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The GraS Sensor in Staphylococcus aureus Mediates Resistance to Host
Defense Peptides Differing in Mechanisms of Action

Siyang Chaili,a,b,c Ambrose L. Cheung,d Arnold S. Bayer,b,c,e Yan Q. Xiong,b,c,e Alan J. Waring,a,c,e Guido Memmi,d Niles Donegan,d

Soo-Jin Yang,f Michael R. Yeamana,b,c,e

Divisions of Molecular Medicinea and Infectious Diseases,b Los Angeles County Harbor-UCLA Medical Center, Torrance, California, USA; Los Angeles Biomedical Research
Institute at Harbor-UCLA Medical Center, Torrance, California, USAc; Department of Microbiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire,
USAd; The David Geffen School of Medicine at UCLA, Los Angeles, California, USAe; School of Bioresources and Bioscience, Chung-Ang University, Anseong, Republic of
Koreaf

Staphylococcus aureus uses the two-component regulatory system GraRS to sense and respond to host defense peptides (HDPs).
However, the mechanistic impact of GraS or its extracellular sensing loop (EL) on HDP resistance is essentially unexplored.
Strains with null mutations in the GraS holoprotein (�graS) or its EL (�EL) were compared for mechanisms of resistance to
HDPs of relevant immune sources: neutrophil �-defensin (human neutrophil peptide 1 [hNP-1]), cutaneous �-defensin (human
�-defensin 2 [hBD-2]), or the platelet kinocidin congener RP-1. Actions studied by flow cytometry included energetics (ENR);
membrane permeabilization (PRM); annexin V binding (ANX), and cell death protease activation (CDP). Assay conditions sim-
ulated bloodstream (pH 7.5) or phagolysosomal (pH 5.5) pH contexts. S. aureus strains were more susceptible to HDPs at pH 7.5
than at pH 5.5, and each HDP exerted a distinct effect signature. The impacts of �graS and ��L on HDP resistance were peptide
and pH dependent. Both mutants exhibited defects in ANX response to hNP-1 or hBD-2 at pH 7.5, but only hNP-1 did so at pH
5.5. Both mutants exhibited hyper-PRM, -ANX, and -CDP responses to RP-1 at both pHs and hypo-ENR at pH 5.5. The actions
correlated with �graS or ��L hypersusceptibility to hNP-1 or RP-1 (but not hBD-2) at pH 7.5 and to all study HDPs at pH 5.5.
An exogenous EL mimic protected mutant strains from hNP-1 and hBD-2 but not RP-1, indicating that GraS and its EL play
nonredundant roles in S. aureus survival responses to specific HDPs. These findings suggest that GraS mediates specific resis-
tance countermeasures to HDPs in immune contexts that are highly relevant to S. aureus pathogenesis in humans.

Host defense peptides (HDPs) represent a critical first line of
immune protection against Staphylococcus aureus infections

(1–3). Distinct HDPs are deployed via constitutive or inducible
processes by neutrophils, keratinocytes, platelets, or other human
tissues that this organism commonly encounters (3, 4). Moreover,
distinct HDPs appear to have evolved for optimal host defense in
specific immunologic and anatomic compartments (4, 5). In turn,
pathogenic S. aureus strains have coevolved specific and rapidly
adaptive systems to sense and respond to host cues to achieve
immune avoidance or subversion.

Recently, we showed that the two-component regulatory sys-
tem (TCRS) GraSR plays a key role in S. aureus survival in the face
of HDPs (6–8). Also known to be a component of the antibiotic
peptide sensor (APS) (9, 10), GraSR upregulates adaptive resis-
tance genes such as mprF and dltA, which encode proteins that
modulate net surface charge and influence the composition of the
S. aureus envelope (11, 12). In a previous report (7), we demon-
strated that S. aureus strains with deletions in graS (�graS) or its
extracellular sensor loop (�EL) become hypersusceptible to sev-
eral cationic peptides, including calcium-complexed daptomycin
(DAP) (a cationic lipopeptide complex), polymyxin B (PMB) (a
prokaryotic cationic cyclopeptide), and human neutrophil pep-
tide 1 (hNP-1). Importantly, we observed a direct correlation
between induction of mprF and dltABCD and survival in the
face of PMB, but not hNP-1. Thus, certain HDPs may trigger
more efficient sense/countermeasure response functions medi-
ated by GraS.

These prior findings provided a logical basis for our hypothesis
that GraS or its extracellular loop (EL) mediates critical adaptive
countermeasures to specific mechanisms of HDP action in dis-

tinct anatomic contexts. Thus, the present study was designed to
explore the role of the GraS holoprotein versus its EL in mediating
resistance responses to relevant HDPs under pH conditions re-
flecting bloodstream (pH 7.5) or phagolysosomal (pH 5.5) set-
tings.

MATERIALS AND METHODS
Bacterial strains and culture conditions. Table 1 summarizes the meth-
icillin-resistant Staphylococcus aureus (MRSA) strain panel used in this
study, generated from the community-acquired MRSA strain MW2.
MW2 (USA400) is a prototypic and well-characterized clinical isolate
with a known genome that has been demonstrated to be virulent in mul-
tiple animal models. graS mutant strains were generated by in-frame de-
letion of target genes by allelic replacement using the temperature-sensi-
tive plasmid pMAD as previously detailed (7). Organisms were cultured in
brain heart infusion broth (BHI) (Becton Dickinson) at 37°C with shak-
ing overnight (�16 h), subcultured under identical conditions for 3 h to
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logarithmic phase, harvested by centrifugation, washed, and resuspended
to the appropriate CFU (culture confirmed) by spectrophotometry for
each specific assay.

HDPs. Peptides representing relevant immunologic contexts were
studied. Human neutrophil peptide 1 (hNP-1) (Peptides International,
Louisville, KY) is a prototypic �-defensin found in human neutrophil-
specific granules and is important in phagolysosomal killing of S. aureus.
Human �-defensin 2 (h�D-2; Peptides International) is a predominant
host defense peptide (HDP) elaborated by epithelial tissues throughout
the body. The mimetic peptide RP-1 is a synthetic 18-amino-acid conge-
ner engineered in part from the microbicidal �-helix domains of the
platelet factor 4 family of kinocidins (8). RP-1 was synthesized, purified,
and authenticated as previously detailed (9). Each study peptide has dem-
onstrated in vitro antimicrobial activity against S. aureus (3, 7, 8, 10).

sEL sensor domain. A soluble graS extracellular loop (sEL) sensor
domain mimetic has been previously shown to alter the survival of S.
aureus in response to certain HDPs (7). This molecule was designed to
contain three sensor motifs interposed by diglycine hinges (DYDFPIDSL-
GG-DYDFPIDSL-GG-DYDFPIDSL). A “nonsense” peptide of the same
composition but having a randomized (scrambled) sequence was also
generated and was included in assays as a control. The sEL and nonsense
peptides were synthesized, purified, and authenticated as previously de-
scribed (8, 9).

Susceptibility of graS mutants to host defense peptides. The suscep-
tibility of graS mutants to distinct HDPs was assessed using an established
radial diffusion method (10). In brief, logarithmic-phase cells adjusted to
106 CFU/ml were seeded into 10 ml of buffered 1% agarose. Piperazine-
N,N=-bis(2-ethanesulfonic acid) (PIPES) or 2-(N-morpholino)ethane-
sulfonic acid (MES) buffer was used to adjust assay conditions to pH 7.5
or pH 5.5. These pH conditions were chosen to represent relevant ana-
tomical contexts, namely, bloodstream or acidic phagolysosome, respec-
tively. Based on pilot studies, 10 �g of each HDP, alone or in combination
with an equivalent mass (10 �g) of graS EL mimetic or nonsense peptide,
was added to wells in the seeded underlay matrix and incubated at 37°C
for 3 h. The sEL peptide, nonsense peptide, and vehicle (phosphate-
buffered saline [PBS]) alone were included in each assay as internal
controls. After 3 h of incubation, plates were overlaid with nutrient
medium (Trypticase soy) and incubated for 24 h at 37°C. Zones of
inhibition (ZOI) were measured to the nearest millimeter in diameter.
A minimum of two independent experiments were conducted on sep-
arate days for statistical analysis.

Mechanisms of HDP action. Six-parameter multicolor flow cytom-
etry was used to analyze four specific mechanisms of HDP action and two
global effects associated with these mechanisms in the parental, �graS, or
�EL S. aureus strains: (i) perturbation of cell membrane (CM) energetics
(ENR) (e.g., transmembrane potential), (ii) CM permeabilization (PRM),
(iii) annexin V binding (ANX) (negatively charged phospholipids and
CM turnover (13, 14), (iv) caspase-like/metacaspase-like cell death pro-
tease induction (CDP) (11, 14, 15), (v) osmodisruption (forward scatter
[FSC]), and (vi) membrane invagination/chromosomal condensation/
cytoplasmic refractivity (side scatter [SSC] granularity). The following
fluorophores were used with a FACSCalibur instrument (Becton Dickin-

son): 3,3-dipentyloxacarbocyanine (DiOC5) (excitation, 484 nm; emis-
sion, 660 nm) (Invitrogen, Carlsbad, CA) for ENR, propidium iodide (PI)
(excitation, 535 nm; emission, 620 nm) (Sigma, St. Louis, MO) for PRM,
annexin V-allophycocyanin conjugate (ANX-V) (excitation, 650 nm;
emission, 660 nm) (Invitrogen, Carlsbad, CA) for ANX, and CellEvent
caspase-3/7 green (C-3/7) (excitation, 502 nm; emission, 530 nm) (Invit-
rogen, Carlsbad, CA) for CDP. FSC and SSC were measured in parallel.
Logarithmic-phase organisms were adjusted to 106 CFU/ml in PIPES (pH
7.5) or MES (pH 5.5) and exposed to 20 �g of each HDP of interest for 1
h at 37°C. Based on extensive pilot data, this peptide concentration was
used to achieve approximately 50% survival given the high inoculum of
bacteria exposed. A triple-stain cocktail containing DiOC5 (0.5 �M), PI
(5.0 �g/ml), and ANX-V (2.5 �l/ml) in 50 mM potassium-containing
minimal essential medium (K� MEM) (without phenol red; Sigma) was
added to each sample following incubation. Samples were stained at room
temperature for 15 min before flow cytometry. Parallel samples were in-
cubated with 30 �l of C-3/7 reagent for 30 min at 37°C following peptide
exposure. After incubation, 400 ml of PBS was added to remove any back-
ground signal. Sodium dodecyl sulfate (SDS) (10%, wt/vol; Ambion) (a
nonspecific perturbant of ENR and PRM) or buffers alone (K� MEM or
PBS) were included as controls in each experiment. Fluorescence of a
minimum of 10,000 cells was acquired from each sample, and results from
a minimum of two independent studies conducted on different days were
used for statistical analysis.

Statistical analysis. The Mann-Whitney U test was used as appropri-
ate to determine significant differences in susceptibility phenotypes and
mechanisms of HDP action in S. aureus strains.

RESULTS
Impact of pH on HDP susceptibility. The susceptibility of S. au-
reus strains to prototypic HDPs under different pH conditions is
summarized in Fig. 1 and 2. The wild-type strain was susceptible
to hNP-1 and RP-1 at both pH 7.5 and 5.5. However, this strain
was susceptible to hBD-2 only at pH 7.5. The susceptibility was
greatest for RP-1, substantially less for hNP-1, and least for
hBD-2. Notably, the wild-type strain was more susceptible to the
HDPs at pH 7.5 than at pH 5.5 (Fig. 1A and C). These susceptibil-
ity rankings were consistent for HDPs under both pH conditions,
even though absolute susceptibilities were reduced at pH 5.5.

Impact of graS or EL mutation on HDP susceptibility. At pH
7.5, the �graS and �EL mutants were significantly more suscepti-
ble to hNP-1 or RP-1 than the parental strain (Fig. 1 and 2) (P �
0.05). The �graS mutant trended toward greater hBD-2 suscepti-
bility than the parental strain, but this did not reach significance.
At pH 5.5, the mutants were significantly more susceptible to all
HDPs than the respective controls at pH 7.5. Notably, only the
�graS mutation conferred significantly greater susceptibility to
hBD-2 at pH 5.5, while the �EL mutation did not achieve signif-
icance. Complementation of mutants largely restored susceptibil-
ity to wild-type-equivalent levels (Fig. 1 and 2).

Effect of soluble EL on HDP susceptibility. The exogenous
soluble EL (sEL) did not exert intrinsic anti-S. aureus efficacy
alone (Fig. 2). At pH 7.5, it significantly protected the �graS and
�EL mutants against hNP-1 (P � 0.05) but not hBD-2 or RP-1. At
pH 5.5, the sEL protected against hNP-1 and hBD-2 (Fig. 2). In-
terestingly, the sEL did not protect any strain against RP-1 at ei-
ther pH.

Impact of graS or EL mutations on mechanisms of HDP ac-
tion. The comparative impact of HDP mechanisms on the panel
of S. aureus strains is shown in Fig. 3 and 4 and in Fig. S1 and S2 in
the supplemental material. The specific mechanisms of action of

TABLE 1 Staphylococcus aureus strains used in the current investigation

Strain Description

MW2 Wild type, community-acquired MRSA, human clinical isolate
�graS In-frame graS deletion mutant of MW2
�graScomp �graS mutant complemented with pEPSA5-expressing graRS

from MW2
�EL graS extracellular loop deletion mutant (9 amino acids

encoded in graS)
�ELcomp �EL complemented with pEPSA5-expressing graRS

from MW2
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the study HDPs versus SDS relative to the �graS or �EL mutants
are detailed below.

(i) hNP-1. In the wild-type strain, hNP-1 caused significant
increases in side scatter (SSC), energetics (ENR), and annexin V
binding (ANX) compared to those for untreated controls (P �
0.05) (Fig. 3 and 4). At pH 7.5, both the �graS and �EL mutants
exhibited decreased SSC and ANX compared to the wild type (Fig.
3). These effects reached significance in the �graS and �EL strains
for SSC or ANX, respectively. These results corresponded to bio-
logical relevance as evidenced by significantly increased suscepti-
bility of the mutants to hNP-1 (Fig. 1 and 2). Interestingly, at pH
5.5, only the �graS mutant exhibited reduced SSC and ANX ver-
sus the parent strain (Fig. 3). Complementation largely reverted
hNP-1 mechanisms to wild-type equivalence. No detectable im-
pact of hNP-1 in �graS or �EL mutants was observed regarding
forward scatter (FSC), ENR, cell membrane permeabilization
(PRM), or cell death protease activation (CDP) at either pH (Fig.
3 and 4).

(ii) hBD-2. Exposure to hBD-2 at pH 7.5 caused significant
increases in SSC, ENR, and ANX in wild-type S. aureus (Fig. 3 and

4). Relative to that for the wild type, �graS and �EL mutations led
to further increases in ANX (Fig. 3) (P � 0.05). Only the �graS
mutant displayed significantly reduced ENR versus the parental
strain. In contrast to the case for hNP-1, increased ANX was not
associated with significantly greater susceptibility to hBD-2 in the
�graS mutant at pH 7.5 (Fig. 1 and 2). The �EL mutant also
exhibited greater ANX than the wild type, but this effect did not
translate to greater hBD-2 susceptibility. At pH 5.5, hBD-2 caused
significantly increased ENR in the �EL mutant (Fig. 3 and 4).
Complementation reverted hBD-2-induced mechanisms to wild-
type equivalence in both mutant strains and at pH 5.5 appeared to
hypercompensate with respect to ANX in both revertants and with
respect to SSC and ENR in the �EL complemented strain (Fig. 3).
No detectable impact of hBD-2 was observed regarding FSC,
PRM, or CDP at either pH for either the �graS or �EL mutants
(Fig. 3 and 4).

(iii) RP-1. At pH 7.5, RP-1 exerted multiple actions in the
wild-type strain, including significant increases in SSC, PRM,
ANX, and CDP (Fig. 3 and 4). Oppositely, RP-1 caused a signifi-
cant decrease in ENR in the wild-type strain at pH 7.5. Impor-

FIG 1 Comparative efficacy of HDPs alone or in combination with the sEL against the wild type (MW2), �graS, and �EL S. aureus study strains at pH 7.5 versus
pH 5.5 in vitro. Quantitative analysis of the impact of �graS or �EL deletions on the susceptibility of Staphylococcus aureus to HDPs at pH 7.5 or 5.5 in the presence
or absence of the soluble extracellular loop (sEL) mimetic is shown. *, P � 0.05 versus wild-type control.
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tantly, both the �graS and �EL (albeit to a lesser extent) mutants
exhibited significant increases in PRM and CDP, with concurrent
significant decreases in SSC and ENR compared to those for the
wild-type control (Fig. 3 and 4) (P � 0.05). These effects trans-
lated to increased RP-1 susceptibility compared to the control
(Fig. 1 and 2). At pH 5.5, overall the effects of RP-1 were less
extensive that those at pH 7.5 in the wild-type strain. However,
both the �graS and �EL mutants exhibited significant reductions
in SSC and ENR and increases in PRM and CDP compared to the
parental strain at pH 5.5 (Fig. 3) (P � 0.05). Only the �graS mu-
tant exhibited a significant decrease in ANX at pH 5.5. Comple-
mentation largely failed to restore other RP-1-induced mecha-
nisms to wild-type levels, suggesting that RP-1 functions through
mechanisms that are less amenable to GraS-mediated counter-
measures that those of hNP-1 or hBD-2.

(iv) SDS. As anticipated, exposure of strains to the nonspecific
detergent sodium dodecyl sulfate (SDS) caused a significant re-
duction in ENR and a significant increase in PRM at pH 7.5 or 5.5.
These effects are clearly seen in the mechanistic signature map
(Fig. 4). By comparison, each HDP exhibited effects distinct from
that of SDS, which were pH dependent (Fig. 4; see Fig. S1 and S2 in
the supplemental material).

DISCUSSION

The concept of adaptive bacterial systems for sensing and re-
sponding to host cues to achieve immune avoidance or subversion
is well established (16). Among these mechanisms, the GraSR
multicomponent system appears to be integral to S. aureus de-
fense against innate immune effector HDPs (6, 7). The current
investigation builds upon our previous work by exploring the
mechanisms of resistance mediated through GraS and/or its EL in

response to HDPs of relevant immune context and under cognate
physiologic conditions (3, 4, 17). Several key findings which shed
new light on the role of GraSR in the pathogenic relationship of S.
aureus with the human host emerged from these studies.

Overall, the present data established that wild-type and mutant
S. aureus strains were more susceptible to HDPs at pH 7.5 than at
pH 5.5. This finding is consistent with our prior reports, demon-
strating that S. aureus susceptibility to �-defensins and certain
other HDPs is greater at pH 7.5 than at pH 5.5 (5, 13). Impor-
tantly, the current data revealed that distinct HDPs, even structur-
ally related defensins of different immune compartments, exert
unambiguously distinct actions against S. aureus. Furthermore,
these effects appear to be pH dependent. For example, in the wild-
type strain, hNP-1-mediated killing at either pH 7.5 or 5.5 corre-
lated significantly with increases in ANX and SSC. These findings
are consistent with our prior report showing that the HDP throm-
bin-induced platelet microbial protein 1 (tPMP-1) induces cyto-
plasmic membrane invagination and nucleic acid condensation
correlating with chromosomal condensation, cytoplasmic refrac-
tivity, and inhibition of macromolecular synthesis (18, 19). hBD-2
exerted anti-S. aureus efficacy predominantly at pH 7.5. This effi-
cacy was associated with significant hyperpolarization (ENR) and
ANX in the wild-type strain. The staphylocidal effects of these
mechanisms appear to be pH dependent, given that similar events
observed at pH 5.5 were not associated with hBD-2 efficacy. In
contrast, the platelet kinocidin mimetic RP-1 exerted multiple
actions at both pH 7.5 and 5.5. The key mechanistic signature of
RP-1 efficacy in wild-type S. aureus included simultaneous in-
creases in SSC, PRM, ANX, and CDP, with a significant decrease
in ENR. These mechanisms were amplified at pH 7.5 versus 5.5.,

FIG 2 Susceptibility of S. aureus study strains to HDPs at pH 7.5 versus 5.5 in the presence or absence of the sEL or nonsense peptide (NS; scrambled sEL). A
negative control (double-distilled water [ddH2O]) is shown as the center well. Note the differential consequences of �graS versus �EL mutations under distinct
pH conditions, with overall lower absolute efficacy of HDPs against the wild-type (WT) strain at pH 5.5 and of hBD-2 against the WT and �graS (but not �EL)
strains at pH 5.5.
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consistent with greater RP-1 efficacy at pH 7.5. Importantly, the
mechanistic signature of each HDP mentioned above was clearly
distinct from that of the nonspecific detergent SDS. This observa-
tion affords cogent evidence that HDPs exert specific, targeted,
and context-dependent effects that confront S. aureus and its
GraSR system.

The �graS and �EL mutants exhibited significant and equiva-
lent increases in susceptibility to hNP-1 under pH conditions de-
signed to reflect bloodstream (pH 7.5) or phagolysosomal (pH
5.5) immune contexts. Mechanistically, increases in hNP-1-in-
duced killing of these mutants at pH 7.5 corresponded to de-
creased SSC and ANX compared to those for the wild-type strain.

These results suggest that the GraS holoprotein confers adaptive
responses to S. aureus that yield intracellular countermeasures
manifesting as increased CM turnover, including changes in phos-
pholipid location and/or composition. At pH 7.5, the finding that
these events were equivalent in the EL and graS mutants strongly
suggests that, at least for hNP-1, the EL is sufficient for the sensing
function of the GraSR system. At pH 5.5, hNP-1 exhibited less
efficacy than at pH 7.5 for all strains tested. However, the �graS
mutant exhibited greater susceptibility to hNP-1 at pH 5.5 than
the wild type, and in inverse relation to ANX. Further, the ANX
response was dependent on the GraS system, as both the �graS
and �EL mutants were deficient in mounting a protective ANX

FIG 3 Quantitative mechanisms of HDPs against Staphylococcus study strains at pH 7.5 versus 5.5 in vitro. Data represent median percent differences versus
wild-type MW2 normalized to buffer alone. *, significance defined as a change of �5% which also achieved a P value of �0.05 versus the WT control
(Mann-Whitney U test of 10,000 event sample population). The following mechanisms of action (y axis) were determined using multicolor flow cytometry: side
scatter (SSC) (intracellular refraction/cytoplasm condensation), cellular energetics (ENR) (transmembrane potential), cell membrane permeabilization (PMR)
(propidium iodide uptake), negatively charged phospholipid accessibility (ANX) (cytoplasmic membrane turnover [e.g., extracellular exposure of intracellular
leaflet bilayer]), and caspase-like/metacaspase-like cell death protease activation (CDP). In contrast to HDPs, the nonspecific detergent SDS caused strong
cellular de-energization and increased membrane permeabilization in all strains independent of pH (see Fig. 4). In contrast, study HDPs exerted one or more
specific mechanisms of action that were influenced by pH.
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response observed in the wild-type parent. This theme was ampli-
fied at pH 5.5, a condition likely encountered within the neutro-
phil phagolysosome.

Several new insights also emerged regarding the interaction of
hBD-2 with the GraS system in S. aureus. At pH 7.5, neither the
�graS nor the �EL mutation rendered S. aureus more susceptible
to hBD-2. However, at pH 5.5, the �graS mutation led to an in-
crease in susceptibility to this HDP; a lesser effect was also ob-
served with the �EL mutant. This pattern of results suggests novel
intersections of GraS function and hBD-2 activity under distinct
pH conditions. First, efficacy at pH 7.5 corresponded to impair-
ment of ANX in the �graS mutant, indicating that GraS mediates
important CM turnover required for survival in response to
hBD-2. Second, given that neither the charge nor the conforma-
tion of hBD-2 is significantly different at pH 7.5 versus 5.5 (13,
17), the GraSR system rather than the peptide hBD-2 may func-
tion more differently under distinct pH conditions. Third, the
observation that the full �graS deletion, and not the �EL muta-
tion alone, conferred distinct vulnerability to hBD-2 indicates that
the GraS holoprotein is more influenced by pH than is its EL.
Several mechanisms underlying this relationship may exist, in-
cluding conformational dynamics, the impact of a �pH gradient
(electron motive force), or the influence of charge or osmotic
conditions targeting the holoprotein rather than the EL sensor
motif. Thus, it appears that at neutral pH (e.g., in the blood-
stream), the holoprotein and the EL domain of the sensor are
functionally equivalent. However, at acidic pH (e.g., in phagoly-
sosomes), EL sensing of an HDP may not be as effectively trans-
duced by the GraS holoprotein and thus may fail to convey an

adaptive survival response(s) to the organism. This finding is sup-
ported by the observation that the sEL protected the �graS mutant
against hBD-2 at pH 5.5. Therefore, the GraS holoprotein and its
EL motif appear to play complementary, nonredundant roles in
sensing specific hBD-2 and conveying adaptive responses to S.
aureus.

Compared to defensin hNP-1 or hBD-2, the platelet kinocidin
mimetic peptide RP-1 exerted a much more complex mechanistic
signature that correlated with overall greater susceptibility of S.
aureus under pH conditions reflecting the bloodstream (pH 7.5)
or phagolysosome (pH 5.5). The �graS mutant, and to a lesser
extent the �EL mutant, exhibited significant increases in key
mechanisms of RP-1 action compared to controls. These mecha-
nisms included increases in CM functions (increased PRM and
decreased ENR) and the rapid induction of cell death-like path-
way(s) (e.g., increased ANX and CDP) compared to the case for
the wild type. Consistent with these findings, the sEL failed to
protect any S. aureus strain from killing by RP-1 at either pH.
Collectively, these findings indicate that RP-1 exerts multiple ef-
fects against which the GraS holoprotein or its EL afford protec-
tive responses. As RP-1 is not a defensin and differs markedly from
hNP-1 or hBD-2 in physicochemical parameters, it is likely that
HDPs of distinct structure exert differential actions against which
the GraSR system may or may not convey effective resistance.
Thus, the considerably greater efficacy compared to other study
HDPs suggests that multiple S. aureus countermeasures are re-
quired for survival in response to RP-1 in the bloodstream or
upon interactions of platelets with neutrophils in the acidic
phagolysosome (3).

FIG 4 Mechanistic signature mapping of HDPs against Staphylococcus study strains at pH 7.5 versus 5.5 in vitro. Exposure conditions (y axis) included control
(CTL) (buffer alone), the indiscriminant membrane detergent sodium dodecyl sulfate (SDS), hNP-1 (HNP), hBD-2 (HBD), and RP-1 (RP1). Mechanisms of
action (x axis) were determined using multicolor flow cytometry: forward scatter (FSC) (cell size/shape), side scatter (SSC) (intracellular refraction indicative of
cytoplasm condensation [see Materials and Methods]), cellular energetics (ENR) (transmembrane potential), cell membrane permeabilization (PMR) (pro-
pidium iodide uptake), negatively charged phospholipid accessibility (ANX) (cytoplasmic membrane turnover [e.g., extracellular exposure of intracellular leaflet
bilayer]), and cell death protease activation (CDP). Percent increases (yellow-orange-red) or decreases (blue-indigo-violet) in mechanisms of action recorded 1
h postexposure are integrated in each signature map. Significant changes compared to the untreated control are indicated by black squares. Mechanistic
signatures are shown at pH 7.5 (A) and pH 5.5 (B). As anticipated, de-energization and increased membrane permeabilization were strongly induced by the SDS
control at either pH. In comparison, the study HDPs exerted one or more specific mechanisms of action that were unambiguously distinct from that of SDS and
that in many cases differed at pH 7.5 versus 5.5.
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The current findings are consistent with prior data which sug-
gested that GraSR is involved in stress responses and potential
mechanisms of action of other peptide anti-infective agents, in-
cluding daptomycin, LL-37, and the experimental agent brilacidin
(20). Other studies have suggested that GraX as well as distinct
two-component regulatory systems, such as VraSR and NsaSR,
are also involved in S. aureus responses to antibiotics (21, 22).
Likewise, Stk1/Stp1 signaling appears to cross talk with GraSR in
modulating S. aureus cell wall charge (23). GraSR may have special
relevance to sensing peptide-based agents, including vancomycin
(glycopeptide), daptomycin (lipopeptide), and structurally or
functionally similar host defense peptides.

In a broader view, the present results also support hypotheses
regarding novel mechanisms by which peptide anti-infectives may
target S. aureus via the GraSR or other systems (30–33). The cur-
rent data suggest that certain HDPs induce cell death pathways in
S. aureus such as exist in many other pathogenic bacteria (14, 15,
24–28). For example, when exposed to certain HDPs, S. aureus
exhibits a sharp increase in annexin V binding (ANX) consistent
with access to hydroxylated or otherwise negatively charged lipids
(29). S. aureus is not known to make phosphatidylserine, the clas-
sic binding ligand of annexin V; whether a novel phosphatidylser-
ine intermediate or like lipid emerges as a result of HDP exposure
remains to be determined. Likewise, the present data suggest that
certain peptides lead to activation of proteases associated with cell
death (CDP) which cleave amino acid motifs of caspase- or meta-
caspase-like substrates. These findings align with responses to
HPD actions reflecting pathways (14, 15) that are initiated by
altered membrane integrity (e.g., permeability [PRM] and poten-
tial [ENR]), leading to chromosomal condensation (e.g., SSC [18;
this study) and perturbed macromolecular synthesis (19) and
yielding rapid and irreversible cell death (see Fig. S2 in the supple-
mental material). GraS-mediated countermeasures to these
mechanisms appear to involve cell membrane potential (ENR)
equilibration and membrane lipid turnover (ANX) to limit fur-
ther HDP-mediated injury and minimize HDP access to intracel-
lular targets. Thus, deficient GraS holoprotein or EL-mediated
functions render S. aureus less able to adaptively respond to HDPs
and more vulnerable to killing by certain HDPs. While HDP-
mediated cell death in S. aureus has been understudied to date,
the current findings suggest coordinated programs that have the
potential to be targeted by novel anti-infective peptides or other
agents.

Limitations of the current studies should also be understood.
Most importantly, studying the effects of HDPs in vitro cannot
fully recapitulate the complex conditions under which they func-
tion in vivo. In addition, only selected mechanistic parameters
were studied in the current investigations. Although our novel
approach to define mechanistic signatures led to new insights into
HDP interactions with S. aureus, there are likely other mecha-
nisms of HDP action that are counteracted by GraS/EL which
contribute to differences in susceptibility under distinct condi-
tions. Studies using increasingly specific GraS or EL mutations,
broader GraSR TCS disruptions, and more specific mechanistic
probes should afford a more complete understanding. Investiga-
tion of potentially unique structure-mechanism relationships of
HDPs with the GraSR system is in progress in our laboratory.
Nonetheless, the present results offer new insights into the host-
pathogen relationships between HDPs and S. aureus adaptive re-

sistance responses, which are likely more complex than has been
understood previously.
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