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Parasite Manipulation of the Invariant Chain and the Peptide Editor
H2-DM Affects Major Histocompatibility Complex Class II Antigen
Presentation during Toxoplasma gondii Infection

Louis-Philippe Leroux,a Manami Nishi,a Sandy El-Hage,a Barbara A. Fox,b David J. Bzik,b Florence S. Dzierszinskia,c

Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Québec, Canadaa; Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USAb; Carleton
University, Ottawa, Ontario, Canadac

Toxoplasma gondii is an obligate intracellular protozoan parasite. This apicomplexan is the causative agent of toxoplasmosis, a
leading cause of central nervous system disease in AIDS. It has long been known that T. gondii interferes with major histocom-
patibility complex class II (MHC-II) antigen presentation to attenuate CD4� T cell responses and establish persisting infections.
Transcriptional downregulation of MHC-II genes by T. gondii was previously established, but the precise mechanisms inhibit-
ing MHC-II function are currently unknown. Here, we show that, in addition to transcriptional regulation of MHC-II, the para-
site modulates the expression of key components of the MHC-II antigen presentation pathway, namely, the MHC-II-associated
invariant chain (Ii or CD74) and the peptide editor H2-DM, in professional antigen-presenting cells (pAPCs). Genetic deletion of
CD74 restored the ability of infected dendritic cells to present a parasite antigen in the context of MHC-II in vitro. CD74 mRNA
and protein levels were, surprisingly, elevated in infected cells, whereas MHC-II and H2-DM expression was inhibited. CD74
accumulated mainly in the endoplasmic reticulum (ER), and this phenotype required live parasites, but not active replication.
Finally, we compared the impacts of genetic deletion of CD74 and H2-DM genes on parasite dissemination toward lymphoid
organs in mice, as well as activation of CD4� T cells and interferon gamma (IFN-�) levels during acute infection. Cyst burdens
and survival during the chronic phase of infection were also evaluated in wild-type and knockout mice. These results highlight
the fact that the infection is influenced by multiple levels of parasite manipulation of the MHC-II antigen presentation pathway.

Toxoplasma gondii is an obligate intracellular protozoan para-
site with a remarkable host range consisting of all warm-

blooded vertebrates, including humans and mice (1, 2). During
acute infection, rapidly dividing tachyzoites primarily disseminate
throughout the host and infect any nucleated cell, including cells
of the immune system, in which they replicate within a parasito-
phorous vacuole (PV) (3). Shortly after infection, T. gondii para-
sites reach immune-privileged sites, such as the brain and muscle
tissues, and convert to latent bradyzoites, which encyst to persist
throughout the host’s life. Encystation can occur as early as 6 to 9
days postinfection (p.i.) (4), timing concomitant with the devel-
opment of a potent parasite-specific adaptive immune response.
Although toxoplasmosis is generally asymptomatic in healthy in-
dividuals, congenital toxoplasmosis can lead to serious birth de-
fects, such as hydrocephaly, mental retardation, blindness, and
chorioretinitis (5). Furthermore, reactivation of encysted para-
sites represents a serious threat to immunosuppressed individu-
als, such as AIDS patients and individuals receiving chemotherapy
against cancer or immunosuppressive drugs during organ trans-
plantation, and to elderly people with an aging immune system
(3, 6).

In immunocompetent hosts, resistance against T. gondii is
characterized by a robust Th1-type response that is mediated by
the cellular arm of the immune system, namely, CD8� and CD4�

T cells, which provide protective immunity through the produc-
tion of IFN-� (7–9). Despite the induction of a strong immune
response, the infection inevitably reaches the chronic stage as the
parasite encysts. It has been reported that T. gondii utilizes differ-
ent mechanisms to subvert several immune functions, including
the inhibition of proinflammatory signaling cascades, such as
NF-�B (10), MAPK (11), STAT1 (12–14), and CIITA (15); induc-

tion of anti-inflammatory STAT3/6-mediated transcription (16–
18); and inhibition of immunity-related GTPase (IRG)-mediated
destruction of the PV (19–21). Furthermore, it has been shown
that T. gondii interferes with antigen presentation in the context of
major histocompatibility complex class II (MHC-II) (22–24),
which is required for priming and activation of CD4� T cells (25).

MHC-II glycoproteins are synthesized in the endoplasmic re-
ticulum (ER), where they associate with the MHC-II-associated
invariant-chain (Ii or CD74) chaperone to form a nonameric
complex, where three MHC-II chain dimers (an � and a � chain)
associate with CD74 trimers (26, 27). Professional antigen-pre-
senting cells (pAPCs), such as macrophages, dendritic cells (DCs),
and B cells, readily express MHC-II molecules, and their expres-
sion is upregulated by proinflammatory stimuli (25). The invari-
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ant chain, a nonpolymorphic type II membrane protein, prevents
nonspecific loading of peptides onto MHC-II molecules by occu-
pying the MHC-II groove. In addition, CD74 contains dileucine-
based sorting motifs within its cytoplasmic region (28, 29) that are
recognized by either AP1 and AP3, or AP2, adaptor proteins,
which direct trafficking of CD74/MHC-II complexes to the cell
surface as immature complexes or to the endocytic pathway for
maturation from the trans-Golgi network (TGN), respectively
(30, 31). Within acidified late endosomal compartments, resident
aspartic and cysteine proteases (i.e., legumain and cathepsins),
which require an acidic environment for autocatalytic activation
and optimal activity, break down antigens into small antigenic
peptides and also cleave CD74 in a sequential manner to yield the
class II-associated invariant-chain peptide (CLIP) associated with
the MHC-II groove (32). CLIP is thereafter displaced by the pep-
tide editor H2-DM (or HLA-DM in humans), an MHC-II-like
molecule, and a higher-affinity antigenic peptide is loaded onto
the mature MHC-II molecule. This complex is finally brought to
the surface to be presented to CD4� T cells bearing a cognate
receptor (T cell receptor [TCR]).

Previous studies have reported transcriptional regulation of
MHC-II and other, related genes in Toxoplasma-infected cells,
whereby interferon gamma (IFN-�)-induced transcription is in-
hibited in infected cells (15, 33, 34). Levels of MHC-II proteins are
reduced in infected cells, antigen presentation is impaired, and
priming and activation of CD4� T cells are greatly diminished (23,
24, 35), yet small amounts of MHC-II proteins are detected in
these cells. Others have reported opposing views, where Toxo-
plasma activates human blood DCs upon invasion (36) and solu-
ble T. gondii antigens (STAg) activate murine splenic CD8�� DCs
(37–40). Currently, it is not known if the defect in MHC-II anti-
gen presentation can be attributed primarily to the reduced ex-
pression of MHC-II during T. gondii infection.

The aim of this study was to assess the impact of T. gondii
infection on key components of the MHC-II antigen presentation
pathway, specifically, the regulation of CD74 and H2-DM expres-
sion. Here, we show that CD74 expression is not coordinated at
either the transcript or the protein level with that of MHC-II and
H2-DM in T. gondii-infected pAPCs. CD74 expression was
strongly induced by the parasite in the absence of exogenous
IFN-� or endogenous type I IFNs and tumor necrosis factor alpha
(TNF-�), and parasite induction of CD74 prevented MHC-II-
dependent presentation of endogenously acquired, parasite-de-
rived antigens. In addition, the impacts of genetic deletion of
CD74 and H2-DM during acute and chronic infections were as-
sessed, specifically those on parasite dissemination toward lym-
phoid organs, CD4� T cell activation, IFN-� levels, and cyst bur-
dens and survival in infected mice. In addition, opposing
expression patterns of CD74 and H2-DM were found to affect
parasite dissemination toward lymphoid organs, activation of
CD4� T cells, and production of IFN-� during acute infection and
to significantly influence cyst burdens in the chronic phase of
infection.

MATERIALS AND METHODS
Mice. Animal procedures were conducted in accordance with the guide-
lines and policies of the Canadian Council on Animal Care. All animals
were housed and maintained according to the guidelines of the McGill
University Animal Care Committee (permit AUC 5380), and all efforts
were made to minimize discomfort and suffering of the animals during

the study. Four- to 6-week-old wild-type (WT) C57BL/6 and BALB/c
mice were purchased from Charles River Laboratory (Wilmington, MA).
CD74 knockout (KO) (CD74�/�) mice in the BALB/c [CAn.129S6(B6)-
Iitm1Liz/J] and C57BL/6 (B6.129S6-Iitm1Liz/J) backgrounds (41) and
H2-DM KO (H2-DM�/�) mice (B6.129S4-H2-DMatm1Doi/J) in the
C57BL/6 background (42) were purchased from Jackson Laboratory (Bar
Harbor, ME) and bred in house. Double-knockout (dKO) (CD74�/�

H2-DM�/�) animals were generated by cross-breeding CD74�/� and
H2-DM�/� lines and cross-breeding the progeny for three generations;
the genotype was confirmed by PCR with primers designed for mutated
alleles (see Table S1 in the supplemental material). Also, hind leg bones
from CD74�/� mice in the C57BL/6 background (kindly provided by
Elizabeth Bikoff [University of Oxford]) were used to generate bone mar-
row-derived pAPCs.

Parasite and host cell cultures. Type I virulent T. gondii cultures of the
RH strain (WT and transgenic) and type II avirulent Prugniaud (Pru)
�hgxprt (hypoxanthine-guanine-xanthine phosphoribosyltransferase)
tachyzoites (kind gifts from D. Soldati-Favre [University of Geneva]) were
maintained by serial passages in human foreskin fibroblasts (HFF)
(ATCC, Manassas, VA), as previously described (43).

The carbamoyl phosphate synthetase II deletion mutant (�cpsII) (44)
was maintained in culture in the presence of exogenous uracil (0.2 mM).
Transgenic parasite clonal lines were engineered to express the fluorescent
markers red fluorescent protein (RFP) (DsRed; BD Clontech, Palo Alto,
CA) in the cytosol and yellow fluorescent protein (YFP) secreted into the
PV or, in the �cpsII background, the model antigen E� (I-E� peptide
from the BALB/c haplotype [45]) fused to RFP in the cytosol or secreted
into the PV. The ptub-RFP/sagCAT and ptubP30-YFP/sagCAT plasmids
(46) and the ptubE�-RFP/sagCAT and ptubP30-E�-RFP/sagCAT plas-
mids (47) were described previously.

Bone marrow-derived macrophages (BMM	) and dendritic cells
(BMDCs) were obtained by differentiating precursor cells from murine
bone marrow as previously described (48, 49). Briefly, mice were eutha-
nized by CO2 asphyxiation, and hind legs were collected in Dulbecco’s
modified Eagle’s medium (DMEM). The marrow was flushed out of the
bones, and live precursor cells were counted using trypan blue exclusion
staining. For BMM	, 5 
 106 precursor cells were resuspended in culture
medium (DMEM, 10% fetal bovine serum [FBS], 2 mM L-glutamate,
1,000 U/ml penicillin, 1,000 �g/ml streptomycin, 50 �g/ml gentamicin,
2.5% HEPES, 55 �M beta-mercaptoethanol, 1 mM sodium pyruvate
[Wisent, St-Bruno, Quebec, Canada]) supplemented with 30% L929 fi-
broblast-conditioned medium, and the cells were seeded in 10-cm petri
dishes. The medium was changed 3 days later. Differentiated BMM	 were
used in assays 8 days after bone marrow harvest. Expression of the CD11b
marker was assessed by flow cytometry to confirm differentiation.
BMDCs were produced by culturing 2 
 106 precursor cells in complete
culture medium (RPMI, 10% FBS, 2 mM L-glutamate, 1,000 U/ml peni-
cillin, 1,000 �g/ml streptomycin, 50 �g/ml gentamicin, 2.5% HEPES, 55
�M beta-mercaptoethanol) supplemented with 40 ng/ml of recombinant
granulocyte-macrophage colony-stimulating factor (rGM-CSF) and 10
ng/ml recombinant interleukin 4 (rIL-4) (Peprotech, Rocky Hill, NJ) in
10-cm petri dishes. Feeding medium was added on day 3 and replaced on
day 6 after seeding. The cells were used on day 7. Expression of the CD11c
marker was assessed by flow cytometry to confirm differentiation.

Parasite lysates and protein quantification. T. gondii whole lysates
were prepared from 2 
 109 to 5 
 109 freshly isolated RH WT
tachyzoites. The parasites were resuspended in ice-cold phosphate-buff-
ered saline (PBS) and subjected to three 5-min freeze-thaw cycles, going
from liquid nitrogen (LN2) to a 37°C water bath. The parasites were then
sonicated on ice for 10 min, with 1-s pulses at 30% duty cycle. The lysates
were centrifuged at 100,000 
 g for 30 min at 4°C using a fixed-angle
TLA-100.3 rotor (Beckman Coulter, Brea, CA), and the high-speed super-
natant (HSS) was collected. The protein concentration in the HSS was
determined by a bicinchoninic acid (BCA) assay (Pierce, Rockford, IL),
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according to the manufacturer’s specifications, and adjusted to 2.5 mg/ml,
and the HSS was stored at �80°C.

In vitro infection for invariant-chain (CD74) induction. Day 7
BMM	 were plated at 3 
 105 cells per well in 24-well plates and incu-
bated overnight (ON) to allow adherence. On the following day, the ad-
herent cells were inoculated with freshly harvested T. gondii tachyzoites at
a multiplicity of infection (MOI) of 3:1. When required, parasites were
stained with CellTracker Green CMFDA or CellTrace Far Red DDAO-SE
(Molecular Probes, Carlsbad, CA) at 20 �M in DMEM for 30 min at room
temperature before inoculating the BMM	. After inoculation, the cells
were incubated for 4 h, the extracellular parasites were rinsed away, and
fresh medium was added with or without IFN-� at a final concentration of
100 U/ml (BioSource, Carlsbad, CA). The cultures were incubated for 20
h or the indicated times.

Antigen presentation assay. Day 7 BMDCs were plated at 3 
 105 cells
per well in 24-well plates. The cells were then inoculated with freshly
harvested T. gondii tachyzoites at an MOI of 3:1 for live parasites (RH��
ptub RFP, RH�cpsII ptub E�-RFP, and RH�cpsII ptub P30-E�-RFP) or
8:1 for heat-killed parasites (RH�cpsII ptub E�-RFP). After 4 h of incu-
bation, fresh medium was added, and the cells were pulsed or not with E�
peptide (ASFEAQGALANIAVDKA) at a concentration of 1, 5, or 10 �g/
ml. The cells were incubated for 18 to 20 h and then harvested for flow
cytometry analysis.

Flow cytometry and cell sorting. CD74 and MHC-II expression in
BMM	 was assessed by flow cytometry using a BD FACSAria (BD Biosci-
ences, San Jose, CA). First, Fc receptors were blocked by adding rat IgG
and rat anti-mouse CD16/32 (Fc� III/II; clone 2.4G2; BD Biosciences) in
fluorescence-activated cell sorter (FACS) buffer (0.1% bovine serum al-
bumin fraction V [BSA] in PBS) for 15 min on ice. After blocking, the cells
were stained with fluorescein isothiocyanate (FITC)-conjugated rat anti-
mouse CD74 (clone In-1) and phycoerythrin (PE)-conjugated rat anti-
mouse MHC-II (IA/IE) (eBioscience, San Diego, CA) for 30 min. For
intracellular staining, cells were first fixed in 1% paraformaldehyde (PFA)
for 10 min on ice, the fixative agent was quenched with 0.1 M glycine PBS,
and the cells were resuspended in permeabilization buffer (0.05% sapo-
nin, 0.1% BSA in PBS) for 20 min. After permeabilization, the cells were
stained using the above-mentioned antibody. Isotype-matched antibody,
rat IgG2b(�)-FITC, was used as a staining control (eBioscience). After
staining and washing, the cells were fixed again in 1% PFA and analyzed by
flow cytometry. Presentation of the model antigen E� in the context of
MHC-II molecules by BMDCs was assessed by flow cytometry after stain-
ing the cells with a FITC-conjugated anti-E�52-68 peptide bound to I-Ab

(clone YAe) antibody (eBioscience), as previously described (50), and live
cells were analyzed. The flow cytometry data were analyzed using FlowJo
software (Tree Star, Ashland, OR).

Sorting of BMM	 cultures was carried out using a BD FACSAria
(BD Biosciences). Cultures were infected with RH�� ptub P30-YFP
tachyzoites at an MOI of 4:1 for 4 h, after which the extracellular parasites
were washed away and fresh medium was added with or without 100 U/ml
IFN-�. The cells were incubated for 20 h, harvested, and stained with 50
�g/ml propidium iodide (PI) (EMD Chemicals, Gibbstown, NJ) prior to
sorting; fluorescent cells labeled with PI were considered dead and ex-
cluded. The live cells were then gated according to the infection state,
where YFP-positive cells were infected and YFP-negative cells were not,
and collected separately. The sorted samples were aliquoted and stored at
�80°C.

In vivo infection and cell analysis. Four- to 6-week-old WT C57BL/6
mice were infected with 106 RH�� ptub-RFP tachyzoites intraperitone-
ally (i.p.). Mesenteric lymph nodes (MLN) of infected animals were har-
vested 5 days p.i., filtered through 70-�m-pore-size nylon mesh cell
strainers (BD Biosciences), and stained for flow cytometry. The staining
protocol was performed as described above using the following antibod-
ies: peridinin chlorophyll protein (PerCP)-Cy5.5-conjugated rat anti-
mouse CD11b (M1/70), PE-Cy7-conjugated Armenian hamster anti-
mouse CD11c (N418), and FITC-rat anti-mouse CD74 (In-1) or FITC-rat

anti-mouse MHC-II (IA/IE). Isotype-matched controls were prepared in
parallel [rat IgG2b(�)-FITC and IgG2b(�)-PerCP-Cy5.5 and Armenian
hamster IgG-PE-Cy7].

T cell analysis was performed on cells collected from acutely infected
4- to 6-week old WT, CD74�/�, H2-DM�/�, and dKO mice. Briefly, the
mice were infected i.p. with 103 Pru� tachyzoites. After 8 days, MLN were
collected, filtered through 70-�m-pore-size cell strainers, and stained for
flow cytometry using the following antibodies: FITC-Armenian hamster
anti-mouse CD3ε (145-2C11), PE-rat anti-mouse CD4 (L3T4), allophy-
cocyanin (APC)-rat anti-mouse CD25 (PC61.5), PE-Cy7-rat anti-mouse
CD44 (IM7), and APC-eFluor780-rat anti-mouse CD62L (MEL-14)
(eBioscience). Isotype-matched controls were prepared in parallel [Arme-
nian hamster IgG-FITC, rat IgG2b(�)-PE and IgG2b(�)-PE-Cy7, rat
IgG1(�)-APC, and rat Ig2a(�)-APC-eFluor780]. Sera from these acutely
infected mice and control uninfected mice were collected. IFN-� levels
were measured by enzyme-linked immunosorbent assay (ELISA) using
the eBioscience Mouse IFN-� ELISA Ready-SETGo! kit according to the
manufacturer’s specifications.

For chronic infections, 103 Pru� tachyzoites were injected i.p. For
real-time (RT)-PCR analysis of the brain cyst burden, brains were col-
lected 20 days p.i.

Histology. Brains from WT, CD74�/�, H2-DM�/�, and dKO mice
10, 15, 20, and 25 days after infection with 103 Pru� tachyzoites i.p. were
collected and fixed in neutral buffered formalin (10% [vol/vol]). Brains
from uninfected control animals were collected, as well. Processing and
staining of brain tissue for histology were carried out by Histopathology
Services at Charles River. After fixation, 3 or 4 cross sections were taken
through the cerebrum and one representative section through the cere-
bellum. The sections were embedded in paraffin, placed onto glass mi-
croscopy slides, and stained with hematoxylin and eosin. Photographs
were taken using a Nikon Eclipse E800 microscope equipped with a Nikon
DXM1200F digital camera and Nikon ACT-1 software.

Immunofluorescence and colocalization microscopy. Day 7 BMM	
cultures (5 
 104 cells) were plated on glass coverslips in 24-well plates
and incubated ON at 37°C and 5% CO2 to allow the cells to firmly adhere
to the coverslips. The following day, the cells were infected with freshly
lysed out T. gondii RH WT tachyzoites at an MOI of 2:1. Alternatively,
cells were inoculated with heat-killed (HK) (at 56°C for 10 min prior to
inoculation) parasites at an MOI of 10:1, treated with T. gondii lysates at a
concentration of 200 �g/ml, infected with Leishmania donovani promas-
tigotes (a kind gift from Armando Jardim, Institute of Parasitology,
Sainte-Anne-de-Bellevue, Canada) at an MOI of 15:1 or infected with
Salmonella enterica serovar Typhimurium 14028 bacteria (a kind gift from
Hervé Le Moual, McGill University, Montreal, Canada) at an MOI of 20:1
in the absence of antibiotics. After 4 h, the extracellular parasites were
rinsed away, and fresh medium was added with or without 100 U/ml
IFN-�. The cells were fixed after 20 to 24 h or at the indicated times with
3.7% PFA in PBS for 10 min at room temperature. Following fixation, the
coverslips were washed extensively with PBS, and the cells were permeab-
ilized with 0.2% Triton X-100 in PBS for 5 min and blocked with 10
mg/ml BSA, 10% FBS in PBS with mouse IgG (Sigma) for 15 min. Primary
antibodies were incubated for 1 h at room temperature: rat anti-mouse
CD74 (clone In-1), rat anti-mouse IA/IE (MHC-II) (eBioscience), poly-
clonal rabbit anti-mouse Giantin (Golgi apparatus), polyclonal rabbit an-
ti-mouse GRP78 BiP (ER), polyclonal rabbit anti-mouse EEA-1 (early
endosomes [EE]), polyclonal rabbit anti-mouse LC3A/B (autophago-
somes) (Abcam, Cambridge, MA), and polyclonal goat anti-mouse CD63
(M-13) (lysosomes) (Santa Cruz Biotechnology, Santa Cruz, CA). Fluo-
rophore-conjugated secondary antibodies were incubated for 1 h at room
temperature: donkey anti-rat IgG(H�L) Alexa Fluor 488 and goat anti-
rabbit IgG(H�L) Alexa Fluor 488 or 594 (Invitrogen, Carlsbad, CA). To
stain the DNA and visualize the nuclei, samples were stained with 4=,6-
diamidino-2-phenylindole dilactate (DAPI). Coverslips were mounted
onto microscope slides with Fluoromount G (Southern Biotech, Birming-
ham, AL). Samples were visualized using a Nikon (Tokyo, Japan) Eclipse
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TE2000-U microscope, and images were deconvolved using AutoQuant X
software (Media Cybermetrics, Phoenix, AZ) and processed with Adobe
Photoshop (San Jose, CA). For colocalization experiments, a Zeiss
LSM710 confocal microscope with Zen2010 software (Zeiss Canada, To-
ronto, Canada) was used to acquire images, and image processing and
statistical calculations were performed with Fiji (51).

Western blotting. Cells and extracellular tachyzoites were resus-
pended in lysis buffer (1% Triton X-100, 10 mM Tris, 150 mM NaCl)
supplemented with protease inhibitor cocktail (Sigma-Aldrich) and
DNase I (1 �g/ml). Protein material was precipitated ON in a methanol-
ethanol-acetone (2:1:1) mixture at �80°C. After precipitation, the pro-
tein material was resuspended in SDS-PAGE loading buffer containing
beta-mercaptoethanol, boiled for 5 min, and loaded onto a precast 4 to
20% Tris-HCl minigel (Bio-Rad, Hercules, CA). Protein material equiv-
alent to 2 
 106 and 108 extracellular parasites was loaded per lane. The
gels were run at 20 V using a Tetracell apparatus (Bio-Rad) and then
transferred to nitrocellulose membranes. The membranes were blocked in
5% dry skim milk in TTBS (15 mM Tris-HCl, 140 mM NaCl, 0.05%
Tween 20) ON at 4°C. The membranes were probed with monoclonal rat
anti-mouse CD74 clone In-1 (BD Pharmingen, San Jose, CA), followed by
a goat-anti-rat IgG(H�L) antibody conjugated to horseradish peroxidase
(HRP) (Santa Cruz Biotechnology, Santa Cruz, CA). Bands were revealed
using SuperSignal West Femto substrate or ECL West blotting substrate
(Pierce) according to the manufacturer’s specifications. Loading control
was performed by probing with a rabbit anti-cytoskeletal actin antibody
(Bethyl Laboratories, Montgomery, TX), followed by a goat-anti-rabbit
IgG(H�L) antibody conjugated to HRP (Bio-Rad), and the presence of
parasites was verified by probing with mouse anti-GRA3 antibody, fol-
lowed by a goat-anti-mouse IgG(H�L) antibody conjugated to HRP
(Bio-Rad).

Reverse transcription and RT-PCR. RT-PCR was performed using
the Power SYBR green Cells-to-Ct kit (Applied Biosystems, Carlsbad, CA)
according to the manufacturer’s instructions. Briefly, 105 sorted BMM	
were lysed with the lysis solution provided with the kit, followed by reverse
transcription using the Bio-Rad DNA Engine (Peltier Thermal Cycler)
and the 20
 reverse transcription enzyme mix with 2
 SYBR reverse
transcription buffer. The concentration of the synthesized cDNA was es-
timated by absorbance at 260 nm using a NanoDrop (Wilmington, DE)
ND-1000. PCRs were performed in a 7500 real-time PCR system (Applied
Biosystems) using the Power SYBR green PCR master mix, 400 nM (final
concentration) each designed PCR primer (19 to 25 nucleotides) (see
Table S2 in the supplemental material), and 3 �g of cDNA in a total
volume of 20 �l. The �-actin primer provided in the SYBR green Cells-
to-Ct control kit was used to amplify the endogenous control gene for
normalization of the transcripts. The mRNA transcription level analysis
was assessed using the 2���Ct method (52) using the uninfected and un-
stimulated BMM	 sample as a reference.

Genomic DNA isolation and quantification of the parasite burden
by RT-PCR. Genomic DNA (gDNA) was isolated from MLN of acutely
infected mice or brains of chronically infected animals using a Roche High
Pure PCR template preparation kit according to the manufacturer’s spec-
ifications. To measure acute parasitemia or the cyst burden, the 35-fold
repetitive T. gondii B1 gene (53) was amplified by real-time PCR using
Power SYBR green PCR master mix (Applied Biosystems) with the MgCl2
concentration adjusted to 3.5 �M in a 50-�l reaction volume, 0.5 �g of
template gDNA, and 0.5 �M each forward primer (5=-TCCCCTCTGCT
GGCGAAAAGT-3=) and reverse primer (5=-AGCGTTCGTGGTCAACT
ATCGATTG-3=) (Integrated DNA Technologies, Coralville, IA) (54). The
B1 gene was amplified using an ABI 7500 RT-PCR system with 10 min of
initial denaturation at 95°C, followed by 35 cycles of 15 s of denaturation
at 95°C, 30 s of annealing at 52°C, and 30 s of extension at 72°C. The
threshold value was defined as 30 times the standard deviation (SD) of the
baseline fluorescent signal, and cycle threshold (CT) values were acquired
during the annealing step. The CT values were normalized using the mouse
�-actin gene under the same conditions outlined above in separate tubes, but

with 0.2 �M each forward (5=-CACCCACACTGTGCCCATCTACGA-3=)
and reverse (5=-CAGCGGAACCGCTCATTGCCAATGG-3=) primer (55)
and 2.5 �M MgCl2.

RESULTS
T. gondii infection inhibits transcription of MHC-II (H2) and
H2-DM genes but induces transcription of CD74 and expres-
sion of p41 and p31 protein isoforms. We assessed the transcrip-
tional profiles of different MHC-II-related genes, MHC-II, CD74,
and H2-DM in T. gondii-infected cells. BMM	 cultures were in-
fected for 4 h with a transgenic parasite line secreting YFP in the
PV, either stimulated with 100 U/ml IFN-� or left unstimulated
for 20 h, and sorted by means of FACS according to their infection
status. RT-PCR analyses on sorted cells revealed that transcription
of both p41 and p31 CD74 isoforms was induced in infected cells
in the absence of IFN-� stimulation, but not that of other MHC-II
(H2-A�, H2-A�1, and H2-E�1) and H2-DM (H2-DM�, H2-
DM�1/2) genes, suggesting uncoordinated expression of these
genes (Fig. 1A). On the other hand, IFN-�-induced transcription
of the genes, including both CD74 isoforms, was inhibited in in-
fected cells, in agreement with previous reports showing inhibi-
tion of IFN-�-mediated transcription by T. gondii (15, 22, 33, 34).

Both p41 and p31 CD74 protein isoforms were detected in
infected cells (Fig. 1B), whether stimulated or not, while they were
detected only in uninfected IFN-�-primed cells. These observa-
tions mirrored the transcriptional profiles measured by RT-PCR.
Interestingly, Western blot analysis revealed different patterns of li
processing: a p10 proteolytic product (or small leupeptin-induced
invariant chain [sLIP]) was detected in uninfected IFN-�-stimu-
lated BMM	, but it was moderately more abundant in the T.
gondii-infected cells, both unstimulated and IFN-� stimulated,
which could suggest a slight bias in CD74 processing.

CD74 molecules accumulate mostly in the ER of cells in-
fected with live T. gondii until egress of the parasite, even in the
absence of IFN-� stimulation. CD74 expression was significantly
induced in BMM	 infected with T. gondii tachyzoites in the ab-
sence of IFN-� stimulation (Fig. 2); CD74 molecules were detect-
able approximately 16 h after parasite inoculation and accumu-
lated until parasite egress, as observed by fluorescence microscopy
(see Fig. S1 in the supplemental material). CD74 accumulation
was not observed in uninfected bystander cells, suggesting that
this induction was cell autonomous and occurred only within in-
fected cells. Furthermore, cells that had phagocytosed HK para-
sites or had been treated with parasite lysates failed to increase
CD74 levels (Fig. 2). These observations indicate that active host
cell invasion by live parasites is required to induce this phenotype.
The induction of CD74 expression was not observed when mac-
rophages were infected with other intracellular pathogens,
namely, S. enterica serovar Typhimurium and L. donovani (Fig. 2B
and C), both known to inhibit MHC-II expression (56–58).

Colocalization experiments revealed that the accumulation of
CD74 molecules occurred predominantly in the ER of T. gondii-
infected BMM	 (Fig. 3A), although li molecules were also de-
tected to some extent in the Golgi apparatus and to a much lower
degree in EE (Fig. 3B and C). Colocalization of CD74 was not
observed in the LC3� (autophagosome) or in the CD63� (lyso-
some) compartment (see Fig. S2A and B in the supplemental ma-
terial). These observations suggest that the majority of CD74 mol-
ecules are withheld in early endocytic compartments and do not
efficiently traffic to more mature endocytic compartments.
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As previously stated, CD74 can traffic from the ER to the
plasma membrane through AP2-dependent sorting (30, 31). At
the cell surface, CD74 can act as a receptor for the proinflamma-
tory cytokine macrophage migration inhibitory factor (MIF) (59).
Therefore, we used differential staining techniques, which allowed
us either to stain surface molecules only or to stain both surface
and intracellular molecules by permeabilizing the cell membrane,
for flow cytometry to determine if CD74 also accumulated at the
surfaces of T. gondii-infected cells. When BMM	 were stained for
surface CD74 molecules (i.e., without permeabilization of the cell
membrane), no major differences in surface CD74 expression
were measured between uninfected and T. gondii-infected cells;
however, following fixation and permeabilization with saponin, a

marked increase of CD74 levels was detected in infected cells in the
absence of exogenous IFN-� (Fig. 4A). Also, potential endoge-
nous secretion of TNF-� or type I IFNs (IFN-� and IFN-�), cyto-
kines known to induce CD74 expression (60–62), did not play a
role in the phenotype, since BMM	 from TNF-� and type I IFN
receptor (IFN-AR1) KO mice infected with T. gondii also dis-
played enhanced levels of CD74 (see Fig. S3 in the supplemental
material).

The higher CD74 expression levels observed in Toxoplasma-
infected cells did not correlate with higher MHC-II expression
levels (Fig. 4B). IFN-� stimulation did not lead to increased levels
of CD74 or MHC-II in infected cells, as seen in uninfected control
cells, in which expression upregulation was coordinated, as ex-

FIG 1 T. gondii infection inhibits transcription of MHC-II and H2-DM genes but induces transcription of CD74 and expression of p41 and p31 protein isoforms
in the absence of IFN-�. (A) RT-PCR analysis was performed on BMM	 cultures inoculated with YFP-expressing T. gondii (MOI  3:1), left unstimulated or
stimulated with 100 U/ml IFN-� ON, and sorted by FACS according to infection status. The data were calculated using the 2���Ct method (52), where the
uninfected, unstimulated cells were used to calculate the normalized fold change. The error bars indicate SD between biological replicates from one representative
experiment out of three independent experiments. Significance was calculated using Student’s t test (ns, not significant; *, P � 0.05; **, P � 0.01; ***, P � 0.001).
(B) Expression of p41 and p31 CD74 isoforms and the levels of the p10 proteolysis product in BMM	 cultures were assessed by Western blotting. Briefly, cultures
were inoculated with YFP-expressing T. gondii (MOI  3:1), left unstimulated or stimulated with 100 U/ml IFN-� ON, and sorted by FACS according to infection
status. The material from 106 BMM	 was loaded in the indicated lanes of 4 to 20% Tris-HCl SDS-PAGE gels. Actin was probed as a loading control, and probing
for GRA3 confirmed the presence of parasites within infected cells.
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pected. These observations corroborate the uncoordinated ex-
pression patterns between CD74 and MHC-II seen at the tran-
scriptional level in T. gondii-infected cells (Fig. 1A).

Accumulation of CD74 is triggered by both virulent type I
and avirulent type II strains, does not require parasite replica-
tion, and occurs in vivo. Significant differences have been dem-
onstrated between type I (virulent) and type II (avirulent) strains
of T. gondii in the modulation of immune responses and signaling
pathways (17, 18, 63). The induction of CD74 was not found to be
strain specific and was observed in BMM	 infected with either the
virulent type I RH or the avirulent type II Pru strain (Fig. 5A).

Active parasite replication was not required, since a nonreplicat-
ing, uracil-deprived �cpsII strain (i.e., a uracil-auxotroph strain
[44]) also induced CD74 in infected cells (Fig. 5B). This observa-
tion also helped rule out the possibility that the phenotype seen in
infected cultures was caused by exposure to material from lysed-
out infected cells, since the uracil-deprived mutant did not egress.

To validate the relevance of the accumulation of CD74 in T.
gondii-infected cells in vivo, CD74 expression was analyzed in
CD11b� (panmacrophage marker) and CD11c� CD8�� (my-
eloid dendritic cells) cells from MLN of WT C57BL/6 mice in-
fected with virulent type I RH T. gondii tachyzoites. Parasites ex-

FIG 2 T. gondii, but not other intracellular pathogens, upregulates CD74 protein expression in infected BMM	. BMM	 cultures were infected with T. gondii RH
WT tachyzoites (MOI  2:1), inoculated with heat-killed (HK) parasites (MOI  10:1), and treated with 200 �g/ml of parasite lysates (A); infected with S.
enterica serovar Typhimurium bacteria (MOI  20:1) (B); or infected with L. donovani promastigotes (MOI  15:1) (C). After 4 h, the extracellular pathogens
were rinsed away, fresh medium was added (antibiotics were resupplemented in wells inoculated with bacteria), and the cells were incubated for 20 h and fixed
with 3.7% PFA in PBS. The cells were stained for CD74 (green) and with DAPI. Samples were visualized by epifluorescence microscopy, and the images were
deconvolved using AutoQuant X software. CD74 expression levels are shown in uninfected cells (white arrowheads) and infected cells or cells containing
phagocytosed parasites (yellow arrowheads). The fields are representative of entire cultures and of the results of three independent experiments. DIC, transmit-
ted-light differential interference contrast.
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FIG 3 CD74 accumulates mostly in the ER, but also in the Golgi apparatus and EE, in unstimulated, infected BMM	. Colocalization experiments for CD74
(green) were carried out with different markers for the ER (Bip) (A), the Golgi apparatus (Giantin) (B), and early endosomes (EEA-1) (C) (all red) in T.
gondii-infected BMM	 cultures (MOI  2:1) left unstimulated. Z-stacks were acquired by confocal microscopy, followed by image processing, merging, and
statistical calculations. Uninfected (white arrowheads) and infected (yellow arrowheads) cells are shown within the same fields. (A) Through statistical analyses,
a colocalization coefficient (Rcoloc, where 1 is total colocalization and 0 no colocalization) of 0.73 and a threshold split Mander’s coefficient (tM, where the total
pixel intensity was normalized to avoid issues with absolute intensities) of 0.74 were obtained, suggesting significant colocalization of CD74 in the ER. (B and C)
CD74 molecules were also found in the Golgi apparatus (Rcoloc  0.41; tM  0.37) (B) and EE (Rcoloc  0.32; tM  0.47) (C) to a much lesser extent. These fields
are representative of entire cultures and of the results of three independent experiments.
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pressing RFP were used to infect mice i.p. in order to distinguish
infected cells from uninfected cells by flow cytometry. Similarly to
in vitro observations, infected macrophages and myeloid DCs
from infected mice expressed higher levels of CD74 than unin-
fected cells, while MHC-II levels remained at relatively similar
levels (Fig. 5C).

Accumulation of CD74 and reduced expression of H2-DM
inhibit presentation of endogenous parasite-derived antigens in
the context of MHC-II. To assess the impacts of invariant-chain
accumulation and inhibition of H2-DM on MHC-II antigen pre-
sentation, we first used the E� model antigen and YAe antibody

system to measure functional MHC-II antigen presentation by
pAPCs in vitro (45, 46, 50). The YAe antibody binds specifically to
MHC-II I-Ab molecules (H2b haplotype, i.e., C57BL/6 mice)
loaded with the I-E� peptide (from the H2d haplotype, i.e.,
BALB/c mice) without binding to other MHC-II molecules loaded
with irrelevant antigens, thus allowing the measurement of anti-
gen-specific presentation (Fig. 6A). The ability of BMDCs from
CD74�/� and H2-DM�/� mice to present exogenous E� peptide
was markedly impaired, while their WT counterparts efficiently
presented the antigen on MHC-II molecules (Fig. 6B). WT and
H2-DM�/� BMDCs infected with live parasites expressing E� in
their cytosol or secreting the antigen in the PV presented the par-
asite-derived antigen at low levels, an observation in agreement
with previous reports on the ability of T. gondii to inhibit antigen
presentation by the infected host cell (22–24). In stark contrast, T.
gondii-infected CD74�/� cells efficiently presented the parasite-
derived E� peptide on MHC-II molecules. However, WT,
CD74�/�, and H2-DM�/� BMDCs efficiently presented the anti-
gen after internalizing (phagocytosing) HK E�-expressing para-
sites. Both WT and CD74�/�, but not H2-DM�/�, BMDCs in-
fected with the control parasites expressing RFP only were still
capable of efficiently presenting exogenously derived E� peptide
after infection. Taken collectively, these results indicate that accu-
mulation of CD74 induced by the parasite inhibits MHC-II pre-
sentation of parasite-derived or endogenously acquired antigens
but does not interfere with MHC-II presentation of exogenous
antigens.

Accumulation of CD74 during acute toxoplasmosis affects
parasite dissemination, while CD74 and H2-DM differentially
impact CD4� T cell activation and IFN-� production. Given the
phenotype observed with the previous in vitro system, we sought
to assess the impacts of CD74 and H2-DM on CD4� T cell prim-
ing and activation during acute toxoplasmosis. CD4� T cells were
collected from MLN of acutely infected WT, CD74�/�, and H2-
DM�/� mice. Flow cytometry analysis revealed a higher propor-
tion of CD3ε� CD4� lymphocytes displaying a CD25hi CD44hi

CD62Llow activated phenotype in CD74�/� than in WT animals
(62.0% CD62Llow versus 38.7%, respectively) (Fig. 7A). Infected
H2-DM�/� mice, on the other hand, had a lower proportion of
CD4� T cells displaying an activated phenotype (10.3%
CD62Llow). It is important to point out that total CD3ε� CD4� T
cell numbers differed between the different mouse strains in both
naive and infected animals. ELISA measurements revealed higher
levels of IFN-� in sera of CD74�/� mice than in sera of WT mice
and H2-DM�/� mice (Fig. 7B). To examine whether the increased
T cell activation and IFN-� production observed in CD74�/�

mice was associated with increased parasite replication, the para-
site burden was measured by RT-PCR on MLN from acutely in-
fected mice. Parasite loads were 25 times higher in CD74�/� than
in WT and H2-DM�/� mice (Fig. 7C). In vitro analysis revealed no
differences in intracellular parasite replication rates or in egress
between infected WT and CD74�/� BMM	 (see Fig. S4 in the
supplemental material).

Considering the major but functionally distinct roles of CD74
and H2-DM in the MHC-II pathway, we assessed the dual impact
of their simultaneous absence on the course of infection. Dou-
ble-KO mice were generated by breeding CD74�/� and H2-
DM�/� single-KO strains and then crossing the heterozygote
progeny. The activation profiles of CD3ε� CD4� T cells were
higher (75.3% CD62Llow), but serum IFN-� levels were compara-

FIG 4 The accumulation of CD74 occurs predominantly intracellularly, with
low expression at the cell surface, while MHC-II levels remain low. (A) BMM	
cultures were left uninfected (white arrowheads) or were inoculated with Cell-
Trace Far Red DDAO-stained parasites (MOI  3:1) (gray arrowheads). The
cells were stained with a FITC-labeled anti-CD74 antibody either after fixation
with 1% PFA or after permeabilization with 0.05% saponin, staining surface
and intracellular molecules, and then analyzed by flow cytometry. The level of
staining is reported as the mean fluorescence intensity (MFI) value, as indi-
cated for each population (italicized for the isotype control, lightface for un-
infected control cells, and boldface for infected cells). (B) BMM	 cultures were
left uninfected (top) or were infected with fluorescent parasites (MOI  3:1)
(bottom). After 4 h, fresh medium was added with (right) or without (left) 100
U/ml IFN-�, and the cultures were incubated for 20 h. The cells were stained
for CD74 and MHC-II after permeabilization and then analyzed by flow cy-
tometry. The bottom diagrams display expression patterns of infected cells
only, following a gating strategy that identified cells containing fluorescent
parasites.
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ble to those of infected WT controls (Fig. 7A and B). Similarly to
CD74�/� mice, parasitemia levels in draining lymph nodes were
significantly higher in dKO mice than in WT or H2-DM�/� mice
(18-fold increase) (Fig. 7C).

Absence of H2-DM leads to a higher brain cyst burden in
chronically infected animals, whereas absence of both CD74
and H2-DM is fatal during chronic infection. Although differ-
ences in the magnitude of immune responses were measured in
single-KO and dKO mice at the acute phase of infection, all the
mutant mice survived acute infection. However, brain cyst bur-
dens varied significantly in these mice (Fig. 8A). Quantitative-RT-
PCR analysis revealed a 6-fold increase in brain cyst burdens in
H2-DM�/� mice compared to WT controls. While no significant
differences were observed between WT and CD74�/� mice, cyst
burdens in dKO mice increased 30-fold, and histological sections

of the infected brains confirmed these observations (Fig. 8B). Iso-
lated cysts were spotted in the brains of WT and CD74�/� mice,
while large clusters of cysts were seen in H2-DM�/� and dKO
mice. All dKO mice succumbed during the early chronic phase of
infection, even when infected with a nonlethal dose of the type II
strain (Fig. 8C).

DISCUSSION

IFN-� is the major effector molecule controlling T. gondii infec-
tion, and its production occurs within 3 days after initial infection
(7–9). The fact that the parasite subverts many functions of the
immune system allows the establishment of a chronic infection. In
the present study, we provide evidence of enhanced transcription
and protein synthesis of the MHC-II-associated invariant chain
(CD74) in infected cells in the absence of IFN-� in vitro. Although

FIG 5 Accumulation of CD74 is triggered by both virulent type I and avirulent type II strains, does not require active parasite replication, and occurs in vivo. (A
and B) BMM	 cultures were infected (MOI  3:1) with type I RH WT or type II Pru tachyzoites (A) or the uracil-auxotroph mutant RH�cpsII in the absence
(left) or presence (right) of exogenous uracil (B) and left unstimulated ON, and the cells were fixed, permeabilized, stained for total CD74 proteins, and analyzed
by flow cytometry. CD74 levels and MFI values are indicated. Tg�, uninfected bystander cells; Tg�, infected cells. (C) Flow cytometry analysis was performed on
cells from the MLN of WT C57BL/6 mice 5 days after i.p. infection with 106 RH�� ptub-RFP tachyzoites. CD11b� (macrophages) and CD11c� CD8�� (myeloid
DCs) cell subsets were identified and stained for CD74 and MHC-II. CD74 expression in infected cells and uninfected cells from the same organ and for the
isotype control are shown, as well as the MFI values. Three independent infection trials that included at least three animals were carried out. Shown are
representative values for one infected animal.
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FIG 6 The accumulation of CD74 in infected BMDCs and reduced expression of H2-DM inhibit presentation of endogenously acquired, parasite-derived
antigens in the context of MHC-II. BMDC cultures (WT, CD74�/�, and H2-DM�/�) were inoculated with either T. gondii tachyzoites at an MOI of 3:1 for live
parasites (RH�� ptub RFP, RH�cpsII ptub E�-RFP, and RH�cpsII ptub P30-E�-RFP) or 8:1 for HK parasites (RH�cpsII ptub E�-RFP). After 4 h of incubation,
fresh medium was added and pulsed or not with E� peptide at concentrations of 1, 5, and 10 �g/ml. The cells were incubated ON and then harvested and stained
for flow cytometry analysis. (A) Representative flow cytometry histograms and MFI values indicating background fluorescence (dashed boxes) and positive YAe
staining (i.e., MHC-II/E� complex-positive sample), as determined for the isotype control (left) and a positive sample (right). (B) MFI values were calculated
using the FlowJo analysis software and were normalized to the MFI value obtained for the isotype control, which determined the normal background fluores-
cence. The data are expressed as the fold increase compared to background fluorescence in arbitrary units (a.u.), where a value of 1 is no E� antigen presentation.
For cultures inoculated with parasites, infected cells or those that had phagocytosed HK parasites were distinguished from uninfected bystander cells by gating
according to RFP fluorescence. SD values, indicated by the error bars, were calculated from the results of four independent experiments. Significance was
calculated using Student’s t test (ns, not significant; *, P � 0.05; **, P � 0.01; ***, P � 0.001); values for WT cultures were used as a reference for each condition.
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MHC-II, H2-DM, and CD74 gene transcription and protein ex-
pression are typically coordinated (64), active invasion by T. gon-
dii leads to uncoordinated expression of these components in in-
fected professional antigen-presenting cells. At a genomic level,
the murine CD74 promoter consists of promoter and enhancer
elements, both unique to CD74 and shared with other class II
genes (65), which could explain the differential mRNA expression
between MHC-II genes and the CD74 gene in infected cells. T.

gondii infection may trigger a transcriptional cascade that affects
DNA elements unique to CD74 while actively suppressing addi-
tional IFN-�-induced gene transcription. This phenotype was not
observed in cells infected with other intracellular pathogens
known to inhibit MHC-II expression, namely, L. donovani (56,
57) and S. enterica serovar Typhimurium (58), which suggests
modulation of the MHC-II pathway specific to T. gondii. Induc-
tion of CD74 required active invasion by parasites, since CD74

FIG 7 Accumulation of CD74 during acute toxoplasmosis affects parasite dissemination, while CD74 and H2-DM differentially impact CD4� T cell activation
and IFN-� production. (A) Flow cytometry analysis of CD4� T cells collected from MLN of acutely infected WT, CD74�/�, H2-DM�/�, and dKO (CD74�/�

H2-DM�/�) mice was carried out. CD3ε� CD4� positive cells were gated (top) and separated according to high or low CD62L expression (middle; the expression
pattern is shown by the shaded curves). Determination of CD62Llow populations was accomplished by gating according to the isotype control (unshaded curves).
Gating according to CD25 and CD44 expression was performed (bottom), and values (percentages) for the proportions of cells included within the CD62Llow and
CD25high CD44high gates are indicated. Three independent infection trials, which included at least three animals, were carried out. Shown are representative
values from one infected animal. (B) IFN-� levels in sera from acutely infected mice were measured by ELISA with an eBioscience Mouse IFN-gamma ELISA
Ready-SET-Go! kit. The error bars indicate SD calculated from values obtained from three infected mice (for each strain). (C) RT-PCR was performed on gDNA
purified from MLN of acutely infected mice. The T. gondii B1 gene was amplified to measure the parasite load. CT values were normalized using the mouse �-actin
gene, and the 2���Ct method was used to calculate the fold increase, where the reference values were those for the infected WT mice. The error bars indicate SD
calculated from values obtained from three infected mice (for each strain). Significance was calculated using Student’s t test (ns, not significant; *, P � 0.05).
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induction was not observed with phagocytosed dead parasites or
parasite lysates, nor did it occur in uninfected bystander cells.
These observations contrast with the mechanism of decreased
MHC-II expression, since MHC-II is inhibited to a certain extent
in uninfected bystander cells within infected cultures (14), and
parasite lysates (33) and excreted-secreted antigens (66) directly
display inhibitory activity.

There is significant evidence of differences in the modulation
of the immune responses and signaling pathways by virulent type
I and avirulent type II strains of T. gondii. Polymorphisms in se-
creted rhoptry and dense granule proteins, such as ROP16,
ROP18, and GRA15, have been linked to differences in virulence
and to differential modulation of immune-related functions (18,
63, 67). According to our results, both the type I and II strains

tested elicited heightened CD74 expression during infection,
which suggests that the molecules that upregulate CD74 do not
display significant function-altering polymorphisms.

CD74 at the cell surface also acts as a receptor for MIF, and the
binding of MIF initiates the MAPK signaling pathway (59). CD74
molecules accumulated intracellularly, but not at the surfaces of T.
gondii-infected cells, making it unlikely that MIF signaling is en-
hanced. It was reported that MIF�/� mice are more susceptible to
toxoplasmosis, suffer greater liver damage, harbor more brain
cysts, and produce fewer proinflammatory cytokines (68). Sur-
prisingly, CD74�/� mice were not more susceptible to toxoplas-
mosis; the potential benefits of lacking CD74 may have out-
weighed the detrimental effects of an impaired MIF-induced
response.

FIG 8 The absence of CD74 does not affect cyst numbers at the chronic stage of infection, while absence of H2-DM increases the burden and absence of both
CD74 and H-2DM is fatal. (A) WT, CD74�/�, H2-DM�/�, and dKO (CD74�/� H2-DM�/�) mice were infected i.p. with 103 Pru� tachyzoites. Brains were
collected 20 days p.i., and RT-PCR analysis using the T. gondii B1 gene was carried out to assess the relative cyst loads. The values shown were obtained from one
representative infection trial out of three. The error bars indicate SD calculated from values obtained from three infected mice (for each strain). Significance was
calculated using Student’s t test (ns, not significant; *, P � 0.05; **, P � 0.01). Cyst counts at various time points yielded similar results. (B) Brains of infected
animals were collected 10, 15, 20, and 25 days p.i.; prepared for histological sectioning; stained with hematoxylin and eosin; and observed by microscopy.
Counting lesions was originally considered, given their higher recurrence in WT mice; however, the results were found to be variable. The arrowheads indicate
cysts within brain tissue 25 days p.i. (C) WT and dKO mice were infected i.p. with 103 Pru� tachyzoites, and the survival of the mice was monitored for 50 days.
Infection trials included five mice per strain.
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Results obtained from the in vitro E� antigen/YAe antibody
system suggest that accumulation of CD74 in infected BMDCs
coincides with the inhibition of endogenously acquired parasite-
derived antigen presentation on MHC-II molecules. A direct ef-
fect of the accumulation of CD74 in infected cells would represent,
to our knowledge, a novel mechanism of subversion of MHC-II
antigen presentation by an intracellular protozoan. MHC-II-re-
stricted antigen presentation of both exogenous and endogenous
parasite-derived antigens was significantly impaired in the ab-
sence H2-DM. In light of these results, it appears that T. gondii
induces two opposing patterns: CD74 overexpression and nega-
tive effects on parasite-derived peptide presentation within in-
fected cells and generalized inhibition of MHC-II and H2-DM
expression.

Although the precise mechanism by which CD74 blocks the
presentation of endogenous parasite-derived antigens remains
unknown, presentation of endogenous antigens from the cytosol
or other compartments on MHC-II molecules has been demon-
strated and involves autophagy or TAP-mediated mechanisms
(69, 70). An accumulation of CD74 in infected cells could poten-
tially affect the delivery to or loading of antigens onto MHC-II
molecules. In the absence of CD74, the grooves of newly synthe-
sized MHC-II molecules are left vacant and may bind to peptides
derived from the ER that are not normally presented. Of note, T.
gondii antigens can be detected in the ER of infected host cells (71).
A study with CD74�/� mice showed that lack of CD74 facilitates
the presentation of endogenously synthesized peptides by splenic
pAPCs (72). Furthermore, mass spectrometry analyses of MHC-
II-bound peptides from CD74-negative and CD74-expressing
pAPCs revealed differences in the antigen repertoires (73). It is
possible that the E�-RFP fusion protein, either secreted (ptubP30-
E�-RFP) or released from the parasite’s cytoplasm (ptubE�-RFP)
into the PV during replication, could have found its way into the
host ER and could have been made available for loading onto
MHC-II in the absence of CD74.

It has been proposed that the isoform composition of the CD74
trimers and the number of MHC-II �� dimers that associate with
the CD74 complexes determine the trafficking of MHC-II mole-
cules (74). If fewer than three �� dimers associate, the ER reten-
tion motif found in the cytoplasmic tail of CD74 prevents egress of
MHC-II from the ER; CD74 overexpression could prevent traf-
ficking of the small amount of MHC-II present in T. gondii-in-
fected cells. Other studies have shown that endosomal trafficking
is altered in cells expressing high levels of CD74 (75, 76), and
perturbed trafficking may affect antigen delivery to late endocytic
compartments and its processing and, consequently, antigen
loading on MHC-II molecules.

We measured significantly higher parasite loads in the MLN of
both CD74�/� and dKO mice than in WT or H2-DM�/� mice
during the acute phase of infection. The increased parasite num-
bers did not seem to be important for enhanced parasite replica-
tion, since no differences were observed in the replication rates of
tachyzoites in vitro in infected WT and CD74�/� BMM	 (see Fig.
S4 in the supplemental material). The total numbers of
tachyzoites during the acute phase were possibly similar, but the
dissemination pattern of T. gondii-infected cells toward lymphoid
organs differed in animals lacking CD74. Faure-André and col-
leagues have demonstrated that CD74 interacts with the actin-
based motor protein myosin II and affects cell motility in den-
dritic cells (77). WT DCs were found to alternate between high

and low motility, while CD74�/� DCs moved in a faster and uni-
form fashion (77). Consequently, CD74 negatively regulates DC
motility, perhaps, to allow more efficient sampling of antigens in
the environment. Another study showed that IFN-� and IFN-�
synergistically act with Toll-like receptor (TLR) agonists to down-
regulate CD74 and thus confer high migratory capacity on mature
DCs (78). In this regard, increased CD74 levels may delay traffick-
ing of T. gondii-infected cells to lymphoid organs, where an ade-
quate immune response can be mounted.

In the absence of CD74 and the peptide editor H2-DM,
chronic infections with an avirulent T. gondii strain became in-
variably lethal, suggesting that CD74 and H2-DM may prevent a
normal chronic infection from becoming lethal. Brain cyst num-
bers were similar in WT and CD74�/� mice at the chronic phase of
infection, while cyst burdens increased �6-fold in H2-DM�/�

mice. Mortality rates were not increased, however, in H2-DM�/�

mice. In contrast, brain cyst burdens in dKO mice were markedly
elevated (�30-fold), and these mice exhibited neurological symp-
toms early during chronic infection and succumbed to lethal
chronic infection. At this time, we cannot reject the possibility that
tachyzoites that had not converted to bradyzoites were still circu-
lating within these compromised dKO mice, contributing to the
heightened mortality rate. Further experiments are required to
examine this possibility. The precise mechanisms underlying the
heightened mortality rates in double-KO mice remain elusive, but
defective or perturbed CD4� T cell development, as shown by
lower total CD3ε� CD4� T cell counts observed in the KO strains
during acute infections (expansion) and as reported for CD74�/�

(41), H2-DM�/� (42, 79), and CD74�/� H2-DM�/� (80) naive
mice, would significantly change the outcome of toxoplasmosis
(7–9). Thus, the differences in immune responses during acute
infection and the higher number of cysts at the chronic phase in
the mouse strains lacking H2-DM might be linked to a develop-
mental CD4� T cell defect.

Collectively, our results show that T. gondii modulates MHC-
II-restricted antigen presentation through multiple mechanisms,
including transcriptional inhibition of IFN-�-induced class II
genes (MHC-II and H2-DM) and induction of CD74 expression
within infected professional antigen-presenting cells. Overall,
these immune subversion strategies would assist the parasite to
establish a successful chronic infection.
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