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Site-Specific Mutation of the Sensor Kinase GraS in Staphylococcus
aureus Alters the Adaptive Response to Distinct Cationic
Antimicrobial Peptides

Ambrose L. Cheung,a Arnold S. Bayer,b,c Michael R. Yeaman,b,c,d Yan Q. Xiong,b,c Alan J. Waring,b,c,d Guido Memmi,a

Niles Donegan,a Siyang Chaili,b Soo-Jin Yangb,c

Department of Microbiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USAa; Division of Infectious Diseases, Los Angeles Biomedical Research
Institute at Harbor-UCLA Medical Center, Torrance, California, USAb; The David Geffen School of Medicine at UCLA, Los Angeles, California, USAc; Division of Molecular
Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USAd

The Staphylococcus aureus two-component regulatory system, GraRS, is involved in resistance to killing by distinct host defense
cationic antimicrobial peptides (HD-CAPs). It is believed to regulate downstream target genes such as mprF and dltABCD to
modify the S. aureus surface charge. However, the detailed mechanism(s) by which the histidine kinase, GraS, senses specific
HD-CAPs is not well defined. Here, we studied a well-characterized clinical methicillin-resistant S. aureus (MRSA) strain
(MW2), its isogenic graS deletion mutant (�graS strain), a nonameric extracellular loop mutant (�EL strain), and four residue-
specific �EL mutants (D37A, P39A, P39S, and D35G D37G D41G strains). The �graS and �EL strains were unable to induce
mprF and dltA expression and, in turn, demonstrated significantly increased susceptibilities to daptomycin, polymyxin B, and
two prototypical HD-CAPs (hNP-1 and RP-1). Further, P39A, P39S, and D35G-D37G-D41G �EL mutations correlated with
moderate increases in HD-CAP susceptibility. Reductions of mprF and dltA induction by PMB were also found in the �EL mu-
tants, suggesting these residues are pivotal to appropriate activation of the GraS sensor kinase. Importantly, a synthetic exoge-
nous soluble EL mimic of GraS protected the parental MW2 strain against hNP-1- and RP-1-mediated killing, suggesting a direct
interaction of the EL with HD-CAPs in GraS activation. In vivo, the �graS and �EL strains displayed dramatic reductions in
achieved target tissue MRSA counts in an endocarditis model. Taken together, our results provide new insights into potential
roles of GraS in S. aureus sensing of HD-CAPs to induce adaptive survival responses to these molecules.

Host defense against Staphylococcus aureus infections involves
rapid immune responses, which include neutrophils (PMNs),

effector proteins such as complement, and cationic antimicrobial
peptides (CAPs) that are part of the innate immune system (1–3).
Different host defense CAPs (HD-CAPs) are expressed in distinct
human tissues and are integral to mitigating bacterial infections,
including those caused by S. aureus (3–5).

Endovascular infections caused by S. aureus are among the
most common staphylococcal clinical syndromes and are associ-
ated with high morbidity and mortality rates (6–8). The persis-
tence and progression of endovascular S. aureus infections, such as
infective endocarditis (IE), necessitate the pathogen to resist the
microbicidal actions of HD-CAPs (6, 8), including those of PMNs
(e.g., neutrophil defensins, such as hNP-1) and platelets (e.g., the
family of thrombin-induced platelet microbicidal proteins
[tPMPs]), as well as clinically utilized CAPs (e.g., calcium-dapto-
mycin). Of importance, S. aureus appears to deploy a number of
mechanisms to subvert inhibition or killing by HD-CAPs, includ-
ing changes in cytoplasmic membrane (CM) biophysics or ener-
getics, perturbations in surface charge, and modifications of the
phospholipid repertoire (9–12).

Two-component regulatory systems (TCRS) have come to the
forefront of the staphylococcal “virulon” as signal transduction
systems commonly employed by S. aureus to sense and respond to
potentially noxious external stimuli (13). In this pathogen, the
GraRS TCRS (also termed antibiotic peptide sensor [APS]) is in-
volved in promoting resistance to distinct HD-CAPs by upregu-
lating target genes such as mprF and dltABCD. In turn, the pro-
teins encoded by the genes modify the net positive surface charge

of the S. aureus envelope (14–17). The protein MprF is a lysyl-
phosphatidylglycerol (L-PG) synthase, which attaches positively
charged lysine molecules onto negatively charged phosphatidylg-
lycerol (PG) within the S. aureus CM. In addition, MprF also
functions as an outer CM flippase for L-PG, translocating the
lysinylated PG to the outer CM leaflet (9, 18, 19). The dltABCD
operon also contributes to the net surface positive charge by co-
valently incorporating D-alanine to cell wall teichoic acids (16, 20).

The expression of GraRS-mediated effector genes appears to be
preferentially induced by certain HD-CAPs, such as tPMP-1
(platelets) and polymyxin B, in vitro. This observation raised the
notion that this TCRS selectively senses and responds to HD-
CAPs having specific structural or mechanistic determinants (14,
15, 17). Mutagenesis studies have revealed that a graS mutation
abolished the induction of mprF and dltABCD genes, further sup-
porting the notion of GraS as a sensor kinase for selective CAPs in
S. aureus (14, 15, 17). A comparative alignment of the GraS pro-
tein sequences of S. aureus versus Staphylococcus epidermidis re-
vealed a common motif consisting of two transmembrane seg-
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ments flanking a 9-amino-acid extracellular loop (14). Of note, Li
et al. demonstrated that differences in induction by CAPs between
S. aureus and S. epidermidis were due to structural changes within
the respective loop motifs of the GraS histidine kinase (14). These
findings suggested that the extracellular loop is an important de-
terminant for the ability of the GraS protein to detect and trans-
duce S. aureus adaptive responses to certain HD-CAPs.

In the present study, we utilized isogenic graS deletion (�graS)
and nonameric extracellular loop (�EL) mutants of a well-char-
acterized clinical S. aureus strain, MW2, to investigate potential
mechanism(s) by which GraS senses specific HD-CAPs. In addi-
tion, key residues in the EL of GraS predicted to mediate detection
of HD-CAPs were mutated to evaluate residue-specific func-
tions of GraS. These strains were then used to examine the
contribution of the entire graS locus, as well as the EL and specific
residues thereof in relation to (i) the induction of mprF and dlt
expression by sublethal concentrations of a range of HD-CAPs in
vitro, (ii) the modulation of net cell surface charge in S. aureus,
(iii) in vitro susceptibility to HD-CAPs of distinct structure and
tissue origin, and (iv) potential in vivo correlates of virulence dur-
ing the induction and maintenance of a prototypical endovascular
infection (infective endocarditis [IE]).

MATERIALS AND METHODS
Bacterial strains and culture conditions. Strains used in this study are
listed in Table 1. All S. aureus strains were grown in either tryptic soy broth
(TSB; Difco Laboratories, Detroit, MI) or Mueller-Hinton broth (MHB;
Difco Laboratories) as indicated, depending on the individual experi-
ments. Escherichia coli DH5� was grown in Luria-Bertani medium (Fisher
Scientific). Liquid cultures were grown in Erlenmeyer flasks at 37°C with
shaking (250 rpm) in a volume that was no greater than 10% of the flask
volume. All antibiotics were purchased from either Sigma Chemical Co.
or Fisher Scientific and were used at the following concentrations: ampi-
cillin, 100 �g/ml; erythromycin, 3 �g/ml; chloramphenicol, 5 �g/ml.

CAPs. Human neutrophil peptide-1 (hNP-1), a prototypical �-defen-
sin, was purchased from Peptide International (Louisville, KY). RP-1 (an
18-amino-acid congener modeled in part upon �-helical microbicidal
domains of the platelet factor 4 family of platelet kinocidins) was synthe-
sized and authenticated as detailed before (21, 22). The antistaphylococcal
mechanisms of RP-1 recapitulate those of native thrombin-induced plate-
let microbicidal protein 1 (tPMP-1) (21). Polymyxin B (PMB) was pur-
chased from Sigma Chemicals Co. (St. Louis, MO). Peptides hNP-1 and
RP-1 were used for both in vitro killing assays and gene induction studies
for the study strains, as described before (17). PMB was employed in
selected gene induction experiments. The above-described cationic
antimicrobial peptides (CAPs) differ in source, primary structures,
mechanisms of action, and net positive charge (range, �4 to � 6 at pH
7.0) (21, 23).

Preparation of soluble GraS. The EL sensor domain of GraS features
a 9-amino-acid motif (DYDFPIDSL) that is hypothesized to detect certain
HD-CAPs and initiate transduction of response regulator functions of
GraSR (14, 17). To test this concept, we synthesized a soluble peptide
representing this sensor domain and assessed its ability to modify S. au-
reus responses to various peptides. To enhance biological functionality,
the soluble trimeric GraS EL mimetic was synthesized to contain three
sensor motifs interposed by diglycine hinges. Thus, the full-length syn-
thetic trimeric sensor peptide sequence was NH2-DYDFPIDSLGGDYDF
PIDSLGGDYDFPIDSL-COOH.

A nonsense (scrambled) peptide of the same composition, but with
randomized sequence, was also synthesized as a control. Both of these
polypeptides were generated by solid-phase 9-fluorenyl-methyloxycar-
bonyl (Fmoc) chain assembly and purified using reverse-phase high-per-
formance liquid chromatography (HPLC), and the purified product

(�95%) was authenticated by matrix-assisted laser desorption ioniza-
tion–time of flight (MALDI-TOF) mass spectroscopy, as we have detailed
previously (24).

Antibiotics/CAP susceptibility testing. The MICs to PMB were de-
termined by the standardized microdilution assay in MHB medium, fol-
lowing CLSI protocols, using �1 � 105 CFU/ml in 96-well microtiter
plates with MIC assessments performed at 48 h (25). The MICs to dapto-
mycin (DAP), vancomycin (VAN), and oxacillin (OX) were determined
by standard micro-Etest according to the manufacturer’s recommended
protocols. A minimum of three independent experimental runs were per-
formed to determine MICs to each antibiotic.

Standard MIC testing in nutrient broth may underestimate CAP ac-
tivities (23, 26). Accordingly, in vitro bactericidal assays were carried out
with hNP-1 and RP-1 as described previously by using a 2-h microdilu-
tion method in Eagle’s minimal essential medium (9, 23). These assays
were performed with hNP-1 (10 �g/ml) and RP-1 (1 �g/ml) using an
initial inoculum of 5 � 103 CFU S. aureus cells (9, 23). These CAP con-
centrations were selected based on extensive pilot studies showing their
inability to completely eradicate the starting inoculum of the parental
MW2 strain over the 2-h exposure period. Data were calculated and ex-
pressed as the relative percentage of surviving CFU (	standard deviation
[SD]) of CAP-exposed versus CAP-unexposed cells. A minimum of three
independent studies were performed for each CAP.

DNA manipulations. Genomic DNA was isolated from S. aureus as
described previously (27). Plasmid DNA purification was performed us-
ing a Wizard Plus kit from Promega, Inc. (Madison, WI). The restriction
enzymes and T4 DNA ligase used in this study were purchased from New

TABLE 1 Strains used in this study

Strain or plasmid Description
Reference or
source

S. aureus
MW2 Community-acquired MRSA, wild-

type strain, human clinical isolate
47

�graS strain graS in-frame deletion mutant of MW2 Present study
�EL strain graS extracellular loop deletion mutant

(deletion of 9 amino acids within
GraS)

Present study

�graScomp strain �graS complemented with pEPSA5-
expressing graRS genes from MW2

Present study

�ELcomp strain �EL strain complemented with
pEPSA5-expressing graRS genes
from MW2

Present study

D37A strain Extracellular loop mutant generated by
site-directed mutagenesis (D¡A at
position 37)

Present study

P39A strain Extracellular loop mutant generated by
site-directed mutagenesis (P¡A at
position 39)

Present study

P39S strain Extracellular loop mutant generated by
site-directed mutagenesis (P¡S at
position 39)

Present study

D35G D37G
D41G strain

Extracellular loop mutant generated by
site-directed mutagenesis (D¡G at
positions 35, 37, 41)

Present study

E. coli DH5� Host strain for construction of
recombinant plasmids

48

Plasmids
pEPSA5 Shuttle vector for ectopic gene

expression in S. aureus
49

pMAD Allelic replacement vector to generate
S. aureus mutant strain

30
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England BioLabs (Beverly, MA). Preparation and transformation of Esch-
erichia coli DH5� were accomplished using the method described by In-
oue et al. (28). Electroporation of recombinant plasmids into S. aureus
was carried out using the procedures of Shenk and Laddaga (29).

Construction of S. aureus mutants. All mutant strains were generated
in an S. aureus MW2 background with in-frame deletion of target genes by
allelic replacement, using the temperature-sensitive plasmid pMAD as
described previously (15, 30). S. aureus MW2 (USA400), a prototypical
clinical methicillin-resistant S. aureus (MRSA) isolate, has been well char-
acterized genotypically (e.g., available genome sequence information) and
is virulent in vivo in animal models (31–33). Briefly, PCR was used to
amplify an �2-kb fragment comprising a 1-kb fragment upstream and
another 1-kb fragment downstream of graS using genomic DNA as the
template. The PCR fragment was cloned into pMAD, resulting in pMAD-
graS. The recombinant shuttle vector was transformed first into E. coli,
then into RN4220 as an intermediary, and finally into S. aureus strain
MW2 (34). Specific mutations of individual residues within the EL loop of
graS were introduced by PCR using primers with altered nucleotides,
cloned into pMAD, and transformed into S. aureus MW2. Allelic ex-
changes were performed as described previously (30). Selected mutants
were subsequently complemented by reintroducing pMAD-graS into the
chromosome by homologous recombination, as described previously
(30). All the mutant strains created were confirmed with PCR and se-
quencing.

Preparation of RNA. To assess CAP induction of mprF and dlt by
CAPs, RNA samples were isolated from cultures of the strains exposed to
hNP-1, RP-1, or PMB. Briefly, overnight cultures of the strain sets were
used to inoculate 10 ml of MHB to an optical density at 600 nm (OD600)
of 0.1 and allowed to grow for 2.5 h (�1 � 108 to 5 � 108 CFU/ml) before
the addition of peptide. For transcription induction, CAPs were used at
the following exposure concentrations in artificial conditions in vitro:
hNP-1, 30 �g/ml; PMB, 30 �g/ml (�0.25� MIC). The cultures were
incubated for an additional 30 min before the RNA was harvested. The
sublethality of these CAP concentrations over the 30-min exposure period
(�90% survival) was confirmed by quantitative culture as described be-
fore (17). Total cellular RNA was isolated from the S. aureus cell pellets by
using the RNeasy kit (Qiagen, Valencia, CA) and the FASTPREP FP120
instrument (BIO 101, Vista, CA), according to the manufacturer’s recom-
mended protocols.

Quantification of transcript levels by qRT-PCR. Quantitative real-
time PCR (qRT-PCR) analyses were performed as described previously
(35). Briefly, 2 �g of DNase-treated RNA was reverse transcribed using
the SuperScript III first-strand synthesis kit (Invitrogen) according to the
manufacturer’s protocols. Quantification of cDNA levels was performed
by following the instructions of the Power SYBR green master mix kit
(Applied Biosystems) on an ABI PRISM 7000 Sequence detection system
(Applied Biosystems). The primers used to amplify mprF were qRT-
mprF-F and qRT-mprF-R (17). The dltA and gyrB genes were similarly
detected using respective specific primers as described before (35).

Determination of net cell surface charge. To estimate relative posi-
tive cell surface charge that may contribute to HD-CAP resistance (9, 12,
16, 19, 36), cytochrome c binding assays were performed as described
before by spectrophotometric assay (OD530) (15, 37). The binding of cy-
tochrome c (pI 
 10; Sigma) is approximated from the amount of the
polycation remaining within reaction mixture supernatants following ex-
posure to a study strain for 15 min. Larger amounts of residual cyto-
chrome c in the supernatants correlate with a more relatively positive
surface charge (9, 12, 15, 38). A minimum of three independent experi-
ments was performed for each strain-CAP combination.

CM fluidity analyses. It has been shown that CM biophysical charac-
teristics affect the interaction of S. aureus with HD-CAPs (11, 39). Prin-
cipal among these parameters is the CM order, a composite measure of the
fluidity versus rigidity properties of PL bilayers. The comparative CM
orders of study strains were determined by fluorescence polarization spec-
troscopy using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene

(DPH) as described before (11, 40). Data were quantified from the polar-
ization index (	SD) (9, 23), in which there is an inverse relationship
between the polarization index and CM fluidity/rigidity (i.e., higher index
indicates greater CM rigidity) (9, 11, 38, 41). These assays were performed
at least six times for each strain on separate days.

Experimental rabbit IE model. Animals were maintained in accor-
dance with the American Association for Accreditation of Laboratory An-
imal Care criteria. The Animal Research Committee (IACUC) of the Los
Angeles Biomedical Research Institute at Harbor-UCLA Medical Center
approved these animal studies.

A well-characterized catheter-induced rabbit model of aortic IE was
used as described previously (16, 42, 43) to assess the role of GraS EL
sensor on relative S. aureus virulence in vivo. Briefly, female New Zealand
White rabbits (2.0 to 2.5 kg body weight; Harlan Laboratories, Indianap-
olis, IN) underwent indwelling transcarotid-transaortic valve catheteriza-
tion with a polyethylene catheter (to induce sterile aortic valve vegeta-
tions). Twenty-four hours after catheter placement, animals were infected
intravenously (i.v.) with �1 � 106 CFU/animal, a 95% infective dose
(ID95) for the parental MW2 strain as established in pilot studies.

For virulence comparisons, five strains were studied: the parental
MW2, its graS knockout (�graS strain), the EL knockout (�EL strain), a
D¡G substitution EL mutant (in which 3 aspartic acid [D] residues are
substituted with glycines [G] in the EL sensor), and the respective graRS-
complemented strains. At the time of sacrifice, cardiac vegetations, kid-
neys, and spleens were aseptically excised and quantitatively cultured as
detailed before (44). Virulence assessments were then based on compari-
sons of the S. aureus CFU densities of the infecting strains in three target
tissues. The mean log10 CFU/g of tissue (	SD) was calculated for each
target tissue in each group for statistical comparisons. The lower limit of
microbiologic detection in the target tissues is �1 log10 CFU/g of tissue.

For verification of plasmid (pEPSA5) maintenance within the �graS
complemented strain during in vivo studies, all tissue samples from ani-
mals infected with this construct were quantitatively cultured in the pres-
ence and absence of chloramphenicol (10 �g/ml; plasmid selection
marker). These studies confirmed stability of the plasmid during animal
passage (data not shown).

Statistical analysis. S. aureus tissue CFU densities among the various
groups were compared using the Kruskal-Wallis analysis of variance
(ANOVA) test with the Tukey post hoc correction for multiple compari-
sons. Significance was determined at P values of �0.05.

RESULTS
In vitro CAP susceptibility profiles. To determine the role of
GraS sensor kinase and to identify critical residues of extracellular
loop (EL) in resistance to structurally distinct host defense CAPs,
we compared the in vitro susceptibility profiles of the �graS and
�EL mutants and the four EL point-mutated constructs (D37A,
P39A, P39S, and D35G D37G D41G strains) to the parental MW2
against DAP, PMB, RP-1, or hNP-1. Site-specific D¡A, D¡G,
P¡A, or P¡S amino acid substitutions were designed to alter
charge (D¡A, D¡G) propensity for secondary structure stability
(P¡A) or conservation of hydrogen bond potential (P¡S).

As shown in Table 2, deletion of the entire graS open reading
frame (ORF) in the MW2 parental strain resulted in significantly
increased susceptibilities to calcium-DAP and PMB compared to
those of the parental MW2 strain (P � 0.01). Notably, the EL
sensor mutant (�EL mutant) also exhibited significantly in-
creased susceptibilities to DAP and PMB, suggesting that the
9-amino-acid extracellular sensing loop of the GraS histidine ki-
nase is important for CAP resistance in S. aureus. Similarly, sus-
ceptibilities of both the �graS and �EL strains to hNP-1 and RP-1
were significantly higher than those of the parental MW2 (P �
0.001; Fig. 1A and B). Complementation of the �graS and �EL
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strains with a graRS-expressing plasmid restored parental-level
susceptibilities to all four CAPs tested in most assays.

Next, we used the mutant strains that have either single muta-
tions (D37A, P39A, and P39S) or triple mutations (D35G D37G

D41G) in the EL of GraS. In contrast to the two deletion mutants
described above (�graS and �EL strains), most of the point-mu-
tated EL constructs demonstrated only a moderate reduction in
MICs to DAP and PMB (Table 2). Of note, the exception to this
pattern was D37A, which had no apparent effect on MICs of DAP
or PMB. However, the P39A, P39S, and D35G D37G D41G mu-
tant constructs showed significantly increased susceptibilities to
hNP-1 and RP-1 relative to those of the parental MW2 strain (Fig.
1). Interestingly, the D37A mutant resulted in enhancement of
resistance to hNP-1 and RP-1-induced killing in vitro (P � 0.01
and P � 0.05 compared to MW2, respectively).

Effect of GraS EL mutations on induction of mprF and dlt-
ABCD expression. To assess the role of the GraS EL and specific
amino acids therein on the transcriptional response, mutant
strains were exposed to subinhibitory concentrations of hNP-1 or
PMB in vitro, and transcription levels of mprF and dltA genes were
measured (Fig. 2 and 3). Consistent with previous experiments
(17), the expression of mprF and dltA was significantly upregu-

TABLE 2 MICs of the study strains

Strain

MIC (�g/ml)

DAP VAN OX PMB

MW2 0.5 2 48 125
�graS strain 0.094 1 48 7.8
�EL strain 0.125 1 48 7.8
�graScomp strain 0.5 2 48 125
�ELcomp strain 0.5 2 48 125
D37A strain 0.5 2 48 125
P39A strain 0.25 2 48 62.5
P39S strain 0.25 2 48 62.5
D35G D37G D41G strain 0.25 2 48 62.5

FIG 1 In vitro susceptibilities of the S. aureus strain set to hNP-1 (A) and RP-1(B). In vitro bacterial survival assays were carried out with hNP-1 (10 �g/ml) and
RP-1 (1 �g/ml) as described previously using a 2-h microdilution method (9, 23). These data represent the means (	SD) from three independent experiments.
*, P � 0.01; **, P � 0.05 compared to the MW2 parental strain.
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lated by PMB (�4.7- and 5.5-fold higher than in the absence of
PMB, respectively; Fig. 3A and B) but not substantially by hNP-1
(Fig. 2A and B) in the parental MW2 strain. As expected, the �graS
and �EL strains showed no induction of mprF and dltA transcrip-
tion by PMB (Fig. 3A and B), confirming the essential role of the
EL of GraS in inducing downstream target gene expression. Com-
plementation of the �graS and �EL strains with a graRS-express-
ing plasmid restored the inducibility of mprF expression by PMB
(Fig. 3A). In contrast to mprF expression, induction of the dltA

transcription by PMB in these two complemented strains was re-
stored only partially (Fig. 3B).

Consistent with a previous publication (17), vancomycin (2
�g/ml) and oxacillin (50 �g/ml) did not induce expression of
mprF and dltA in any of the tested strains (data not shown).

Next, we studied critical residues within the EL of GraS that
may be involved in the induction of graRS-regulated genes upon
exposure to HD-CAPs. To do so, qRT-PCR analyses were per-

FIG 2 Induction of mprF (A) and dltA (B) transcription by hNP-1. Gene
expression analyses were performed on RNA samples from cultures of the
study strains exposed to hNP-1 (30 �g/ml) for 30 min during exponential
growth. MHA, CAP-free medium alone; 3D‹3G, D35G D37G D41G strain. *,
P � 0.01 compared to condition without hNP-1 treatment.

FIG 3 Induction of mprF (A) and dltA (B) transcription by polymyxin B. Gene
expression analyses were performed on RNA samples from cultures of the
study strains exposed to polymyxin B (30 �g/ml) for 30 min during exponen-
tial growth. MHB, CAP-free medium alone; 3D‹3G, D35G D37G D41G
strain. *, P � 0.01 compared to the condition without hNP-1 treatment.

Cheung et al.

5340 iai.asm.org Infection and Immunity

http://iai.asm.org


formed on RNA samples from EL mutant strains, in the presence
and absence of hNP-1 or PMB. Surprisingly, enhanced induction
of both mprF and dltA expression by hNP-1 was observed in the
D37A strain (�2- and 3-fold induction versus medium-only con-
trol, respectively), while all the other EL point-mutated strains
(P39A, P39S, and D35G D37G D41G constructs) showed no in-
duction at all. Similar to hNP-1 induction, the D37A mutant
strain exhibited a significantly enhanced level of induction of both
mprF and dltA transcription in response to CAPs compared to
those of the parental MW2 strain (P � 0.01). These observations
suggested that the aspartic acid (D) at position 37 may be impor-
tant for CAP induction of the GraRS TCRS. Although expression
of mprF and dltA in the P39A, P39S, and D35G D37G D41G vari-
ants was induced by PMB, levels of induction were significantly
reduced compared with those of MW2. Replacement of three as-
partic acids within the EL with glycine residues (D35G D37G
D41G) resulted in the most significant impact on induction of
mprF and dltA transcription by PMB. Similar induction profiles of
mprF and dltA expression were observed when the cultures were
incubated with a lower concentration of PMB (�0.1� MIC; data
not shown). Collectively, these data indicated that induction of
mprF and dltA gene expression by specific CAPs is dependent on
the sensor kinase, GraS, and, more specifically, likely involves an-
ionic residues (i.e., aspartic acid) within the EL of GraS.

Net cell surface charge. GraRS positively regulates expression
of mprF and dltABCD, both of which are critical for maintaining
overall positive surface charge in S. aureus (14, 16, 17, 36, 45, 46).
Therefore, we sought to determine the relative surface charge of
the isogenic strain set in the present study. As shown in Fig. 4,
deletion of graS or the EL of graS in MW2 corresponded to in-
creased net cytochrome c binding compared to the isogenic pa-
rental MW2 or respective complemented strains (i.e., less positive
surface charge; P � 0.001). Reductions in the net positive surface
charge were also observed in D37A (P � 0.05), P39A, and D35G
D37G D41G (P � 0.01) strains, with the highest reduction seen for
the latter variant strain.

CM fluidity/rigidity. CM fluidity analyses revealed no sub-
stantial differences among the 9 study strains (data not shown).

Protection of S. aureus from CAP killing by a soluble exoge-
nous GraS EL mimetic. To assess whether the exogenous soluble
EL of GraS contributes to S. aureus subversion of the antistaphy-
lococcal effects of HD-CAPs, susceptibility assays to hNP-1 and
RP-1 were performed in the presence of the soluble EL mimetic
peptide. As shown in Fig. 5A and B, the exogenous EL (10 �g/ml),
but not the nonsense peptide, enhanced survival of all the strains
tested against both hNP-1 (10 �g/ml) and RP-1 (1 �g/ml). To
ensure that this protection of cells from HD-CAP killing by the
exogenous soluble EL mimetic was not related to a direct impact
of this synthetic peptide on induction of mprF and dltABCD, we
performed qRT-PCR analyses on the MW2 and �graS strains ei-
ther in the presence of the soluble EL or nonsense peptide control.
Resulting data confirmed that transcription of mprF and dltA was
not independently affected by either synthetic peptide (not
shown).

Comparative in vivo virulence. In the comparative virulence
assessments, the �graS and �EL strains exhibited dramatically
lower CFU densities in all three target tissues than those in animals
infected by the parental MW2 strain (reductions ranging from �5
to 6 log10 CFU/g versus MW2). Moreover, for all tested S. aureus
strains, CFU densities in cardiac vegetations were significantly
higher than those in kidney and spleens at 24 h postinfection (P �
0.01) (Table 3). The �graS complementation strain resulted in
return to near-parental bacterial densities in all three target tis-
sues. Paralleling our in vitro gene expression profiles and HD-CAP
susceptibility data, the D35G D37G D41G mutant strain showed
only a modest reduction in target tissue counts and failed to reach
statistical significance.

DISCUSSION

HD-CAPs have evolved as integral components of the innate im-
mune system. However, successful pathogens such as S. aureus
have developed a variety of adaptive resistance strategies to cir-
cumvent the antimicrobial effects of a wide range of HD-CAPs.
Recently, we and others have shown that the TCRS GraRS plays a
pivotal role in resistance of S. aureus to distinct CAPs by function-
ing as a CAP sensor. Transcription of graRS-regulated genes, such

FIG 4 Binding of positively charged cytochrome c to whole S. aureus cells. The graph shows the percentage of cytochrome c unbound after 15 min of incubation
with S. aureus at room temperature. Data represent the means (	SD) from three independent experiments. The MW2 parental strain was normalized to 100%.
*, P � 0.01; **, P � 0.05 compared to the MW2 parental strain.
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as mprF and dltABCD, has been shown to be dependent on specific
HDP/CAPs (14, 17), indicating additional mechanisms of target
gene regulation via distinct CAP stimuli. For example, our studies
(17) and those of Li et al. (14) demonstrated graRS-mediated reg-

ulation of the downstream mprF and dltABCD genes, the products
of which are important for surface charge maintenance in S. au-
reus. In these prior investigations, it was demonstrated that a rel-
atively selective range of CAPs appear to activate the graRS system
in S. aureus (e.g., LL-37, RP-1, or PMB but not hBD-3 or hNP-1)
(14, 17). Furthermore, we previously found that vraFG (a putative
ABC efflux pump downstream of graRS) (15) could also alter the
expression of mprF and dltABCD via an autocrine system involv-
ing graRS, indicating interdependency of graRS-vraFG expression
(17).

GraRS homologs exist in Listeria spp. and S. epidermidis. For
example, the GraS homolog in S. epidermidis is also involved in
CAP sensing and activation of downstream target genes. Although
there is a significant structural homology (70% at the amino acid
level) between GraS sensor kinases of S. epidermidis and S. aureus,

FIG 5 Effect of soluble exogenous GraS EL mimetic on survival of S. aureus cells upon exposure to hNP-1 (A) or RP-1 (B). In vitro bacterial survival assays were
carried out with hNP-1 (10 �g/ml) and RP-1 (1 �g/ml) using the 2-h microdilution method (9, 23). The data were calculated and expressed as the relative
percentage of surviving CFU of CAP-exposed versus CAP-unexposed cells. Data represent the means (	SD) from three independent experiments. M, medium-
only control; GraS, synthetic trimeric GraS EL; Scramble, random nonsense peptides. *, P � 0.01 compared to the medium-only control.

TABLE 3 Comparative in vivo virulence of study strains

Strain (no. of animals)

Mean log10 CFU/g of tissue 	 SD

Vegetation Kidney Spleen

MW2 (6) 7.42 	 0.89 6.02 	 0.91 5.92 	 0.36
�graS strain (7) 1.54 	 0.78a 1.07 	 0.87a 1.09 	 0.80a

�EL strain (7) 1.61 	 0.71a 1.05 	 0.90a 1.15 	 0.89a

�graScomp strain (6) 7.33 	 0.50 5.35 	 1.21 5.64 	 0.45
D35G D37G D41G strain (7) 6.50 	 1.05 4.96 	 1.21 5.43 	 0.46
a P � 0.001 compared to MW2.
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sequence divergence exists in the 9-amino-acid EL flanked by two
transmembrane segments at the N terminus. Moreover, when the
GraS loop of S. aureus is replaced with that of S. epidermidis in a
parental S. aureus strain, GraS was activated rather “promiscu-
ously” (instead of selectively) upon exposure to a large cadre of
HD-CAPs, mirroring the loop donor S. epidermidis isolate. Thus,
these domain swapping studies indicated that the nonameric GraS
EL of S. aureus is important in the CAP-selective induction of
GraRS-regulated genes. However, the amino acid residue-specific
contributions within the nonameric EL to CAP-selective activa-
tion of GraRS TCRS are unknown.

In the present investigation, we used a well-characterized
MRSA strain, MW2, and its isogenic graS deletion (�graS) mutant
as well as a graS mutant specifically devoid of the 9 amino acid EL
(�EL strain). In addition, mutagenesis of individual residues
within the EL (D37A, P39A, P39S, and D35G D37G D41G) was
introduced in the MW2 parental strain. These strategic substitu-
tions were designed to alter physicochemical properties believed
to be integral to CAP-S. aureus interactions (e.g., charge, second-
ary structure, hydrogen bonding propensity), while preserving net
biochemical context of the target EL sequence.

A number of interesting findings emerged from these investi-
gations. First, the �graS strain as well as the �EL strain displayed
significantly increased susceptibilities to calcium-DAP (a posi-
tively charged lipopeptide antibiotic) and PMB (a highly cationic
peptide of bacterial origin) compared to those of the parental
MW2 and respective complemented strains. In addition, the two
deletion mutants (�graS and �EL strains) also displayed dramat-
ically enhanced in vitro susceptibilities to the two prototypical
HD-CAPs (hNP-1 and RP-1), implying a requisite role for the
9-amino-acid EL of GraS in sense and response mechanisms cor-
relating with resistance to selective CAPs. Furthermore, in vitro
CAP susceptibility assays of the P39A, P39S, and D35G D37G
D41G EL point mutant strains demonstrated moderate reduction
in susceptibilities to all tested CAPs. These specific data further
suggest that the proline (at position 39 in GraS) and the two as-
partic acid residues (at positions 37 and 41 in GraS) are important
for graRS-mediated CAP sensing. It is important to emphasize
that these specific residues are absent in the S. epidermidis EL
counterpart of the GraS protein. These findings imply that the
GraS sensor function involves both charge and three-dimensional
conformation in its capacity to detect and transduce activation of
GraR-mediated adaptive responses to HD-CAPs. Further studies
on the EL residue-specific impacts on GraS CAP sensing charac-
teristics are in progress.

Second, since previous studies have shown regulation of mprF
and dltABCD by the graRS-vraFG regulatory network, we exam-
ined the ability of the study strains to induce mprF and dltA
expression upon exposure to hNP-1 or PMB by qRT-PCR. Previ-
ously, we have demonstrated that the expression of the graRS-
mediated effector genes, mprF and dltABCD, was induced upon
exposure to PMB but not by hNP-1. As anticipated, all tested
strains showed either no or only minimal induction of mprF and
dltA expression upon exposure to hNP-1, except for the D37A
mutant. The significant induction of mprF and dltA expression by
hNP-1 in the D37A mutant (Fig. 2A and B) suggests that the as-
partic acid residues in EL affect CAP specificity of GraS. Further-
more, the D37A mutant displayed enhanced induction of mprF
and dltA expression by PMB compared to that of the parental
MW2 strain. This outcome suggests that the D37 residue contrib-

utes to the magnitude of activation of GraS sensor for target gene
expression, and the D37A mutation may represent a “gain-in-
function” substitution. The enhanced transcription of mprF and
dltA in D37A correlated with the enhanced survival of the mutant
strain in hNP-1 and RP-1 killing assays (Fig. 1A and B). However,
the present analyses failed to reveal the expected impacts on sur-
face charge, despite enhanced expression of mprF and dltABCD in
the D37A mutant. In contrast, reduction of mprF and dltA induc-
tion by PMB was found in the P39A, P39S, and D35G D37G D41G
mutants, indicating these latter residues are fundamental to the
appropriate activation of the GraS sensor kinase.

Third, our in vitro data led us to evaluate the in vivo virulence
impacts of specific mutations in the graRS operon in the rabbit IE
model. Achievable target organ bacterial densities were found to
be dramatically reduced in animals infected with either the �graS
or �EL mutants. Both hNP-1 (prototypic neutrophil HD-CAP)
and secreted mammalian platelet microbicidal proteins (repre-
sented by the synthetic congener, RP-1) play crucial roles in bac-
terial clearance in endovascular infections. These functions are
believed to include (i) platelet-mediated clearance of bacteria
from vegetations by way of secreted kinocidins and (ii) neutro-
phil-mediated clearance of bacteria from within hematogenous
abscesses in target organs, such as kidneys and spleens, as a result
of intracellular HD-CAPs (e.g., hNP-1), in combination with tra-
ditional neutrophil-based oxidative antimicrobial mechanisms.
Thus, the inability to induce mprF and dlt expression in the vari-
ous graS mutants, and in turn their increased susceptibilities to
HD-CAPs, may explain their highly significant reductions in bac-
terial fitness in the IE model. In contrast, but consistent with our
in vitro data on CAP susceptibility and induction of mprF and dltA
expression, the virulence impacts of the D35G D37G D41G EL
mutant were rather modest. It should be mentioned that in pre-
vious work from our laboratories (16), individual knockouts of
dltA and mprF in a different background S. aureus strain yielded
significant albeit rather modest impacts on virulence in the same
experimental IE model (16). These latter data speak to the key role
of graS in virulence networks beyond dltA and mprF.

Lastly, recently published studies by Li et al. (45) demonstrated
that antisera raised against the EL of GraS rendered S. epidermidis
unable to induce downstream target genes in response to human
�-defensin 3. Consistent with our present data, these findings sug-
gest the importance of the EL sensor in the interaction with HD-
CAPs. Moreover, our findings that the exogenous soluble EL mi-
metic of GraS protects S. aureus against hNP-1 or RP-1 suggest
that direct interactions of the EL with the HD-CAP(s) are required
for triggering of the graRS-mediated sense-response system. These
data suggest that the graRS-mediated protection against anti-
staphylococcal effects of CAPs necessitates the interaction of EL of
GraS with HD peptides of the innate immune system.

The current study offers important new insights into the po-
tential roles of the GraRS TCRS in sense-and-response adapta-
tions for S. aureus survival to specific HD-CAPs or cationic anti-
infectives. This investigation also advances our understanding of
the role of specific residues within the GraS sensing loop in the
outcome of infections based on the specific host contexts that S.
aureus may encounter in vivo. We also recognize the limitations of
these studies, including (i) only one genetic background was in-
vestigated, (ii) a limited cadre of HD and other CAPs were evalu-
ated, (iii) an incomplete set of EL point mutants was assessed, and
(iv) assessment of the impact on in vivo virulence was restricted to
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a single animal model (IE). These limitations are currently being
addressed in our laboratories.
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