One
such clone, cps1-1, was generated by knocking out a regulatory
enzyme of the de novo pyrimidine biosynthesis pathway, car-
bamoyl phosphate synthetase II (13). This mutation renders
the parasites unable to replicate in the absence of exogenous
uracil, and the cps1-1 strain is nonvirulent in mice. Thus, mice
that lack IFN-y survive infection with this organism. Further,
immunization protects wild-type (WT) mice following chal-
lenge with the virulent RH strain (13). At the time that these
studies were initiated, little was known about the nature of the
adaptive immune response that these parasites induced.

The studies presented here examine the kinetics, phenotype,
and function of endogenous antigen-specific CD8* effector T
cells generated in response to the cpsl-1 parasite. Several
reports have demonstrated the utility of using model antigens
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to study antigen-specific responses to 7. gondii (24, 29); in
addition, previous work demonstrated that secreted but not
cytosolic antigens induce an effective adaptive immune re-
sponse (24, 29). Consequently, to allow the tracking of an
endogenous CD8™" T-cell response, the cpsl-1 parasites were
engineered to express a secreted form of the model antigen
ovalbumin (CPS-OVA). The studies presented here show that
the protection induced by immunization with CPS-OVA re-
quired T cells at the time of challenge. The peak of CD8"
T-cell expansion to CPS-OVA was seen at day 10 in both the
site of infection and secondary lymphoid tissue. Unexpectedly,
the replication-deficient parasites induced an OV A-specific re-
sponse which was comparable in magnitude to that observed
using a replicating parasite, Pru-OVA, but which actually de-
veloped more rapidly. Optimal generation of the antigen-spe-
cific cells in response to CPS-OVA required the presence of
CD4™" T cells at the time of immunization. Nonetheless, the
CD8" T cells that were generated in the absence of CD4™ T-cell
help were able to produce IFN-y and were cytolytic. CD4 help
also was critical for the upregulation of the killer-like lectin re-
ceptor G1 (KLRG1), a marker associated with an effector phe-
notype (20, 35). Cytolytic activity was mediated mainly via a per-
forin-dependent pathway, while Fas-FasL interactions were not
required. This work provides some of the first data regarding the
phenotype and function of antigen-specific cells induced by a
nonreplicating strain of 7. gondii. The findings presented here
suggest that an effective vaccine targeting cell-mediated immunity
should engage both CD4™ and CD8™ T-cell subsets.

MATERIALS AND METHODS

Mice and infections. C57BL/6, C57BL/6-PrfI™/5%/J (22), and B6.MRL-
Fas™"/J mice (1) were purchased from Jackson Laboratory (Bar Harbor, ME).
B6.SJL-Prprc?/BoyAiTac (CD45.1) mice were purchased from Taconic. For de-
pletion of CD4" or CD8™ T cells, mice were injected twice during the week prior
to immunization with 0.5 mg anti-CD4 (GK1.5), anti-CD8 (2.43), or control
antibody (rat immunoglobulin G2b). Mice were maintained under specific-
pathogen-free conditions, and all animal work was done in accordance with the
Institutional Animal Care and Use Guidelines of the University of Pennsylvania.
For all experiments using CPS-OVA and Pru-OVA, mice were injected intra-
peritoneally with 10° parasites. For challenge experiments, mice were given 10°
RH parental or RH-OVA (RH expressing secreted OVA) tachyzoites (29).
Tachyzoites were grown in human foreskin fibroblast monolayers in Dulbecco
modified Eagle medium containing 1% (CPS and RH parasites) or 10% (Pru
parasites) fetal calf serum and 1% penicillin-streptomycin. CPS parasites were
cultured in medium containing 0.2 mM uracil, and OVA-transgenic parasites
were maintained in medium containing 20 pM chloramphenicol.

In vitro T-cell responses. Spleen cells, lymph node cells, and peritoneal exu-
date cells (PECs) were harvested and dissociated into single-cell suspension in
complete RPMI 1640 (Gibco/Invitrogen, Carlsbad, CA) containing 10% heat-
inactivated fetal calf serum, 10 U/ml penicillin, 100 wg/ml streptomycin, 2 mM
glutamine, 25 mM HEPES, 0.1 mM nonessential amino acids, and 50 pM
2-mercaptoethanol. Spleen and lymph node cells (5 X 10°/well) and PECs (10%/
well) were plated out in 96-well round-bottom plates (Costar, Carlsbad, CA) and
cultured to assess cytokine production. Cells were restimulated with anti-CD3/
CD28 (1 pg/ml each), soluble Toxoplasma antigen (25 pg/ml), 500 pwg/ml OVA
(Worthington Biochemical Corporation, Lakewood, NJ), or 1 pug/ml SIINFEKL
peptide (CHI Scientific, Maynard, MA). Supernatants were removed after 40 h
and assayed for the production of IFN-y by enzyme-linked immunosorbent assay.

Flow cytometry. For identification of OV A-specific T-cell responses, single-cell
suspensions were washed in fluorescence-activated cell sorter buffer (phosphate-
buffered saline, 2 mM EDTA, and 2% bovine serum albumin) and incubated for
15 to 20 min with Fc block (fluorescence-activated cell sorter buffer containing 1
png/ml 2.4G2 from BD Pharmingen and 1 wg/ml rat and mouse immunoglobulin
G from Caltag/Invitrogen). Cells were stained with OTI-SIINFEKL tetramer
conjugated to phycoerythrin (PE) or allophycocyanin (APC) (from Beckman
Coulter or a generous gift from the Wherry lab at Wistar Institute) for 25 min at
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room temperature, washed once, and then stained for other surface markers for
15 min at 4°C. The following monoclonal antibodies were used: CD8 (conjugated
to fluorescein isothiocyanate, peridinin chlorophyll protein, or APC), CD45.1-
PE, CD127-biotin, CD122-biotin, and CD62L-APC (BD Biosciences); tumor
necrosis factor alpha-APC, IFN-y-APC, IFN-y-PE, KLRG1-APC, and strepta-
vidin-APC (eBioscience, San Diego, CA); and anti-human granzyme B-APC
(Caltag, Carlsbad, CA).

For intracellular cytokine analysis, splenocytes or PECs were incubated (with
cell and antigen concentrations as noted above) for 5.5 h total, with the addition
of 10 pg/ml brefeldin A (Sigma) for the final 4 h. Cells were first stained for
surface markers, followed by fixation overnight with 2% paraformaldehyde
(Electron Microscopy Sciences). Cells were permeabilized with 0.1% saponin
and then stained for intracellular cytokines for 1 h at 4°C. Flow cytometry
samples were collected on a FACSCalibur or FACSCanto machine (BD) and
analyzed with FlowJo software (Tree Star Inc. Ashland, OR).

In vivo CTL assay. Cytolytic activity was assessed using the in vivo cytotoxic
T-lymphocyte (CTL) assay, modified slightly from previous protocols (3). Briefly,
spleen and lymph node cells from CD45.1 mice were pooled and pulsed with 1
pg/ml OTI peptide (CHI Scientific) for 1 h at 37°C. Cells were washed exten-
sively in phosphate-buffered saline, labeled with 5(6)-carboxyfluorescein diac-
etate N-succinimidyl ester (Molecular Probes/Invitrogen) at a concentration of 5
pM (pulsed with OTT peptide) or 0.1 pM (unpulsed), and then counted and
resuspended at a 1:1 ratio. A total of 6 X 10° cells were then transferred
intravenously to anesthetized recipient mice. Mice were sacrificed 4 h later, and
spleens were analyzed for specific lysis of the peptide-pulsed population by gating
on CD45.1" donor cells. Specific lysis was calculated as described previously (3).

Detection of parasite DNA. Tissue samples were taken from spleen, liver, and
peritoneal exudate at various time points following immunization, and DNA was
extracted using the High Pure PCR template preparation kit (Roche). For
measurement of parasite burden, the 35-fold repetitive 7. gondii B1 gene was
amplified by real-time PCR with SYBR green PCR master mix (Applied Bio-
systems, Foster City, CA) in an AB7500 fast real-time PCR machine (Applied
Biosystems) using published conditions (36).

Statistics. Absolute numbers and frequencies of tetramer-positive cells were
statistically analyzed using a Student ¢ test. Where appropriate, data are shown
as means = standard deviations.

RESULTS

T cells are required for CPS-OVA-induced protective immu-
nity. Earlier work demonstrated that cpsl-1 parasites could
provide protective immunity to challenge with the virulent RH
strain of 7. gondii (13). However, these studies did not provide
an analysis of the adaptive immune response to immunization
or indicate which cell types were important for protection. In
order to define which T-cell subsets were required for CPS-
induced protective immunity, mice were injected intraperito-
neally with a single dose of 10° CPS parasites that expressed
the model antigen OVA and then challenged 30 days later.
Similar to what was seen previously with the parental (non-
OVA-expressing) strain, unimmunized mice succumbed to
RH-OVA infection by day 12, while mice immunized with
CPS-OVA survived this challenge (Fig. 1). One week prior to
RH-OVA challenge, immunized mice were depleted of either
CD4" or CD8™ T cells. As shown in Fig. 1, depletion of CD8™
T cells resulted in increased susceptibility to RH-OVA chal-
lenge. In contrast, while there was some variation between
experiments, CD4 " depletion had only a modest effect on the
survival of challenged mice. Thus, in this model of immuniza-
tion with a single dose of 10° CPS-OVA parasites, CD8* T
cells appeared to be the most important subset required for
protection following a lethal RH-OVA challenge. It is also
worth noting that CPS-OVA immunization was also able to
provide resistance to challenge with the parental RH strain
(Fig. 1), indicating that CPS-OVA can induce a protective
polyclonal response to 7. gondii.
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FIG. 1. Immunization with CPS-OVA provides resistance to re-
challenge. Mice immunized intraperitoneally with 10> CPS-OVA par-
asites or naive control B6 mice were challenged with 1,000 RH-OVA
parasites at 30 days following immunization, and survival was assessed.
Mice were depleted of CD4" or CD8" T cells 1 week prior to RH-
OVA challenge. Mice immunized with CPS-OVA and challenged with
the RH parental strain were also protected. Combined results from
four experiments with four or five mice per group, except for RH
challenge group (n = 9 from two similar experiments), are shown.

Immunization with a replication-deficient parasite induces
a robust endogenous CD8* T-cell response and upregulation
of activation markers. Because the parasite used in these ex-
periments expressed the model antigen OVA, a robust endog-
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enous CD8" T-cell response that could be tracked using an
OVA-specific class I tetramer was induced (Fig. 2A [day 7 data
are shown]). These experiments revealed that OVA-specific
cells could be readily detected in the spleen as early as 5 days
following immunization (Fig. 2B). Analysis of the kinetics in-
dicated that the peak of this response occurred at 10 days
postinfection, after which the response declined, though low
frequencies of OVA-specific cells were maintained (Fig. 2B,
top panel). A similar pattern of expansion and contraction of
OVA-specific CD8" T cells was also seen in the PECs, the site
of infection (Fig. 2B, bottom panel). In both the spleen cells
and PECs, the total number of OVA-specific CD8" T cells
followed a similar pattern of expansion and contraction (data
not shown). Splenocytes and PECs were stimulated directly ex
vivo with OTI peptide for 5 h, revealing antigen-specific IFN-y
production following intracellular cytokine staining (Fig. 2C,
day 7). Further, antigen-specific IFN-y production was de-
tected in the supernatant following a 40-hour restimulation of
splenocytes with OTI peptide, whole OVA protein, or soluble
Toxoplasma antigens (Fig. 2D).

To examine the expression of phenotypic markers associated
with activation and effector capacity, cells were stained directly
ex vivo from the spleen and peritoneal exudate for tetramer
binding as well as phenotypic markers, including CD62L,
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A -
0.26 0.23
% media
3.78 18.7 oTl
peptide

iy
z
™

30

€25
2

‘;20
£

€15
>

z 10
™

5

0

Med. OTI OVA STAg

FIG. 2. Endogenous OVA-specific CD8* T-cell responses can be detected following immunization with CPS-OVA. (A) Tetramer-positive cells
following immunization with CPS-OVA on day 7 (spleen). Numbers indicate the frequency of live CD3* CD8™ cells that are tetramer positive.
(B) Kinetics of antigen-specific response in spleen cells and PECs, showing frequency (out of CD3" CD8" gated cells) of OVA-specific CD8" T
cells over time following immunization. Data points represent mean values * standard deviations. (C) Spleen cells and PECs restimulated ex vivo
for 5 h with OTI peptide and stained for intracellular IFN-y, gated on CD8" lymphocytes. (D) IFN-y production by splenocytes was determined
by enzyme-linked immunosorbent assay following a 40-h incubation with OTI peptide, OVA protein, or soluble Toxoplasma antigen (STAg)
(average + standard deviation). Representative data from one of three similar experiments with five mice per group are shown.
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FIG. 3. Endogenous OVA-specific CD8" T cells have an effector
phenotype following immunization with CPS-OVA. Histograms show
CD3" CD8" tetramer-negative splenocytes (shaded gray histograms)
versus OTI tetramer-positive cells (black open histograms) at 7 (A) or
75 (B) days following immunization. Representative results from one
mouse per time point are shown; each time point has been repeated at
least twice with three mice per group.

KLRG1, CD122, and CD127. These particular markers were
chosen because they have been used to discriminate between
naive, effector, and memory subpopulations in a variety of viral
and bacterial systems (21). However, antigen-specific re-
sponses to 7. gondii in particular have not been extensively
characterized. We found that at day 7, the majority of tet-
ramer-positive cells in the spleen (Fig. 3) as well as the PECs
(data not shown) had upregulated KLRG1 and had also down-
regulated CD62L, thus exhibiting an effector phenotype similar
to what has been noted in other infection models. Here, OVA-
specific cells are compared to the tetramer-negative CD8™
T-cell population, which contains activated cells but at a very
low frequency compared with the immunodominant tetramer-
positive population. Antigen-specific cells also showed higher
expression of the IL-2/IL-15 receptor B (IL-2/IL-15RB)
(CD122) than tetramer-negative cells (Fig. 3). Consistent with
recent publications (21), at 7 days following immunization ex-
pression of IL-7Ra was decreased on tetramer-positive cells
compared to CD3* CD8™ tetramer-negative cells, a popula-
tion that would include primarily naive cells but also a small
population of activated cells (Fig. 3).

To assess the phenotype of the memory cell population, later
time points were also examined. Parasite DNA was not de-
tected in the PECs or spleen at 3 weeks following CPS infec-
tion, and it was difficult to consistently detect parasite DNA
even at 10 days following immunization (Fig. 3B and data not
shown); thus, we decided to investigate the phenotype of an-
tigen-specific cells at 30 days after CPS-OVA immunization.
At this time point, and as late as 75 days following immuniza-
tion, the tetramer-positive cells maintained their KLRG1"
CD62L"° IL-7Ra™ effector-like phenotype (data not shown).
Overall, these experiments demonstrated that antigen-specific
cells at the site of infection as well as in secondary lymphoid
tissues resembled an effector population up to 75 days follow-
ing immunization.

As data emerged from these studies, it became apparent that
the kinetics of the CD8" T-cell response to CPS-OVA differ
from what has been reported for replication-sufficient strains
of T. gondii. While the antigen-specific response induced by
CPS-OVA peaks at approximately 10 days following immuni-
zation in both the spleen and PECs (Fig. 2), work from other
groups has demonstrated that CD8" T-cell responses induced
by replicating parasites are not detectable until 2 weeks fol-
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FIG. 4. CPS-OVA induces more potent CD8" responses than Pru-
OVA at 8 days following infection. Tetramer responses in the PECs at
8 days following infection, gated on CD3" CD8" lymphocytes, are
shown. Numbers indicate the frequency of tetramer-positive cells for
Pru-OVA and CPS-OVA from three individual mice per group.

lowing peroral infection (24, 26). To directly compare the
development of antigen-specific responses, mice were given
the same dose of 10° CPS-OVA or Pru-OVA tachyzoites in-
traperitoneally, and tetramer responses were assessed at two
time points. In this comparison, CPS-OVA induced signifi-
cantly higher CD8" T-cell responses in the spleen as well as
the PECs at 8 days following infection (Fig. 4; Table 1). How-
ever, by day 14 following infection, the pattern had reversed
such that Pru-OVA responses were now significantly higher in
the spleen with a trend toward higher responses in the PECs,
while CPS-OVA CD8" T-cell responses had started to con-
tract (Table 1). CPS-OVA and Pru-OVA are derived from
different strains of 7. gondii and have been previously shown to
induce disparate responses (15). However, work from our lab-
oratories (E. D. Tait et al., unpublished data) has compared
replicating and nonreplicating type 1 strains and demonstrated
that CPS-OVA did induce higher frequencies of antigen-spe-
cific CD8™ T cells than its replication-sufficient parental strain,
RH-OVA. These data must be interpreted with care, but the
same construct to drive production of OVA was used in all
strains, and these parasites appear to express similar levels of
OVA. Both CPS-OVA and Pru-OVA generated antigen-spe-
cific splenocytes with a similar effector-like phenotype at these
time points, expressing low levels of CD62L and CD127 and
high levels of CD44, KLRG1, and CD122 (data not shown).
OVA-specific antigen-specific CD8™ T cells are cytotoxic. In
addition to production of cytokines, another important func-
tion of antigen-specific CD8" T cells is the lysis of infected
target cells. Indeed, at 1 week following immunization, many
tetramer-positive splenocytes had upregulated expression of

TABLE 1. Frequencies of tetramer-positive cells

Frequency of tetramer-positive cells*

Antigen Day 8 Day 14
Spleen cells” PECs? Spleen cells” PECs
Pru-OVA 081 *037 42=*122 6.76*+132 1747 =*285
CPS-OVA  6.69 =145 202+1.2 1.55 = 0.25 6.70 = 0.37

“ Frequencies are out of CD3" CD8" lymphocytes. The data are means +
standard deviations for three mice per group from one representative experi-
ment.

b P < 0.02 (Pru-OVA versus CPS-OVA).
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FIG. 5. Immunization induces cytolytic CD8" T cells. (A) Tet-
ramer-positive splenocytes (black line) express high levels of granzyme
B (89.8 = 0.7 on day 7 and 40.9 * 3.7 on day 15; n = 3 per group) ex
vivo compared to tetramer-negative CD3" CD8" cells (shaded histo-
gram). (B) In vivo CTL results for naive and day 7 immunized mice,
gated on CD45.1" donor cells in the spleen (unpulsed cells, CFSE'";
OTI peptide-pulsed cells, CFSE"&"), Mice were analyzed at 4 h post-
transfer of target cells. (C) Maximum cytolytic activity was seen at 16 h
following target cell transfer. (D) The frequency of tetramer-positive
splenocytes (out of live CD3* CD8™" cells) was plotted against the
percent target cell lysis at 4 h after target cell transfer. For panels C
and D, results are combined from multiple comparable experiments).

granzyme B, consistent with possible cytolytic activity (Fig. SA,
day 7). While a proportion of the total CD8" tetramer-nega-
tive population had also upregulated granzyme B (5.5% =
1.6%), this frequency was much lower than that for the tet-
ramer-positive population (89.8% = 0.7%). Two weeks follow-
ing immunization, a lower proportion (40.9% =+ 3.7%) of an-
tigen-specific cells showed increased expression of this cytolytic
effector molecule directly ex vivo (Fig. 5A, day 15). To directly
assess the cytolytic ability of these cells, an in vivo CTL assay
was modified based on earlier work (3). Briefly, unpulsed or
OTI peptide-pulsed cells from congenic CD45.1 mice were
CFSE labeled, mixed at a 1:1 ratio, and injected into immu-
nized (CD45.2) mice. When immunized recipient mice were
analyzed, loss of the OTI-pulsed CFSE™ population indicated
that CPS-OVA induced robust cytolytic activity in CD8" T
cells (Fig. 5B). While cytolytic activity could be detected as
soon as 4 h after target cell transfer in the recipient spleens,
maximum lysis was achieved after a 16-hour incubation of the
target cells in the recipient mice (Fig. 5C). When multiple
experiments were combined from various time points from 7 to
30 days following immunization, there was a correlation be-
tween the level of cytotoxic activity and the frequency of anti-
gen-specific cells present at the time of the CTL assay (Fig.
5D) (all mice were analyzed at 4 h posttransfer of target cells).

To better understand the requirements for cytotoxic activity,
WT and perforin-deficient mice were immunized with a single
dose of 10° CPS-OVA. As seen in other infection models (2),
perforin-deficient mice generated increased frequencies of an-
tigen-specific CD8" T cells (Fig. 6A). Despite this phenotype,
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FIG. 6. Cytotoxic activity is decreased in the absence of perforin.
(A) Tetramer staining from WT and perforin KO splenocytes at 1
week after immunization; numbers represent average tetramer-posi-
tive frequency = standard deviation for three mice per group. (B) Cy-
tolytic activity is decreased in perforin KO mice at 4 or 16 h following
target cell transfer (P < 0.001 at both time points, Student’s ¢ test).
Representative data from one experiment with three mice per group
are shown; similar results were seen in three separate experiments.

the perforin-deficient mice demonstrated significantly lower
levels of cytolytic activity against peptide-pulsed target cells
when analyzed at 4 or 16 h following target cell transfer (Fig.
6B). In addition to granule-mediated cytotoxicity, CD8" T
cells can also mediate cytolysis via Fas-FasL interactions (4).
To examine perforin-independent pathways of cytotoxicity in
this model, Fas knockout (KO) peptide-pulsed target cells
were mixed with WT target cells and unpulsed cells and trans-
ferred into immunized mice. WT and Fas KO target cells were
killed equally well, indicating that the cytotoxic activity gener-
ated in response to immunization is not mediated via the
Fas-FasL pathway (data not shown). Together, these findings
indicate that immunization induces a perforin-dependent path-
way but that a perforin-independent pathway of cytolysis also
exists.

Depletion of CD4* T cells abrogates effector CD8* T-cell
response to CPS-OVA. Different models of infection have
shown diverse requirements for CD4 help in the generation of
CD8™ T cells. Following infection with a replicating strain of 7.
gondii, CD4" T-cell help is not required for the generation of
CD8" effector responses in the spleen (26). To address
whether CD4 help was required in the CPS-OVA experimental
system, mice were depleted of CD4™ T cells 1 week prior to
immunization with two doses of 0.5 mg anti-CD4 antibody. At
7 days following immunization, CD4-depleted mice demon-
strated a decrease in the frequency (Fig. 7A) as well as total
numbers (Fig. 7B) of OVA-specific CD8" T cells that were
generated. However, the tetramer-positive T cells generated in
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FIG. 7. CD4™ T cells are required for the generation of an effector
CD8" T-cell response. (A and B) Mice were depleted at 1 week prior
to immunization (anti-CD4) or treated with control antibody. Both the
frequency (A) and numbers (B) of antigen-specific CD8" T cells were
decreased in the spleen (P < 0.001 for both, Student’s ¢ test). (C) Ex-
pression of KLRG1 on antigen-specific cells is decreased in the ab-
sence of CD4" help (dark line, tetramer-positive cells; shaded gray,
CD3" CD8" tetramer-negative cells). (D) The frequency of target cell
lysis is reduced in mice depleted of CD4 ™" T cells prior to immunization
(P < 0.01, Student’s ¢ test). Representative data from one experiment
with three (control) or four (anti-CD4) mice per group are shown;
similar results were obtained in three separate experiments.
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the absence of CD4™ help were still capable of making IFN-y
in response to OTI peptide stimulation (data not shown). Ex-
pression of KLRG1 on antigen-specific CD8" T cells gener-
ated in the absence of CD4" T-cell help was decreased (Fig.
7C) (76.3% = 3.2%, versus 21.77% * 4% for CD4-depleted
mice; P = 0.0004). Additionally, tetramer-positive cells gener-
ated without CD4 " help were capable of killing peptide-pulsed
target cells as demonstrated by an in vivo CTL assay, though
the rates of cytolysis were decreased (Fig. 7D). Based on the
results shown in Fig. 4, it seems likely that the decreased levels
of cytotoxicity seen in the absence of CD4 help are due to
lower overall OV A-specific cell numbers, since these cells were
capable of expressing granzyme B (data not shown).

DISCUSSION

The studies presented here build on the original report using
the cpsl-1 parasites and establish that this replication-deficient
strain induces a protective response that is dependent on
CD4" and CD8" T cells. Given the important role of CD8* T
cells in the immune response to 7. gondii (28), we took advan-
tage of a parasite expressing OVA, which allowed detailed
characterization of the numbers and frequencies of these cells
and provided new information about the phenotype and cyto-
Iytic function of parasite-induced CD8" T cells. While these
studies were in progress, another group proposed that antigen-
specific T cells induced by cpsl-1 immunization can be subdi-
vided into four subpopulations based on their expression of
KLRG1 and CD62L (35). Our results using a model antigen,
where T. gondii-specific cells can be precisely identified using a
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tetramer reagent, suggest that tetramer-positive cells are al-
most entirely CD62L'° and KLRG1%, i.e., falling entirely into
fraction III as defined by Wilson et al. (35). Interestingly, the
kinetics of fraction III (CD62L'> KLRG1") cells most closely
resembled the expansion of the tetramer-positive CD8" pop-
ulation as observed here, and further work will be needed to
examine whether these subpopulations are truly parasite spe-
cific and, if so, the factors that influence their development.
The identification of additional endogenous CD8" T-cell
epitopes would facilitate this comparison. Recent work from
the Shastri laboratory has identified endogenous epitopes of T.
gondii in the B10.D2 strain of mice restricted by the major
histocompatibility complex class I molecule H-2L? (7); addi-
tional endogenous epitopes from H-2L%restricted BALB/c
mice have also been reported (14). In both of those studies, the
immunodominant antigens were part of secreted molecules
and so are likely to be presented in a fashion similar to that for
the model antigen used here and by others (28).

Examination of antigen-specific cells in the spleen demon-
strated that as early as 7 and as late as 75 days following
immunization, these cells primarily resembled effector or ef-
fector-memory phenotype cells, with high levels of KLRG1
and low levels of CD62L and IL-7Ra. The pattern of expres-
sion of markers such as IL-7Ra differed from what has been
seen in other models where the duration of antigen exposure is
limited, such as in a model of acute lymphocytic choriomenin-
gitis virus infection. In that system, antigen-specific cells down-
regulate expression of the IL-7Ra quickly following activation,
and 1 week after infection all antigen-specific cells are negative
for IL-7Ra (21). Similar phenotypic characterizations for par-
asitic infections have been limited, though one recent report
on antigen-specific CD8" T cells in Trypanosoma cruzii-in-
fected drug-cured mice suggests that the conversion of CD8"
T cells to a memory phenotype occurs very slowly (6, 8). In the
CPS-OVA model system used in these studies, the majority of
antigen-specific cells still had low expression of IL-7Ra at 30
days following immunization, in contrast to the pattern of
IL-7Ra expression on lymphocytic choriomeningitis virus-spe-
cific cells. These studies provided phenotypic information for
antigen-specific cells at 75 days following immunization, and
it is surprising that they had not yet converted to a more
memory-like phenotype even at this time. One implication
of this observation is that the combination of markers com-
monly used to track memory populations may have to be
tailored to individual pathogens and may not be applicable
to every infection.

Unexpectedly, these studies revealed that CPS-OVA in-
duced an adaptive CD8" T-cell response with faster kinetics
than reported with replicating parasites (24, 26). The initial
expectation was that a replicating form of T. gondii that induces
tissue damage and produces increasing amounts of antigen
would promote a more rapid and quantitatively greater CD8"
T-cell response than that generated by the CPS parasites. One
potential explanation for this difference has been suggested by
other groups who have found that replicating parasites pro-
duce factors that limit host cell proliferation and cytokine
responses (9, 23); obviously, these effects would be muted if the
parasite cannot replicate. Further studies will be needed to
characterize the early responses to the parasite, including how
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the early innate and inflammatory response contributes to the
robust generation of the CD8" T-cell response following CPS-
OVA infection. Indeed, recent work demonstrated that CPS
parasites can induce high levels of IL-12p70 at the site of
infection as well as the spleen (18), consistent with the idea
that IL-12 production is a major determinant that promotes
CD8™" T-cell responses during 7. gondii infection (35).

Previous analysis of cytotoxic responses induced by 7. gondii
required that splenocytes undergo expansion for 6 to 7 days in
the presence of exogenous cytokines, which may have influ-
enced their effector function (19). In contrast, direct ex vivo
staining at 7 days following CPS-OVA immunization showed
that high frequencies of OTI-specific cells expressed the cyto-
Iytic effector molecule granzyme B (Fig. 5A) and that these
cells were cytolytic. Perforin-deficient mice were able to gen-
erate a robust antigen-specific CD8* T-cell response, but in
spite of this, cytolytic activity was decreased (Fig. 6B). After
overnight incubation with target cells, approximately 70% of
target cells were lysed in perforin-deficient mice, compared to
100% in the WT mice, suggesting that another mechanism of
cytolysis is acting on the target cells in the absence of perforin.
Further, we found that Fas-FasL interactions are not required
for CTL activity, implying that other pathways such as those
mediated via tumor necrosis factor family members may be
playing a role in the destruction of target cells. It still remains
possible that a role for the Fas-FasL pathway might be de-
tected in the absence of perforin-dependent cytolysis.

The requirement for CD4" T-cell help in the generation of
a CD8™ T-cell response has been addressed in other viral and
bacterial models. The general consensus is that CD4* T cells
are not required for the generation of a CD8" T-cell effector
response but are required for the maintenance of memory (32,
33). In studies with 7. gondii, it was previously shown that CD4
KO mice had decreased numbers of antigen-specific CD8" T
cells as demonstrated by a precursor CTL assay (11). This
defect was seen only at late time points following 7. gondii
infection; it is possible that defects were also present earlier
during infection but were not detected by the methods avail-
able at that time. In another model of 7. gondii infection,
CD4" T-cell help was required to maintain antigen-specific
CD8™" T cells in the brain during chronic infection (26). Other
parasite models have demonstrated that CD4" T-cell help is
required during the primary response to immunodominant
epitopes (27). The findings presented here might thus be in-
fluenced by the fact that the H-2KP-restricted SIINFEKL
epitope is known to be immunodominant (10). While CD4™*
T-cell production of IL-2 has been regarded as the most likely
mechanism whereby these cells can help the development of
CD8" T-cell responses, the observation that depletion of
CD4" T cells leads to decreased expression of KLRG1 on
antigen-specific CD8* T cells may provide an alternative ex-
planation. The expression of KLRG1 has been linked to IL-12
production and expression of the Thl transcription factor T-
bet (19). How CD4" T cells may influence these events is
uncertain. Regardless, these results suggest that in a vaccine
setting where inflammation might be limited, both CD4" and
CD8™ epitopes should be targeted in order to drive a protec-
tive response.
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