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RESEARCH Open Access

A novel multi-network approach reveals
tissue-specific cellular modulators of
fibrosis in systemic sclerosis
Jaclyn N. Taroni1, Casey S. Greene2, Viktor Martyanov1, Tammara A. Wood1, Romy B. Christmann3,
Harrison W. Farber4, Robert A. Lafyatis3,5, Christopher P. Denton6, Monique E. Hinchcliff7, Patricia A. Pioli8,
J. Matthew Mahoney9* and Michael L. Whitfield1*

Abstract

Background: Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal
organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved
affected tissues or if each manifestation has a distinct underlying pathology.

Methods: We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected
tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary
fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all
tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network
analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and
fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets
for enrichment in skin and lung using a Wilcoxon rank sum test.

Results: We identified a common pathogenic gene expression signature—an immune–fibrotic axis—indicative of
pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells)
affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of
this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional
genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to
skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid
stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation
transcriptional programs in SSc-associated PF lung and in the skin of patients with an “inflammatory” SSc gene
expression signature.

Conclusions: Our results suggest that the innate immune system is central to SSc disease processes but that subtle
distinctions exist between tissues. Our approach provides a framework for examining molecular signatures of
disease in fibrosis and autoimmune diseases and for leveraging publicly available data to understand common and
tissue-specific disease processes in complex human diseases.

Keywords: Systemic sclerosis, Scleroderma, Macrophage, Lung disease, Functional genomics

* Correspondence: john.m.mahoney@uvm.edu;
michael.l.whitfield@dartmouth.edu; michael.whitfield@dartmouth.edu
9Department of Neurological Sciences, Larner College of Medicine, University
of Vermont, HSRF 426, 149 Beaumont Avenue, Burlington, VT 05405, USA
1Department of Molecular and Systems Biology, Geisel School of Medicine at
Dartmouth, 7400 Remsen, Hanover, NH 03755, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Taroni et al. Genome Medicine  (2017) 9:27 
DOI 10.1186/s13073-017-0417-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-017-0417-1&domain=pdf
mailto:john.m.mahoney@uvm.edu
mailto:michael.l.whitfield@dartmouth.edu
mailto:michael.whitfield@dartmouth.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Integrative genomics has yielded powerful tissue-specific
functional networks that model the interaction of genes in
these specialized “microenvironments” [1]. These tools
hold promise for understanding how genes may contrib-
ute to human diseases [2] that arise, in part, out of an ab-
errant interplay of cell types and tissues. Network biology
has played a crucial role in our understanding of complex
human diseases such as cancer [3, 4] and, more recently,
in disorders where the interactions among multiple tissues
are dysregulated [5]. Analytical approaches that leverage
biological “big data” can be especially fruitful in rare and
heterogeneous diseases [6], for which the risk of mortality
is significant and no approved treatments exist. We per-
formed an integrative, multi-tissue analysis for systemic
sclerosis (SSc; scleroderma), a disease for which all of
these tenets are true, and included samples from patients
with pulmonary fibrosis (PF) and pulmonary arterial
hypertension (PAH).
SSc is a systemic disease characterized by abnormal

vasculature, adaptive immune dysfunction (autoanti-
body production), and extracellular matrix (ECM) de-
position in skin and internal organs. The etiology of
SSc is unknown, but it has complex genetic risk [7]
and postulated triggers include immune activation by
cancer [8], infection [9], or dysbiosis [10]. SSc is clin-
ically heterogeneous, with some patients experiencing
rapidly progressive skin and internal organ disease
while others have stable disease that is largely limited
to skin. Understanding the molecular processes in
multiple affected organ systems is critical to under-
standing the pathogenesis of SSc and other complica-
tions, such as PF and PAH, that co-occur in these
patients. Here, we ask if deregulated pathways are
distinct or common between these tissues affected by
SSc and if each organ manifestation has distinct dis-
ease signatures at the molecular level.
An integrative genomics study of SSc is of particular

importance. Gene expression data from multiple tissues,
including skin [11–13], lung [14, 15], and esophagus
(ESO) [16], now exist. However, the rarity of the disease
results in studies with small sample sizes and the multi-
organ nature makes it difficult to assess molecular changes
across organ systems relative to controls. Therefore, ana-
lyzing the data from multiple tissues that are more diffi-
cult to obtain (e.g., esophagus and lung) in the context of
tissues that are more easily assayed (e.g., skin and periph-
eral blood) is a powerful way to make inferences about
pathogenesis in internal organs. In addition, putting SSc
disease-specific findings in the context of tools built from
biological big data is a way to bolster and refine our find-
ings for this rare disease.
We previously developed mutual information consen-

sus clustering (MICC) to identify gene expression that

is conserved across multiple, disparate datasets [17]. Here
we expanded MICC to perform an integrative, multi-
tissue analysis of SSc and related fibrotic conditions.
We included gene expression datasets from ten differ-
ent cohorts representing four different affected tissues
from patients with SSc. Following MICC, we used the
Genome-scale Integrated Analysis of gene Networks in
Tissues (GIANT) tissue-specific functional genomic
networks [1] to identify gene–gene interactions among
those expressed consistently across affected tissues.
These big data approaches integrate individual experi-
ments measuring hundreds of disease states and bio-
logical perturbations. Integration of these data holds
promise for understanding how genes contribute to
organ-specific manifestations of human diseases [2].
These GIANT networks are a detailed, genome-scale
representation of the functional interactions between
genes in different microenvironments.
We identified a pathogenic signature—a common

“immune–fibrotic axis”—that is present in all tissues
analyzed and is increased in the most severe disease com-
plications, including PF and PAH. Using tissue-specific
functional networks [1], we analyzed the nature of the im-
mune–fibrotic axis to understand the gene–gene interac-
tions that underlie fibrosis across organ systems. Using
differential network analysis, we were able to identify
skin- and lung-specific gene–gene interactions relevant to
macrophage (MØ) plasticity and SSc pathophysiology. We
now propose a model that implicates alternatively acti-
vated MØs as part of the immune–fibrotic axis that may
drive fibrosis in multiple tissues.

Methods
Patients and datasets
Eight out of ten datasets included in this study were pre-
viously published (Table 1). All patients in these studies
met the American College of Rheumatology definition
for SSc [18]; Additional file 1 summarizes the patient
information to which we had access on a per-array basis.
A total of 573 samples from 321 subjects recruited at
seven independent centers were analyzed. These data
represent samples from four different affected tissues de-
rived from seven different clinic centers in the US and
Europe. Data include SSc and control skin from a Uni-
versity of California, San Francisco cohort [11], a Boston
University cohort [12], and a Northwestern University
cohort [13, 17]. Many patients in the skin cohorts pro-
vided lesional (forearm) and non-lesional (back) skin
biopsies; a subset of patients in the Northwestern skin
cohort provided biopsies longitudinally over time as part
of a clinical trial for mycophenolate mofetil. Peripheral
blood mononuclear cells (PBMC) samples from patients
with and without SSc-associated PAH (SSc-PAH), patients
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with idiopathic PAH (IPAH), and healthy controls were
included from a Boston University cohort [19] and a Uni-
versity of Colorado PAH cohort [20]. Lung data contained
a cohort of late or end-stage patients that underwent lung
transplant at the University of Pittsburgh [15] and a
second cohort of open lung biopsies from early SSc-
associated PF (SSc-PF) obtained in Brazil [14]. The
lung biopsies included patients with SSc-PF, idiopathic
PF (IPF), SSc-PAH, and idiopathic PAH (IPAH). Data
on previously unpublished samples were also included
in these analyses. These are two datasets of skin biopsies
from patients with limited cutaneous SSc (LSSc) recruited
from University College London (UCL)/Royal Free
Hospital and Boston University Medical Center. Only data
that were judged to be high quality were included in the
analyses. To our knowledge, there was no overlap between
the patient cohorts beyond five patients recruited at
Northwestern that provided both skin and esophageal
biopsies. We summarize all patient cohorts in Additional
file 1. A more detailed description of the patient popula-
tions and criteria for inclusion can be found in the pri-
mary publications.
We used the patient disease label (e.g., PAH) as

published in the original work for all of these sets.
Below, we note some important characteristics (for the
purposes of this work) of the included patient popula-
tions. As noted in the “Results” section, the two lung
datasets contained patients with different histological
patterns of lung disease. Some patients included in the
PBMC dataset, including those with PAH, also had
interstitial lung disease, though exclusion of these pa-
tients does not significantly change the interpretation
as put forth in Pendergrass et al. [19]. As illustrated in
Additional file 1, two datasets (ESO, LSSc) did not
contain healthy control samples and three datasets
(UCL, LSSc, and PBMC) were comprised entirely of
LSSc patients.

Microarray dataset processing
This work contains ten datasets on multiple microarray
platforms. Agilent datasets (Pendergrass, PBMC, Mi-
lano, Hinchcliff, ESO, UCL, LSSc) used either Agilent
Whole Human Genome (4x44K) Microarrays (G4112F)
(Pendergrass, PBMC, Milano, Hinchcliff, ESO, UCL) or
8x60K (LSSc). Data were Log2-transformed and lowess
normalized and filtered for probes with intensity twofold
over local background in Cy3 or Cy5 channels. Data were
multiplied by −1 to convert to Log2(Cy3/Cy5) ratios.
Probes with >20% missing data were excluded. The Illu-
mina dataset (Bostwick, HumanRef-8 v3.0 BeadChips) was
processed using variance-stabilizing transformation xand
robust spline normalization using the lumi R package. Dr.
Christmann provided the raw data in the form of.CEL
files. Dr. Feghali-Bostwick provided Illumina BeadSum-
mary files. Affymetrix datasets (Risbano, HGU133plus2;
Christmann, HGU133A_2) were processed using the
Robust Multiarray Averaging (RMA) method as imple-
mented in the affy R package. Batch bias was detected
in the ESO dataset. To adjust these data, missing
values were imputed via k-nearest neighbor algorithm
using a GenePattern [21] module with default param-
eters and the data were adjusted using ComBat [22]
run as a GenePattern module to eliminate the batch
effect.
To compare datasets in our downstream analysis,

duplicate genes must not be present in the dataset
and must be summarized in some way. First, we an-
notated each probe with its Entrez gene ID. Agilent
4x44K arrays were annotated using the hgug4112a.db Bio-
conductor package. LSSc was annotated using UNC
Microarray Database with annotations from the manufac-
turer. Probes annotated to lincRNAs (A19) were removed
from the analysis. The Illumina dataset was annotated by
converting the gene symbols (provided as part of the
BeadSummary file) to Entrez IDs using the org.Hs.eg.db

Table 1 Datasets included in this study

Dataset label Tissue Phenotypes of interest References GEO accession

Milano Diffuse skin Inflammatory subset, proliferative subset Milano et al. [11] GSE9285

Pendergrass Diffuse skin Inflammatory subset, proliferative subset Pendergrass et al. [12] GSE32413

Hinchcliff Diffuse skin Inflammatory subset, proliferative subset Hinchcliff et al. [13]
Mahoney et al. [17]

GSE45485,
GSE59785

LSSc Limited skin NA Present study GSE76806

UCL Limited skin NA Present study GSE76807

Christmann Lung SSc-PF Christmann et al. [14] GSE76808

Bostwick Lung SSc-PF, IPF, IPAH, SSc-PAH Hsu et al. [15] GSE48149

ESO Esophagus Inflammatory subset, proliferative subset, SSc-PAH Taroni et al. [16] GSE68698

PBMC PBMC SSc-PAH Pendergrass et al. [19] GSE19617

Risbano PBMC IPAH, SSc-PAH Risbano et al. [20] GSE22356

Abbreviations: ESO Esophagus, GEO Gene Expression Omnibus, IPAH idiopathic pulmonary arterial hypertension, IPF idiopathic pulmonary fibrosis, PAH pulmonary
arterial hypertension, PBMC peripheral blood mononuclear cells, PF pulmonary fibrosis, NA not available
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package. The Risbano PBMC dataset was annotated using
the hgu133plus2.db package. The Christmann dataset was
annotated using an annotation file from the manufacturer.
Probes that did not map to any Entrez ID and probes that
mapped to multiple Entrez IDs were removed in all cases.
Probes that mapped to the same Entrez ID were collapsed
to the gene mean using the aggregate function in R,
followed by gene median centering.

Clustering of microarray data and statistical tests for
phenotype association
The collapsed datasets were used to find coherent
coexpression modules. We used Weighted Gene Co-
expression Network Analysis (WGCNA), a strong cluster-
ing method, which allows us to automatically detect the
number of coexpression modules and remove outliers
[23]. Each dataset was clustered using the blockwise-
Modules function in WGCNA R package using the
signed network option and power = 12; all other param-
eters were set to default. WGCNA does not identify
large, densely connected coexpression modules in random
data [23] and although changing the soft-thresholding
power ultimately changes the resulting modules, we and
others find the resulting modules to be stable and con-
cordant across parameter choices [23].
Using the WGCNA coexpression modules also re-

duces the dimensionality of the dataset, as it allows us
to test for genes’ association with, or differential ex-
pression in, a particular pathophenotype of interest on
the order of tens, rather than thousands, using the
module eigengene. The module eigengene is the first
principal component and represents the expression of
all genes in a module and an idealized hub of the
coexpression module. We used the moduleEigengenes
function in the WGCNA R package to extract the eigen-
genes. A module was considered to be pathophenotype-
associated if the module eigengene was significantly differ-
entially expressed in or significantly correlated with a
pathophenotype of interest. Only two-class categorical
variables were considered using a Mann–Whitney U test
(i.e., all pulmonary fibrosis and pulmonary arterial hyper-
tension patients were grouped together regardless of
underlying etiology). We used Spearman correlation for
continuous values. P values were Bonferroni-corrected on
a per-phenotype basis. See Additional files 2, 3, 4, 5,
6, 7, 8, and 9 for complete output of these analyses.
In the main text, we discuss categorical pathopheno-
types, as these were enriched at the consensus cluster
level. We do find instances of coexpression modules
that are associated with continuous pathophenotypes,
such as pulmonary function test measurements, but
these were not apparent at the consensus cluster level
of abstraction.

Module overlap network construction and community
detection
The ten-partite “module overlap network” was con-
structed as in Mahoney et al. [17], where it was called
the “information graph” due to its relationship to infor-
mation theory. We describe the method here in brief
and refer to Mahoney et al. [17] for motivating details.
The modules from different datasets have no a priori re-
lationship to each other. The module overlap network
encodes the pairs of modules that significantly overlap.
Specifically, for each pair of modules (Ci and Cj) we
compute an overlap score:

Wij ¼
Ci∩Cj

�� ��

N
log

Ci∩Cj

�� ��

Cij j Cj

�� �� ð1Þ

where N is the total number of genes shared between
the two datasets. The overlap scores can be positive,
negative, or zero, indicating that the modules overlap
more, less, or the same as expected at random, respect-
ively. As shown in Mahoney et al. [17], the overlap
scores can be naturally thresholded using information
theory to yield a sparse network of significant over-
laps—the module overlap network. We performed a
permutation test to test the significance of the mutual
information between a pair of partitions (datasets) and
found that the true value of the mutual information of
partitions was higher than all sampled values of the null
distribution (permuted p = 0; see Additional file 10 for
permutation test details and Additional file 11 for the
results of this test). This is consistent with mutual in-
formation being implicitly computed relative to a null
model.
The module overlap network is highly structured. For

example, a module representing an inflammatory process
in skin often significantly overlaps inflammatory modules
in other tissues. Thus, the structure of the module overlap
network corresponds to the biological processes that are
common to multiple datasets. We can identify these pro-
cesses by clustering the module overlap network itself.
Community detection is a procedure used to identify clus-
ters in networks. The type(s) of community detection we
employed is based on the concept of modularity (see
also Additional file 12; Glossary of terms used in this
paper). Networks with high modularity have sets of
nodes (here, coexpression modules) that are more
densely connected within a set and more sparsely con-
nected outside of that set [24]. Community detection
methods based on this concept take into account the
expected amount of edges within a set of nodes and de-
tect the sets of nodes that are more densely connected
than expected (communities) [25].
We used two methods of community detection. First, we

used fast-greedy modularity maximization (implemented in
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Matlab) [24], which yielded large, diffuse communities.
(The fast-greedy modularity optimization algorithm has a
known bias for the size of communities it selects and is
thought to find “low-resolution” clusters in some cases
[25].) We call these “top-level” communities. We tested
whether the modularity of the module overlap network as
calculated by fast-greedy community detection was signifi-
cant relative to a network where module labels are ran-
domly permuted. This allowed us to assess whether the
module overlap graph had significant community struc-
ture; the results were highly significant (permuted p = 0;
see Additional file 10 for permutation test details).
Because the above algorithm is greedy, it only finds a

local maximum for modularity. To find smaller, more
densely connected sub-communities, we used spin-glass
community detection (igraph R package implementation,
max number of communities = 10, all other parameters
were set to default) [26, 27]. This algorithm implements
a stochastic algorithm to maximize the modularity
function resulting in tighter clusters than the fast-
greedy algorithm [27]. We call these “bottom-level”
communities. The community/sub-community struc-
ture of the module overlap network demonstrates that
there is a hierarchy of biological processes that are
common across datasets, where large communities con-
tain smaller ones. To display this hierarchical commu-
nity structure, we first sorted by top-level community
label, and then within each community we sorted by
bottom-level label. The adjacency matrix of the module
overlap network and its node attributes (including
dataset of origin and community labels) are supplied in
Additional files 13 and 14, respectively.
We also tested each top-level community in the mod-

ule overlap network for enrichment of pathophenotype-
associated modules for each phenotype of interest using
a Fisher’s exact test followed by Bonferroni correction
(Table 2). This test takes into account both modules
that had increased and decreased in pathophenotypes
under study.

Functional and pathophenotype annotation of the
module overlap network
The module overlap network contains rich information
about the biological processes that are active in each tis-
sue under study. We functionally annotated the module
overlap network by finding pathways that strongly cor-
relate to each community. Because an edge in the mod-
ule overlap network corresponds to a significant overlap
between coexpression modules from different datasets,
we can think of an edge “encoding” that overlap as a
gene set. For each pair of coexpression modules Ci and
Cj, we define an “edge gene set”, Eij, as the overlap
between the two datasets:

Eij ¼ Ci∩Cj ð2Þ

To annotate this edge gene set with biological path-
ways, we computed the Jaccard similarity of an edge
gene set E and a pathway P:

J E; Pð Þ ¼ jE∩Pj
jE∪Pj ð3Þ

We used biological pathways from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [28],
BioCarta, and Reactome [29] obtained from Molecular
Signatures Database from the Broad Institute (http://
software.broadinstitute.org/gsea/msigdb). The Jaccard
similarity between the edge and pathway will be equal
to one if all of the genes shared between two modules
are exactly the same set of genes annotated to the path-
way, or zero if no genes are shared between the two
sets. To functionally annotate a community in the in-
formation graph, we compared the Jaccard similarities
of the edges within the community to edges outside of
the community using a Mann–Whitney U test (with
Bonferroni adjustment). The full results of this analysis
are included as Additional files 15, 16, 17, 18, 19, 20,
21, 22, and 23.

Tissue consensus gene sets
To understand how the immune and fibrotic responses in
these phenotypes are functionally related, we found the
consensus genes in the combined 4A and 4B clusters.
Tissue consensus gene sets were derived by considering
all modules within 4A and 4B, finding their unions within
their dataset, and then computing their intersection across
datasets from the same tissue of origin. For example, the
lung consensus gene set (CClung) was derived by comput-
ing the union of the Christmann (denoted c) and Bostwick
(denoted b) modules in 4AB separately, and then comput-
ing the intersection across these two datasets:

Table 2 Bonferroni-corrected p values, Fisher’s exact test
pathophenotype-associated modules in top-level communities
in the module overlap graph

Top-level
community

“In SSc”
p value

“In inflammatory”
p value

“In proliferative”
p value

“In PAH”
p value

“In PF”
p value

1 1 0.02 1 1 1

2 0.71 0.07 1 1 1

3 0.09 0.27 1 0.77 0.29

4 8.56E-07 6.30E-12 1 0.30 1

5 1 1 0.03 1 1

6 1 1 1 1 1

7 1 0.64 1 0.03 1

8 1 1 1 1 1

Taroni et al. Genome Medicine  (2017) 9:27 Page 5 of 24

http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb


CClung ¼ ∪c∈C 4AB
c

� �
∩ ∪b∈B4ABbð Þ ð4Þ

As each tissue was considered separately (limited skin
and diffuse skin were considered separately), five tissue
consensus gene sets were generated; the union of these
tissue consensus datasets was used to query the
functional genomic networks and is referred to as the
“immune–fibrotic axis consensus” gene set or genes
throughout the text. For all genes in modules in clus-
ters 4A and 4B, we calculated the Pearson correlation
to their respective module eigengene. We compared this
correlation of consensus genes to that of non-consensus
genes using a Mann–Whitney U test. Additional file 24
contains the tissue consensus genes from 4AB or the im-
mune–fibrotic axis consensus genes.

Querying GIANT functional networks, single tissue
network analysis, and network visualization
The GIANT functional genomic networks were ob-
tained as binary (.dab) files and processed using the
Sleipnir library for computational functional genomics
[30]. We queried all networks (lung, skin, “all tissue”,
macrophage) using the immune–fibrotic axis consensus
gene sets (as Entrez IDs) and pruned all low probability
(<0.5) edges. All networks are available for download
from the GIANT webserver (http://giant.princeton.edu/)
[1]. For the single tissue analysis (e.g., lung network), we
considered only the largest connected component of each
network and performed spin-glass community detection
as implemented in the igraph R package [27] to obtain the
functional modules. We annotated functional modules
using g:Profiler [31] using all genes in a module as a query.
All networks in this work were visualized using Gephi
[32]. The network layout was determined by community
membership, the strength of connections between com-
munities, and finally the interactions between individual
genes. The lung network node attribute file and edge lists
are supplied as Additional files 25 and 26.

Differential network analysis
The tissue-specific networks from GIANT allow for the
analysis of the differing functional connectivity between
genes in different microenvironments. In order to
understand the specific immune–fibrotic connectivity
in lung relative to skin, we performed a differential
network analysis. To compare networks we retained
only nodes common to the largest connected compo-
nents of the consensus skin and lung networks (see
"Querying GIANT functional networks, single tissue
network analysis, and network visualization"). We de-
fine the “differential lung network” as the network with
adjacency matrix:

Adiff ¼ max Alung−max Askin; Aglobal
� �

; 0
� � ð5Þ

where Alung, Askin, and Aglobal are the lung, skin, and
global (all tissues) adjacency matrices from GIANT. The
differential lung network is thus the lung network minus the
maximum edge weight from the skin and lung networks,
where all edges that are stronger in skin or the global net-
work are set to zero. Thus, the differential lung network
contains only highly lung-specific interactions. Functional
modules in the lung differential network were found using
spin-glass community detection (see "Querying GIANT
functional networks, single tissue network analysis, and net-
work visualization") within the largest connected component
of the network. The differential lung network node attributes
and edge list are supplied as Additional files 27 and 28.
To perform the macrophage-specific network analysis

in the supplemental material, we subtracted global edge
weights from the macrophage network, setting negative
edges to zero (as above). We then permuted the order of
the adjacency matrix (edges) 1000 times and assessed if
the true weight within a community was more than ran-
dom (red), less than random (blue), or no different from
random (white). We performed the same permutation
testing on the lung network with global subtraction and
found more weight than expected “on-diagonal” and less
weight than expected “off-diagonal”; this demonstrates
how spin-glass community detection takes into account
the expected distribution of edges.

Differential expression and MØ gene set analysis
To identify genes that were differentially expressed in SSc-
PF, SSc-PF samples were compared to normal controls in
both datasets using Significance Analysis of Microarrays
(SAM [33]; 1000 permutations, implemented in the samr R
package [33]). Genes with a false discovery rate (FDR) <5%
were considered further. The MØ gene sets used in this
study are WGCNA modules taken from a study of human
MØ transcriptomes [34]. The z-score of each genes’ expres-
sion (Eq. 6) was computed in the collapsed Christmann
and Hinchcliff datasets (as described in the “Microarray
dataset processing” section of “Methods”). The z-score z of
gene g in the ith array/sample is computed as:

Zgi ¼
xgi−μg
σg

ð6Þ

where xgi is the gene expression value in array/sample i,
μg is the gene mean, and σg is the gene standard devi-
ation. The average z-score of genes in a set (module
from Xue et al. [34]). computed for an array/sample to
summarize gene set expression. Mann–Whitney U tests
were used to compare average z-scores between groups.
To validate these findings in an independent SSc skin
dataset, we used the data from Assassi et al. [35] as
processed by the authors and deposited in NCBI Gene
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Expression Omnibus (GEO; GSE58095 series matrix).
We collapsed duplicated probes to the gene mean, z-scored
genes as in Eq. 6, and compared average z-scores as above.

Results
We performed an integrative analysis of ten independent
gene expression datasets containing samples from pa-
tients with SSc and associated co-morbidities (Table 1).
The primary goal of this study was to identify the
fundamental processes that occur across end-target and
peripheral tissues of patients with SSc and related fi-
brotic conditions. Secondly, we aimed to identify the
presence or absence of common gene expression pat-
terns that underlie the molecular intrinsic subsets of
SSc [11] in different organs. Analysis of multiple tissue

biopsies from patients with skin fibrosis, esophageal
dysfunction, PF, and PAH allowed us to determine in a
data-driven manner whether these tissues were per-
turbed in a similar manner on a genomic scale.
We applied MICC [17] to identify conserved, differ-

entially co-expressed genes across all tissues in our SSc
compendium. MICC is a “consensus clustering” proced-
ure, meaning that it identifies the shared co-clustering of
genes present in multiple datasets. MICC identifies genes
that are consistently coexpressed in multiple tissues.
Procedurally, MICC clusters gene expression data into
coexpression modules using WGCNA (Fig. 1). Because
this clustering is purely data-driven, coexpression modules
derived from different datasets necessarily differ from each
other. MICC integrates these coexpression modules across

WGCNA

Datasets A-D
1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4
... ... ... ...

Differential 
expression in 

pathophenotypes of 

pathophenotype-
associated modules

multi-tissue MICC

1. divide datasets into coexpression modules

2. construct module overlap graph & identify communities and sub-communities

Enrichment for 
pathophenotype-

associated modules
1

2

3

41
2

3

4

1

2

3

4

1

2

3

4

Edge overlap with 
pathways

GIANT 

3. perform functional genomic network analyses

skin networklung network

-

community 

sub-community

Lung network 
analyses

Differential network 
analyses

Fig. 1 Schematic overview of the analysis pipeline. Four datasets are shown for simplicity. Each gene expression dataset was partitioned using
WGCNA independently to obtain coexpression modules. Module eigengenes were tested for their differential expression in pathophenotypes of
interest. Modules were compared across datasets using MICC to form the “module overlap graph” and community detection algorithms were
used to identify communities and sub-communities in the graph. These communities correspond to molecular processes that are conserved
across datasets. Each community was examined for enrichment of pathophenotype-associated modules and edge overlap with canonical
biological pathways. Gene sets derived from these communities were used to query GIANT functional genomic networks. The resulting networks
allow for tissue-specific interrogations of the gene sets. Differential network analysis was performed to compare the lung and skin networks
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datasets by identifying significant overlaps between mod-
ules from different datasets and forming a “module overlap
network”. MICC then parses the module overlap network
to find sets of modules (communities) that are strongly
conserved across many datasets (see “Methods”). These
strongly overlapping modules correspond to molecular
processes that are conserved across multiple datasets.
All datasets were partitioned into coexpression mod-

ules using WGCNA, resulting in 549 modules (Table 3).
We constructed the ten-partite module overlap net-
work (Fig. 2) and identified eight communities in the
network using modularity-based community detection
methods. Because the community structure of the module
overlap network was hierarchical, we used a hierarchical
labeling scheme, where numerals denote large communi-
ties and letters denote smaller sub-communities (Fig. 2a).
For each community, we used set theoretic formulae to
derive a final gene set (“consensus genes”) associated
with the modules in that community (see “Methods”;
Additional file 29; consensus gene sets ranged from
64–9597 genes in size). The majority of the consensus
gene sets pertain to biological processes that are not ne-
cessarily disease-specific (e.g., there is no enrichment for
genes [modules] that are differentially expressed in disease
versus control in that community). These include processes
such as telomere organization (1A) and macromolecule
localization (3A). Disease-specific consensus genes were
identified by first determining which communities were
enriched for modules associated with pathophenotypes
(e.g., contain differentially expressed genes in disease) under
study and then deriving consensus gene sets from those
combined communities (see "Severe pathophenotypes share
a common immune–fibrotic axis").

Severe pathophenotypes share a common immune–fibrotic
axis
The module overlap network is agnostic to the clinical
phenotypes corresponding to each biopsy. To associate

communities in the module overlap network with SSc and
fibrotic pathophenotypes, we tested each of the 549
modules for differential expression in relevant pathophe-
notypes (see “Methods”). For example, every lung module
in the PAH cohorts was tested for differential expression
in PAH. Clusters 4A and 4B in the module overlap
network contain modules with increased expression in all
pathophenotypes of interest: the inflammatory and prolif-
erative subsets of SSc, PAH, and PF (Fig. 2b). Thus, the
modules in these communities correspond to a common,
broad disease signal that is present in every pathopheno-
type under study. As with our prior studies, we did not
find a strong association with autoantibody subtype and
the co-expression modules identified here.
Edges in the module overlap graph represent overlap

between coexpression modules in different datasets, so
we identified the intersection of genes between adjacent
modules. We then asked if these “edge gene sets” were
similar to known biological processes by computing the
Jaccard similarity between edges and canonical pathways
from the Molecular Signatures Database [36]. Edges in 4A
encode immune processes such as antigen processing and
presentation and cytotoxic T-cell and helper T-cell path-
ways (Table 4). This cluster also contains modules from all
tissues, including PBMCs (Fig. 2b). Altered immuno-
phenotypes have been reported in SSc-PAH and SSc-PF
[14, 19]. Here, we find that the immune processes with
increased expression in these severe pathophenotypes
have substantial overlap with each other, as well as with
the inflammatory subsets in esophagus and skin (Fig. 2b;
Additional file 30: Figure S1). Notably, 4A is composed
of modules with increased expression in PAH in PBMCs
and lung, and a module upregulated in end-stage PF
(Additional file 30: Figure S1). This demonstrates a com-
monality of molecular pathways between the inflamma-
tory component of SSc and the most severe end-organ
complications at the expression level.
Edges in 4B encode pro-fibrotic processes, including

ECM receptor interaction, collagen formation, and TGF-
β signaling (Table 4). Cluster 4B consists of skin inflam-
matory and fibroproliferative subset-associated modules
as well as lung PAH-, late PF- and early PF-associated
modules (Fig. 2b; Additional file 30: Figure S1). These
results replicate and expand what we have found in our
prior meta-analysis of skin data alone [17]: the expres-
sion patterns observed in the SSc intrinsic subsets are
shared with other tissues and SSc-associated pathophe-
notypes and indicative of altered immune and fibrotic
processes (an immune–fibrotic axis).
To understand how the immune–fibrotic axis and

these phenotypes are functionally related, we identified
the consensus genes in the combined 4A and 4B clus-
ters (see “Methods”; 2079 unique genes; Additional file
24). Consensus genes are highly central within their

Table 3 Number of microarrays and WGCNA coexpression
modules in each of the datasets included in this study

Dataset Number of arrays Number of coexpression modules

Milano 75 39

Pendergrass 89 38

Hinchcliff 165 62

LSSc 24 39

UCL 15 98

Christmann 18 56

Bostwick 62 54

ESO 33 71

PBMC 54 38

Risbano 38 54
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respective dataset gene–gene correlation networks and
our procedure identifies sets of genes that capture
disease-specific variation (Additional file 30: Figure
S2). Using a conservative measure, these consensus
genes are enriched for genes with increased expression
in all disease manifestations (SAM [33], FDR <5%; PF
in both lung datasets p < 2.2e-16; PAH lung, p = 7.88 ×
10−5; PAH in both PBMC datasets, p = 3.20 × 10−15,
Fisher’s exact test). This demonstrates that the tissue
consensus genes are highly relevant to all disease man-
ifestations in this study. The tissue consensus gene
sets allow us to rigorously extrapolate from this con-
servative set a substantially broader, disease-associated
signal. This extrapolation is especially important for
tissue studies that are underpowered to detect a large
number of significantly differentially expressed genes
(see “Discussion”). We took the union of the tissue
consensus gene sets as a set of “immune–fibrotic axis
consensus genes” that are informative about pathology
in every tissue.

A

B

Fig. 2 The multi-tissue module overlap graph demonstrates that
severe pathophenotypes have similar underlying expression patterns.
a The full adjacency matrix of the module overlap graph sorted to
reveal hierarchical community structure. A darker cell color is indicative
of a higher W score or larger edge weight. Communities (numbered)
and sub-communities (lettered) are indicated by the annotation tracks
above and on the right side of the matrix, respectively. Coexpression
modules with expression that is increased in a phenotype of interest
are marked by the annotation bar on the left side of the matrix. If a
module was up in SSc as well as another pathophenotype of interest,
the other pathophenotype color is displayed. b The adjacency matrix
of sub-communities 4A and 4B indicates that these clusters contain
modules that are up in all pathophenotypes of interest and show that
there are many edges between the two sub-communities. Sub-
community 4A contains modules from all tissues whereas 4B contains
mostly solid tissue modules as indicated by the tissue annotation track
to the left of the matrix

Table 4 Selected pathways that are similar to overlapping
coexpression patterns in consensus clusters in the information
graph

Consensus cluster Summary of selected pathways

1A DNA repair
Cell cycle
RNA metabolism
Transcription

2 Cell–cell junction organization
Aquaporin-mediated transport
Tight junctions

3A Endocytosis
mRNA processing
Metabolism of proteins

4A T cytotoxic and helper pathway
Antigen processing and presentation
Allograft rejection

4B ECM receptor interaction
Collagen formation
ECM organization
TGF-beta signaling
Signaling by PDGF

5 G2 M checkpoint
Unwinding of DNA
Cell cycle

6 Notch signaling
Nuclear receptors in lipid metabolism
and toxicity

7 Steroid biosynthesis
Fatty acid metabolism
PPAR signaling pathway

8 Keratin metabolism
FGFR ligand binding and activation

We calculated the Jaccard similarity index between edges in the information
graph and canonical pathways and used a Mann–Whitney U test to assess
whether a particular pathway was more similar to edges within a consensus
cluster than outside the consensus cluster
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The lung functional genomic network reveals a coupling
of immune and fibrotic processes
The GIANT functional networks infer functional rela-
tionships between genes by integrating publicly avail-
able data, including genome-wide human expression
experiments, physical and genetic interaction data, and
phenotype and disease data [1]. In these networks,
genes are nodes and edges are weighted by the esti-
mated probability of a tissue-specific relationship be-
tween genes. GIANT contains networks for multiple
tissues, including skin and lung. To investigate the
function of the immune–fibrotic axis consensus genes
in pulmonary manifestations of SSc, we extracted the
subnetwork of the GIANT whole genome lung network
corresponding to the immune–fibrotic axis consensus
genes—the lung network (Fig. 3; Additional file 30:
Figure S3). Similar to our previous analysis of SSc skin,
we find interconnected functional modules related to
both immune (interferon (IFN)/antigen presentation
and innate immune/NF-κB/apoptotic processes) and fi-
brotic (response to TGF-β and ECM disassembly/wound
healing) processes (Fig. 3a). This demonstrates that, like
skin, there is functional coupling between inflammatory
and pro-fibrotic pathways in lung.
Our analysis includes two lung datasets derived from

both early SSc-PF (open lung biopsies obtained for
diagnostic purposes [14]) and end-stage or late disease
(SSc-PF patients that underwent lung transplantation
[15]). In addition to the differences in disease stage be-
tween these two datasets, there is also some difference
in the histological patterns of fibrosis in these cohorts.
In the Bostwick lung dataset [15], all patients with SSc-
PF had usual interstitial pneumonia (UIP). This study
used lung tissues from patients who underwent lung
transplantation (late disease). The Christmann lung
dataset [14] contains five patients with non-specific
interstitial pneumonia (NSIP) and two patients with cen-
trilobular fibrosis. This study looked at early SSc-PF pa-
tients, used open lung biopsies, and specifically avoided
honeycombing areas.
Although NSIP and UIP have distinct clinical out-

comes, they have been shown to be nearly indistinguish-
able at the gene expression level [37]. Furthermore,
these datasets have overlapping coexpression patterns as
demonstrated by their shared community membership
in the module overlap network. Comparison of different
datasets allows us to determine how genes with increased
expression at these different stages and histological sub-
types of lung disease are distributed throughout the lung
network. Genes overexpressed in SSc-PF (SAM, PF versus
Normal comparison, FDR <5%) are distributed throughout
the lung network and therefore are predicted to partici-
pate in all of the molecular processes identified in the
network. Quantification of the distribution of SSc-PF

differentially expressed genes throughout the consensus
lung network (Fig. 3b) demonstrates that molecular
processes can be associated with either a disease stage,
histopathological pattern, or both stages/patterns. The
cell cycle module contains only early/NSIP SSc-PF genes,
the innate immune response/NF-κB/apoptotic processes
module contains more late/UIP SSc-PF genes, and the
response to TGF-β module contains genes from both
histological patterns (Fig. 3a, b).

Hub and bridge genes are associated with the
pathogenesis of pulmonary fibrosis
Certain genes occupy privileged positions within mo-
lecular networks and these genes often have critical
biological function [38]. Module hub genes are con-
nected to a significant fraction of genes within a func-
tional module, whereas bridge genes are genes that
connect to multiple functional modules and thus
“bridge” them. We identified the hub and bridge genes
within the lung network for their possible roles in PF
pathogenesis. We highlight the hubs and bridges of the
lung network in Fig. 3c–e and f, respectively. The hubs
of several of the functional modules in the consensus
lung network show increased expression at different
disease stages or histological patterns (Fig. 3c–e). For
instance, LAMC1 shows increased expression in early/
NSIP SSc-PF and is highly connected within the re-
sponse to TGF-β module (Fig 3c). The gene Niemann-
Pick disease, type C2 (NPC2) is upregulated in early
disease and is connected to cathepsins L and B (CTSL,
CTSB) and GLB1 in the lung network (Fig 3d). We
tabulate information on selected genes from the lung
network in Table 5.
The innate immune response/NF-κB signaling/apoptotic

process module contains genes that are highly expressed
in late/UIP SSc-PF, including the hub genes CYR61 and
TM4SF1 (Fig. 3a, b; Additional file 30: Figure S3). The
hub gene TNFAIP3 (A20), which is increased in late SSc-
PF (Fig. 3e), is a negative regulator of NF-κB signaling and
inhibitor of TNF-mediated apoptosis. The innate immune
response/NF-κB signaling/apoptotic process and IFN/anti-
gen presentation modules are bridged by TNFSF10, also
known as TRAIL (TNF-related apoptosis inducing ligand;
Fig. 3f). These results suggest that the balance of apoptosis
is altered in late/UIP SSc-PF. The upregulation of genes
with anti-apoptotic function was not reported in the
original study [15], which demonstrates the strength of
both the MICC method and the study of functional
interactions.
CD44 and PLAUR (uPAR) bridge multiple functional

modules in the lung network (Fig. 3f) and have been im-
plicated in IPF [39, 40]. Because these genes link modules
important in regulating disease progression, therapeutic
targeting of CD44 and uPAR may be an effective strategy
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in combating SSc-PF. Indeed, anti-CD44 treatment
reduces fibroblast invasion and bleomycin-induced lung
fibrosis [39], and inhibition of uPAR ligation significantly
reduces motility of pulmonary fibroblasts from patients
with idiopathic PF [40]. These results are consistent with
our identification of these genes as key genes in the lung
network.

The lung microenvironment provides a distinct milieu for
pro-fibrotic processes
Pulmonary fibrosis is histologically distinct from skin
fibrosis and occurs in a subset of patients with SSc. We
hypothesized that the lung microenvironment may have
a distinct organization of immune–fibrotic axis consen-
sus genes when compared to skin. Indeed, for interac-
tions (edge weight >0.5) that are present in both the
lung and skin networks, there are gene pairs that are
much more likely to interact in one tissue than the other
(Fig. 4a). In other words, the skin and lung networks are
“wired differently”. To identify highly lung-specific and
highly skin-specific interactions, we performed a differen-
tial network analysis that identified gene pairs that are
strongly predicted to interact in one tissue but not the
other (see “Methods”).
These highly specific interactions are displayed in

Fig. 4b, where a cell is red if it is lung-specific or blue if
it is skin-specific (cf. Additional file 30: Figure S4). The
number of tissue-specific edges in each functional mod-
ule is quantified in Fig. 4b, c, which illustrate that most
functional modules in lung have fewer interactions than
in skin, with the exception of the cell cycle module. Of
particular interest is the relationship between the pha-
golysosome/ECM disassembly genes and response to
TGF-β genes, as strong differential connectivity can be
observed in this module (Fig. 4b, c). Thus, even though
ECM disassembly and TGF-β module genes are coordi-
nately differentially expressed in both lung and skin,
they are differentially connected to each other, suggest-
ing that the microenvironment strongly determines the

functional consequences of upregulating these pro-
fibrotic genes.
To summarize lung-specific biological processes in the

immune–fibrotic axis, we clustered the lung-specific inter-
actions (differential lung network) to identify lung-specific
pathways (Additional file 30: Figure S5). We identified 23
clusters corresponding to biological processes such as type
I IFN signaling (cluster 10), antigen processing and pres-
entation (cluster 4), REACTOME cell surface interactions
at the vascular wall (cluster 22), and mitotic cell cycle
(cluster 16; shown in Additional file 30: Figure S5b). Taken
together, this suggests that within the immune–fibrotic
axis we find innate immune and cell proliferation pro-
cesses that are highly lung-specific. One of the largest of
these clusters (cluster 13; Fig. 4d; Additional file 30: Figure
S5c) includes NPC2, S100A4, and CTSB, which encode
protein products that are highly expressed in normal
lung-resident MØs (LR-MØs) [41, 42].
NPC2 is a hub of the ECM disassembly/wound healing

module in the full lung network (Fig. 3); many of the
genes in cluster 13 also belong to the ECM disassembly/
wound healing module in the whole network, including
the cathepsins CTSB and CTSL. Alveolar MØs are the
main source of cathepsins in bleomycin-induced fibrotic
lung tissue [43]. Additional genes associated with devel-
opment and maintenance of alternative MØ activation
include TGFBI [44], NEU1 [45], PRCP [46], and DAB2
[47]. Genes that are specifically associated with alterna-
tive activation of lung MØs include PLP2 [48] and
IFITM1 [49] (Fig. 4d; Additional file 30: Figure S5c).
Based on these genes and the complete lung network in
Fig. 3, we identified an LR-MØ signature. These findings
are consistent with previous reports of alternative MØ
activation in SSc [14, 50].
To explore this signature further, we examined some

genes from this cluster along with genes identified in the
Christmann et al. study [14]. Consistent with the pri-
mary publication [14], some heterogeneity in SSc-PF
gene expression is observed and is likely due to tissue
sampling from various lobes of the lung as well as the

(See figure on previous page.)
Fig. 3 Genes that are overexpressed in late and early SSc-PF are distributed throughout the lung network. a The lung network shows functional
connections between inflammatory and fibrotic processes. Genes in the largest connected component were clustered into functional modules
using community detection. Biological processes associated with the functional modules are in boxes next to the modules. Genes are colored by
whether they are overexpressed in late SSc-PF/UIP (red), early SSc-PF/NSIP (blue), both (SSc-PF, purple), or neither (grey). NSIP non-specific interstitial
pneumonia, UIP usual interstitial pneumonia. Gene symbols in bold have putative SSc risk polymorphisms. Node (gene) size is determined by
degree (number of functional interactions) and edge width is determined by the weight (probability of interaction between pairs of genes). The
layout is determined by community membership, the strength of connections between communities, and finally the interactions between individual
genes in the network. A fully labeled network is supplied as Additional file 30: Figure S3 and is intended to be viewed digitally. b Quantification of
differentially expressed genes in each of the five largest functional modules. c–e Hubs of the consensus lung network; only the first neighbors of the
hub that are in the same functional module are shown. c LAMC1 is a hub of the response to TGF-beta module. d NPC2 is a hub of the ECM
disassembly, wound healing module. e TNFAIP3 is a hub of the innate immune response, NF-κB signaling, and apoptotic processes module.
f Bridges of the consensus lung network. First neighbors of PLAUR, CD44, TNFSF10, and TGFBI are shown
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Table 5 Selected genes in the consensus lung network

Functional module Gene
symbol

Description Network
position

Up in Function/potential role in disease

Cell cycle BUB3 BUB3 mitotic checkpoint protein - Early SSc-
PF/NSIP

Encodes a mitotic cell cycle checkpoint protein
that regulates the onset of anaphase

CDC7 Cell division cycle 7 - - Regulates MCM complex

MCM3 Minichromosome maintenance complex
component 3

- Early SSc-
PF/NSIP

Subunit of minichromosome maintenance
(MCM) complex

MSH6 MutS homolog 6 - Early SSc-
PF/NSIP

Participates in DNA mismatch repair.

ECM disassembly/
wound healing

CD44 CD44 molecule (Indian blood group) Bridge - A hyaluronic acid receptor that can interact with
many other ligands found in the ECM. Primary
idiopathic PF fibroblasts exhibit an invasive
phenotype that was abrogated with treatment
with anti-CD44 [39]

CD63 CD63 molecule - - Has been observed to interact with TIMP1 [83]

CTSB Cathepsin B - - Regulates NPC2 secretion, TNF-alpha production,
and cholesterol trafficking genes in an animal
model of obesity [51]

CTSL Cathepsin L - - Regulates NPC2 secretion, TNF-alpha production,
and cholesterol trafficking genes in an animal
model of obesity [51]

GLB1 Galactosidase, beta 1 - Early SSc-
PF/NSIP

Mutations in this gene can lead to
GM1-gangliosidosis, a manifestation of
which includes foam cell accumulation
in the lungs [84]

NPC2 Niemann-Pick disease, type C2 Hub Early SSc-
PF/NSIP

Mutations in this gene result in a lipid storage
disorder. Functions in the regulation of
cholesterol trafficking through the lysosome
by binding to cholesterol released from low
density lipoproteins taken up by cells

TGFBI Transforming growth factor, beta-induced Bridge Late SSc-
PF/UIP

Induced by phagocytosis of apoptotic debris in
monocyte-derived MØs and regulates collagen
turnover [44]

TIMP1 TIMP metallopeptidase inhibitor 1 - Early SSc-
PF/NSIP

Has been observed to interact with CD63 and
overexpression has been noted to inhibit
apoptosis in a CD63-dependent manner [83]

Innate immune
response/NFkB
signaling/apoptotic
process

BIRC3 Baculoviral IAP repeat-containing protein 3 - Late SSc-
PF/UIP

Has antiapoptotic activity through interactions
with caspases as well as the TNF superfamily
members TRAF1 and TRAF2 [85, 86]

CYR61 Cysteine-rich, angiogenic inducer, 61 Late SSc-
PF/UIP

Also known as CCN1. Implicated in apoptosis in
fibroblasts [87]. Has been shown to play a role
in Fas-mediated and TRAIL-induced apoptosis
[88, 89]

DUSP6 Dual specificity phosphatase 6 - Late SSc-
PF/UIP

Plays a role in the positive regulation of
apoptosis [90]

FAS Fas cell surface death receptor - Early SSc-
PF/NSIP

Cell surface death receptor

NFKBIE Nuclear factor of kappa light polypeptide
gene enhancer in B-cells inhibitor, epsilon

- - Negative regulator of NFkB signaling

PLAUR Plasminogen activator, urokinase receptor Bridge Late SSc-
PF/UIP

Also known as uPAR. Contains an SSc risk SNP.
Pulmonary fibroblasts from patients with
idiopathic PF over express uPAR and that uPAR
ligation results in a hypermotile phenotype [40]

PLSCR1 Phospholipid scramblase 1 - - Regulates phospholipid membrane asymmetry

TNFAIP3 Tumor necrosis factor, alpha-induced
protein 3

Hub Also known as A20. Contains an SSc risk SNP
(also associated with other autoimmune
conditions). Negative regulator of NFkB signaling

TNFSF10 Bridge -
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inclusion of patients with centrilobular fibrosis (Fig. 5a,
right dendrogram branch). Nevertheless, the LR-MØ
signature comprises genes that are highly correlated with
canonical markers of alternatively activated MØs that
were validated by either PCR or immunohistochemistry
in the original study (e.g., CD163 and CCL18). We also
observed that genes in the phagolysosome/ECM disas-
sembly functional module identified in lung are more
highly connected in a macrophage-specific network than
is expected at random (Additional file 30: Figure S6).
The LR-MØ cluster in the differential lung network

also contains a number of genes implicated in lipid stor-
age disorders, including HEXB, GLB1, and NPC2. Sev-
eral other LR-MØ cluster genes have been shown to be
important for regulating cholesterol trafficking genes in
an animal model of obesity, including CTSB, CTSL, and
NPC2 [51]. It has been noted that lipid metabolism
genes are upregulated in lung MØs relative to other
tissue-specific MØs [48]. Furthermore, in the bleomycin
injury mouse model of pulmonary fibrosis, lipid-laden
MØs have been observed to increase expression of
markers associated with alternative MØ activation and
to secrete TGF-β [52].

Distinct MØ gene expression programs are elevated in
lung and skin
We hypothesized that early SSc-PF lung samples may
have evidence of both alternatively activated and lipid-
stimulated MØs and that this may differ from what is
observed in skin. The presence of alternatively activated
MØs in the inflammatory subset of skin was inferred in
our single tissue analysis [17]. To test this hypothesis,
we used gene sets associated with classic activation of
MØs, alternative activation of MØs, or stimulation of
MØs with a variety of activation stimuli, including free
fatty acids, taken from Xue et al. [34]. To summarize the
expression of each MØ gene set [34] and compare
across tissues in these data, we computed the average
expression of all genes in each gene set (see “Methods”;
see Additional file 31 for a mapping between Xue et al.
modules and our naming scheme). Results are displayed
for control and SSc-PF lung, as well as control and
SSc-inflammatory skin (Fig. 5b). As shown in Fig. 5b,
there is evidence of an increase in alternatively acti-
vated and free fatty acid stimulated gene sets in SSc-
PF and SSc-inflammatory skin. These data do not
show statistically significant differences in expression

Table 5 Selected genes in the consensus lung network (Continued)

Tumor necrosis factor (ligand) superfamily,
member 10

Also known as TRAIL. Elevated in serum of SSc
patients [91]

TNFRSF10B Tumor necrosis factor receptor
superfamily, member 10b

- Late SSc-
PF/UIP

Also known as TRAILR2

IFN/antigen
presentation

HLA-E Major histocompatibility complex, class I, E - - Class I MHC molecule

HLA-F Major histocompatibility complex, class I, F - - Class I MHC molecule

IFITM1 IFN induced transmembrane protein 1 - SSc-PF
(UIP and
NSIP)

IFN signaling

IFITM2 IFN induced transmembrane protein 2 - Early SSc-
PF/NSIP

IFN signaling

IFITM3 IFN induced transmembrane protein 3 - Early SSc-
PF/NSIP

IFN signaling

IRF1 IFN regulatory factor 1 - Late SSc-
PF/UIP

Activator of type I IFN signaling

OAS1 2′-5′-Oligoadenylate synthetase 1, 40/
46 kDa

- Early SSc-
PF/NSIP

Involved in innate immune response to viral
infection

Response to
TGF-beta

CAV1 Caveolin 1 - - Contains an SSc risk SNP

CTGF Connective tissue growth factor - - Also known as CCN2. Has been shown to play
a role in Fas-mediated and TRAIL-induced
apoptosis [88, 89]

DAB2 Dab, mitogen-responsive phosphoprotein,
homolog 2 (Drosophila)

- SSc-PF
(UIP and
NSIP)

Required for the epithelial to mesenchymal
transition induced by TGF-beta in mouse
and for type II TGFbR recycling [92, 93]

FN1 Fibronectin 1 - - Extracellular matrix protein.

LAMC1 Laminin gamma1 chain Hub Early SSc-
PF/NSIP

Expression of this gene is essential for the
development of basement membranes [94]

THBS1 Thrombospondin 1 - - Mediates cell-to-cell and cell-to-matrix
interactions. Putative biomarker of modified
Rodnan skin score [95]
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of gene sets associated with classic MØ activation
between controls and SSc-PF or SSc-inflammatory
skin (see Additional file 32 for p values of all mod-
ules tested).
The discovery of IFN-related genes among the consen-

sus genes indicates that these pathways are increased in

pathophenotypes of interest (e.g., SSc-PF and the skin in-
flammatory subset). Christmann et al. also noted a strong
IFN-related gene signature in SSc-PF samples, although
the cellular compartment responsible for this signature
was not described [14]. Because stimulation with IFN
results in classic activation of MØs, we examined the

A B

C D

Fig. 4 (See legend on next page.)
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(See figure on previous page.)
Fig. 4 The lung and skin network structures indicate distinct tissue microenvironments influence fibrosis. The skin and lung networks were
compared by first finding the giant component of the lung network and then collapsing to nodes only found in both the skin and lung
networks (which are termed the common skin and common lung networks). a A scatterplot of high probability edges (>0.5 in both networks)
illustrates that pairs of genes with a higher probability of interacting in skin than lung exist and vice versa. Edges are colored red if the weight
(probability) is 1.25 times higher in lung or blue if it is 1.25 times higher in skin. b The differential adjacency matrix where a cell is colored if the
edge weight in a given tissue is over and above the weight in the global average and tissue comparator networks. For instance, a cell is red if the
edge weight was positive following the successive subtraction of the global average weight and skin weight. Community detection was performed
on the common lung network to identify functional modules; common functional modules largely recapitulate modules from the full lung network.
Representative processes that modules are annotated to are above the adjacency matrix. The annotation track indicates a gene’s functional module
membership. Nodes (genes) are ordered within their community by common lung within community degree. A fully labeled heatmap is supplied as
Additional file 30: Figure S4 and is intended to be viewed digitally. c Quantification of tissue-specific interactions in each of the five largest functional
modules. d The lung-resident MØ module found in the differential lung network (consists only of edges in red in b)

A

B

Fig. 5 Evidence for alternative activation of MØs in SSc-PF lung that is distinct from SSc skin. a Genes identified by differential network analysis
and inferred to be indicative of lung-resident MØs are correlated with canonical markers of alternatively activated MØs such as CCL18 and CD163 in the
Christmann dataset. b Summarized expression values (mean standardized expression value) of gene sets (coexpression modules) upregulated in various
MØ states from the Christmann and Hinchcliff datasets: module CL1, classic activation (IFN-γ); modules ALT 1 and 2, alternative activation (IL-4, IL-13);
modules FFA 1, 2, and 3, treatment with free fatty acids. FFA free fatty acid. Modules from [34]. Asterisks (*) indicate significant differences (p < 0.05)
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expression of genes from CL 1, as it is most strongly asso-
ciated with IFN-γ treatment (“classic activation”) in hu-
man MØs [34]. However, CL 1 genes’ expression is not
different between disease and controls in either skin or
lung (Wilcoxon p = 0.76 and 0.80, respectively; Fig. 5b).
This result is consistent with our inability to discern dif-
ferences in classic MØ activation markers between con-
trols and SSc-PF and inflammatory skin and suggests that
classically activated MØs are not the source of the re-
ported IFN signature we find.
Modules ALT 1 and ALT 2 are both associated with

IL-4 and IL-13 treatment, which are stimuli associated
with alternative activation of MØs [34]. These two gene
sets are non-overlapping coexpression modules and
therefore represent two “parts” of the alternatively
activated MØ transcriptional program. We performed
functional enrichment analysis for ALT 1 and 2 to
understand which biological processes underlie these
transcriptional signatures (see “Methods”). Module ALT
1 is enriched for genes involved in oxidative phosphoryl-
ation (KEGG, p < 0.0001) and the citric acid cycle
(REACTOME, p < 0.0001) pathways. In lung, ALT 1 ex-
pression is higher in SSc-PF than in controls (Wilcoxon
p = 0.0046). There is no difference between healthy
controls and the inflammatory subset in skin (Wilcoxon
p = 0.41). Module ALT 2 shows an opposite trend and is
enriched for genes implicated in the positive regulation
of response to wounding (Gene Ontology (GO) biological
process (BP), p = 0.027) and defense response (GO BP,
p = 0.00035); this module includes alternatively acti-
vated MØ markers such as CD14 and CCL26 [53, 54].
ALT 2 expression is increased in the inflammatory sub-
set in skin (Wilcoxon p = 0.041) and trends toward de-
creased expression in SSc-PF lung (Wilcoxon p = 0.16).
Together, these pathways suggest a metabolic “switch”
associated with alternative activation in lung that is not
found in skin (for review see [55]; Fig. 5b).
We also analyzed modules associated with free fatty

acid (FFA) stimulation, which are relevant to the ques-
tion of lipid signaling or exposure in SSc tissues (FFA
1, 2, and 3). We first performed functional enrichment
analysis for these modules to gain biological insight
into these transcriptional programs. FFA 1 is enriched
for genes involved in the unfolded protein response
(REACTOME, p = 0.025). FFA 2 is enriched for antigen
processing-cross presentation genes (REACTOME; p =
0.00101). FFA 3 is enriched for genes in the ER-
phagosome pathway (REACTOME, p = 0.0076). Expres-
sion of FFA 1 and 2 is significantly increased in lung
(FFA 1 Wilcoxon p = 0.046, p = 0.97 in skin; FFA 2
Wilcoxon p = 0.0013, p = 0.63 in skin), whereas FFA 3 is
upregulated in SSc-PF lung (Wilcoxon p = 0.0013) and
the SSc inflammatory subset in skin (Wilcoxon p =
0.00056). These results suggest that LR- MØs may have

a distinct lipid exposure that strongly diverges from
that in skin.
We repeated this analysis in an independent SSc skin

dataset (Assassi et al. [35]) to validate our findings
(Additional file 30: Figure S7). Assassi et al. reported
that macrophage transcripts are elevated in SSc skin
but used a “general” to macrophages signature gene list
that does not provide information about activation
state. The results from Assassi et al. largely agree with
the results from the Hinchcliff dataset: ALT 2, but not
ALT1 (Wilcoxon p = 0.0682), is significantly increased
in SSc skin (Wilcoxon p = 5.92e-05), and FFA 3 is the only
FFA module significantly increased in SSc skin (Wilcoxon
p = 3.219e-06; FFA 1 p = 0.928; FFA 2 p = 0.486). The only
disparity between the two skin datasets is that we find that
CL 1 is significantly increased in the Assassi SSc patients
(p = 0.000856). This difference may be because we looked
at all SSc patients rather than “fibroinflammatory” patients
alone, or due to the increased coverage of the genome on
the platform used. Overall, analysis of Assassi et al. sup-
ports the differences in MØ alternative activation pro-
grams and lipid response in SSc-affected skin and lung.
The differential network analysis (Fig. 4) allowed us

to identify highly lung-specific interactions in the im-
mune–fibrotic axis that implicated lipid signaling as a
distinct functional process in lung. The higher expres-
sion of multiple free fatty acid-associated modules in
lung suggests that the role of lipid signaling in MØs
may be more important in this tissue than in skin, con-
sistent with what we would predict based on highly
lung-specific gene–gene interactions, and based on
prior biomedical literature in related conditions [48,
52]. Thus, a major difference between the lung and skin
networks can be attributed to the presence of a distinct
MØ phenotype in lungs.

Discussion
SSc is a systemic disease that affects multiple internal or-
gans. Herein, we present the first study of molecular
mechanism of disease across multiple affected organ sys-
tems in SSc. To our knowledge, we show for the first time
that a common set of cell types and pathways are driving
disease across these affected organs, and importantly that
it can also be found in related fibrotic conditions.
Gene expression data have been collected for multiple

tissues in SSc and related conditions. However, these
data often have issues that are common to many rare
diseases. First, SSc is not prevalent and patients with
particular disease manifestations are still rarer, so there
is a limit to the amount of biopsy material available for
study. Second, for practical and ethical reasons, internal
organ biopsies are seldom taken from healthy subjects,
making comparisons difficult. Thus, lung, esophagus,
and other affected internal organs are more difficult to
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study than blood and skin tissue. Therefore, there is a
critical need to leverage our biological prior knowledge
with our understanding of well-studied tissues—like
blood and skin—to make plausible inferences about
pathogenesis in tissues that are more difficult to study.
The clinical heterogeneity of SSc, particularly the diffi-

culty of predicting internal organ involvement, raises an
important question: are the fibrotic processes observed
in multiple organs derived from a common disease
process, or is each organ manifestation effectively a dis-
tinct disease? Our analyses demonstrate that there is a
common gene expression signature underlying all severe
organ manifestations of SSc—the immune–fibrotic axi-
s—in solid organs. The immune–fibrotic axis underlies
both SSc pulmonary manifestations of PF and PAH, and
the intrinsic subsets of skin and esophagus. Moreover,
coexpression modules from peripheral blood, a mixture
of innate and adaptive immune cells, have significant
overlap with modules associated with all pathopheno-
types studied. Thus, while fibrotic processes were largely
associated with solid tissues, the inflammatory compo-
nent of the immune–fibrotic axis is only found in per-
ipheral blood.
The presence of a common gene expression signature

across multiple tissues suggests a common disease
driver, but it does not resolve the possible tissue-specific
processes that contribute to disease in the internal organs.
Indeed, there are many layers of biological regulation
between gene expression and whole tissue phenotypes.
Resolving the relationship between molecular profiles and
phenotypes is a difficult biological problem underlying
most biomedical inquiry. However, these relationships
have been approximated by integrating high-throughput
genomic data into tissue-specific functional networks
using big data machine-learning strategies [1]. We ad-
dressed tissue specificity in SSc pathology by interpreting
the common expression signal—the immune–fibrotic
axis—within these tissue-specific functional networks.
These networks allowed us to identify critical genes that
occupy important positions in molecular pathways in
lung. It is clear from this work that the coupling of im-
mune and fibrotic processes is a hallmark of SSc that
occurs in SSc-PF and SSc-PAH as well as skin. How-
ever, we also find subtle, lung-specific functional differ-
ences that we attribute, in part, to the plasticity of the
myeloid cell lineage.

The plasticity of the myeloid lineage may drive tissue-
specific SSc disease processes
Altered immune function has been implicated in the
pathogenesis of SSc [56, 57]. In most prior studies,
characterization of macrophage activation has relied on
analysis of a very limited number of surface markers and/
or a few characteristic mRNAs [56, 57]. Most of these

studies have concluded that SSc macrophages bear an
M2 activation profile based on CD163 and/or CD206
expression. Macrophage polarization spans a broad
spectrum of activation states, ranging from “classically
activated” or M1 cells, which largely mediate pro-
inflammatory responses to “alternatively activated” or
M2 cells, which are predominantly associated with im-
mune suppression and wound healing. While expres-
sion of CD206 and CD163 is higher in alternatively
activated macrophages compared with “classically acti-
vated” macrophages, it is difficult to make global gener-
alizations about macrophage activation based on such
limited analysis. While operationally useful, the desig-
nation of M1 versus M2 activation has limited utility in
vivo as macrophage activation is informed by the local
cytokine milieu to which these cells are exposed.
Our study of multiple skin cohorts showed that

multiple gene expression markers of activated MØs are
elevated in SSc skin across multiple data sets, consistent
with gene expression profiling of lung tissue from SSc
patients with interstitial lung disease [14]. These data
are consistent with elevated levels of IL-4 and IL-13 in
SSc sera [58, 59]. Furthermore, CD68+ MØs have been
identified as producers of IL-13 in human SSc skin biop-
sies and genetic deficiency of IL-13 is protective against
disease in a mouse model of SSc [60]. IL-13 activates tis-
sue fibrosis [61] and genetic and observational studies
link IL-13 with SSc pathogenesis [62–64].We have fur-
ther demonstrated that SSc MØs express high levels of
profibrotic cytokines, suggesting they play a significant
role in mediating fibrosis and in maintaining an inflam-
matory environment in SSc (unpublished data).
By performing a combined analysis of SSc gene expres-

sion in multiple tissues, we are able to observe and infer,
in a genome-wide manner, commonalities in the complex
mixture of cell types in a tissue at the time of biopsy.
Overwhelmingly, we detected a MØ signature associated
with severe disease. In the module overlap network, we
find that PAH-associated modules from PBMCs [19, 20]
have significant overlap with SSc inflammatory subset-
associated modules from skin and esophagus (Fig. 2).
Indeed, in Pendergrass et al. [19], we observed that
PBMCs from lcSSc patients have significant enrichment in
myeloid- and MØ-related gene sets compared to healthy
controls. Christmann et al. [65] expanded on this, showing
that highly expressed transcripts in LSSc-PAH CD14+

monocytes were induced in IL-13-stimulated cells, i.e.,
that PAH monocytes are alternatively activated. We assert
that this MØ polarization is a significant part of the im-
mune–fibrotic axis we find in these data and, therefore, is
likely a common driver of the complex pathophysiology of
SSc. In support of this, an independent study also identi-
fied MØs and dendritic cells (DCs) as possible sources of
an “inflammatory” signature in lesional SSc skin [35].
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We found evidence for the contribution of LR-MØs to
SSc-PF pathobiology, consistent with the alternative
activation of MØs and TGF-β production. In our prior
analysis of skin, we inferred alternatively activated MØs
as modulators of the SSc inflammatory intrinsic subset
in skin [17]. Our current study identifies a LR-MØ sig-
nature within the functional relationships of immune–
fibrotic axis consensus genes in lung (Figs. 4d and 5a).
We posit that the differences in fibrotic responses of
skin and lung tissue are due, in large part, to innate dif-
ferences between tissue-resident MØs that have been
observed [66, 67], as well as the interactions between
infiltrating monocytes and tissue-resident cell types
(e.g., alveolar epithelial cells versus keratinocytes).
Because MØ phenotype and function are plastic and
readily modulated by the local tissue microenviron-
ment, it is likely that differential activation of MØs in
these tissues is the result of exposure to distinct cyto-
kine milieu. Indeed, we show that distinct alternative
activation gene expression programs have increased
expression in SSc-PF lung and inflammatory SSc skin
(Fig. 5). In particular, there were multiple lipid-related
signatures elevated in SSc-PF lung alone.
We cannot rule out that the MØ changes we observe

are a secondary response to the affected organ path-
ology. Regardless, therapies that target MØ effectors
such as IL6R have shown promise in clinical trials [68]
and MØ chemoattractants have been shown to be im-
portant in animal models of SSc inflammatory disease,
suggesting that MØs play a central role in SSc pathogen-
esis. We also cannot rule out that DCs contribute to our
results, as plasmacytoid DCs are observed to be important
in the stiff skin syndrome mouse model [69]. However,
some skin-resident DCs have been shown to be transcrip-
tionally similar to peripheral blood monocytes in humans
[70]. We speculate that the circulation of peripheral mye-
loid cells contributes to the multi-organ nature of SSc. Fu-
ture studies may use in silico and cell-sorting techniques
to deconvolve SSc expression data to identify changes in
cell proportion and transcriptome throughout the disease
course and to finely phenotype myeloid cells from SSc
patient tissue samples.

Summary of SSc-PF disease processes
The study of two different lung datasets that sampled
early- and late-stage/UIP SSc-PF allows us to describe dif-
ferences between the disease processes found in these two
datasets. The two datasets each contained patients with
different types of interstitial pneumonia (see “Methods”),
which may limit interpretation of these results. However,
as stated in the results, we and others [37] find evidence
of highly similar gene expression patterns between UIP
and NSIP. We do not have treatment information for
patients in these studies and acknowledge that late-stage

patients are more likely to be treated with immunosup-
pressive therapy. With these caveats in mind, we can
nevertheless draw non-intuitive conclusions through the
combination of our data-driven approach and mechanistic
insight from disparate literature. We provide an overview
of disease processes we observe in SSc in Fig. 6.
We found that gene signatures that are increased in al-

ternatively activated human MØs and MØs treated with
free fatty acids are enriched in early SSc-PF patients and
that there is no evidence for enrichment of a pro-
inflammatory, IFN-stimulated MØ signature (Fig. 5) [34].
Christmann et al. had previously identified an increase

in IFN- and TGF-β-regulated genes in biopsies from
early SSc-PF [14], but it was unclear which cell types
were responsible for the IFN signature or if there was
evidence of distinct subpopulations of MØs. Increased
CCL18 protein and higher CD163 mRNA were observed
in lungs of patients with SSc-associated interstitial lung
disease, suggestive of the presence of alternatively acti-
vated MØs [14].
We also find elevated gene expression programs asso-

ciated with MØ alternative activation (specifically meta-
bolic “reprogramming”) and lipid exposure in Christman
et al. (Fig. 5).The LR-MØ signature identified in our differ-
ential network analysis consisted of genes with increased
expression in early SSc-PF that participate in lipid and
cholesterol trafficking (Fig. 4d; Additional file 30: Figure
S5). The expression of these genes is correlated with
“canonical” MØ genes identified in [14] (Fig. 5). In the
bleomycin injury mouse model of pulmonary fibrosis,
lipid-laden MØs, or foam cells, have been observed to
upregulate markers associated with alternative MØ activa-
tion and to secrete TGF-β [52]. Oxidized phospholipid
treatment also causes alternative activation and TGF-β
secretion in human MØs [52]. Consistent with this report,
recent work demonstrates that foam cell formation in vivo
favors the development of a pro-fibrotic MØ activation
profile [71, 72]. These studies, along with our results,
suggest that lipid exposure or uptake in MØs may be
important.
We find genes from both datasets in the response to

the TGF-β module of the lung network. TGF-β signal-
ing is a hallmark of SSc and other fibrotic diseases, and
was noted in the initial analysis of both SSc lung data-
sets [14, 15]. However, we also find evidence that the
type I IFN signature is present in the Bostwick dataset
(Fig. 3). The functional module most strongly associ-
ated with late stage disease/UIP is the innate immune,
NF-κB, and apoptotic processes module. This module is
connected to the TGF-β module through components
of the fibrinolysis pathway such as PAI-1 (SERPINE1;
Fig. 3). PAI-1 is upregulated in late stage SSc-PF and is
known to be important in pulmonary fibrosis [73–75].
One mechanism by which fibrinolysis may contribute
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to the resolution of fibrosis is through the induction of
fibroblast apoptosis [76]. Both TGF-β1 and PAI-1 have
been shown to inhibit lung fibroblast apoptosis [76].
We found evidence for a shift in the balance of apop-

tosis in the Bostwick dataset, perhaps in myofibroblasts
[77], in our network analyses (Fig. 6). Long-lived myofi-
broblasts are thought to continually deposit collagen and
contribute to persistent fibrosis [78]. This apoptotic-
resistance phenotype is related to the stiffness of the
matrix [79], suggesting that a shift in apoptotic processes
may occur once the deposition of excess collagen begins.
Moreover, impaired phagocytosis of apoptotic cells, or
efferocytosis, has been observed in the alveolar MØs of
IPF patients [80]. We find genes involved in efferocyto-
sis, specifically in receptors (CD44) and endocytic ma-
chinery associated with this process, in the lung network
(Figs. 3 and 6) [81]. If the shift in apoptosis and efferocy-
tosis occurs, we speculate that the fibrotic and inflam-
matory processes in our network will also be altered.
Efferocytosis by alveolar MØs plays a key role in the

resolution of inflammation in the lung through the subse-
quent release of TGF-β [82]. We hypothesize that, follow-
ing initial injury, TGF-β signaling, antifibrinolytic factors,
and the disruption of apoptosis and efferocytosis may con-
tribute to progressive fibrosis in SSc-PF (Fig. 6).

Limitations and future directions
A limitation of this study is a lack of post-genomic
validation, particularly in lung. This work is in essence
hypothesis-generating, but the need for this study is
highlighted by the sparseness of biopsy material, and it
provides new directions for inquiry into the pathogen-
esis of the disease.
Our results suggest that alternatively activated MØs

likely play a central role in the pathogenesis of SSc by acti-
vating fibroblasts. Most importantly, they show for the
first time that this is likely to occur across multiple af-
fected organ systems in SSc patients. Future experiments
will need to examine these cells functionally to determine
if SSc MØs can activate other cell types (e.g., fibroblasts)
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to produce ECM and to examine the role of these cells in
mouse models of fibrosis as well as gene expression in
multiple organs from the same patient. Our integrative
genomics approach directly compares multiple tissues and
manifestations and suggests that there may be subtle dif-
ferences in the MØ phenotype in SSc-affected skin and
lung. This supports the fine phenotyping of these cells
from SSc patient tissue samples when possible, and the
possibility of targeting these cells therapeutically.

Conclusions
In this study, we have utilized data from multiple tissues
to examine the systemic nature of SSc. Our integrative
analysis allowed us to leverage well-studied tissues to in-
form us about SSc manifestations that are under-studied
molecularly. This study rigorously tests the notion that
patients with severe disease have shared immunological
and fibrotic alterations. The common immune–fibrotic
axis shows evidence for alternatively activated MØs in
multiple SSc tissues. However, there are subtle differ-
ences in the MØ gene expression programs detected in
skin and lung. Different microenvironments likely pro-
vide distinct stimuli to infiltrating MØs that determine
the pro-fibrotic character of these cells. The plasticity of
this lineage is likely central to the divergence of fibrotic
processes in multiple SSc-affected tissues and is a central
component of an immune–fibrotic axis driving disease.
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