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While extracellular somatic action potentials from freely moving rats have been well
characterized, axonal activity has not. We report direct extracellular tetrode recordings
of putative axons whose principal feature is a short duration waveform (SDW) with an
average peak-trough length less than 179 μs. While SDW recordings using tetrodes have
previously been treated as questionable or classified as cells, we hypothesize that they are
representative of axonal activity. These waveforms have significantly shorter duration than
somatic action potentials, are triphasic and are therefore similar to classic descriptions of
microelectrode recordings in white matter and of in vitro action potential propagation along
axons. We describe SDWs recorded from pure white-matter tracts including the alveus and
corpus callosum. Recordings of several SDWs in the alveus exhibit grid-like firing patterns
suggesting these axons carry spatial information from entorhinal cortical neurons. Finally,
we locally injected the GABAA agonist Muscimol into layer CA1 of the hippocampus while
simultaneously recording somatic activity and SDWs on the same tetrodes.The persistent
activity of SDWs during Muscimol inactivation of somatic action potentials indicates that
SDWs are representative of action potential propagation along axons projecting from more
distal somata. This characterization is important as it illustrates the dangers of exclusively
using spike duration as the sole determinant of unit type, particularly in the case of
interneurons whose peak-trough times overlap with SDWs. It may also allow future studies
to explore how axonal projections from disparate brain regions integrate spatial information
in the hippocampus, and provide a basis for studying the effects of pharmaceutical agents
on signal transmission in axons, and ultimately to aid in defining the potential role of axons
in cognition.

Keywords: axonal activity, short duration waveform, in vivo electrophysiology

INTRODUCTION
The in vivo firing properties of extracellularly recorded hip-
pocampal pyramidal cells and interneurons (INT) have been well
characterized (Ranck, 1973; Fox and Ranck, 1975, 1981; Henze
et al., 2000). Reliable identification of these cell types was essen-
tial for the experiments confirming their importance in describing
the neural systems underpinning spatial cognition and attention
(Kentros et al., 2004; Muzzio et al., 2009; Fenton et al., 2010) and in
the generation of network oscillations (Kamondi et al., 1998; Pent-
tonen et al., 1998; Buzsaki, 2002; Colgin and Moser, 2010). Apart
from activity at cell bodies, normal neural function and therefore
properly ordered cognition, requires signaling between neurons
and their downstream targets along axons (Swadlow et al., 1980;
Debanne, 2004; Womelsdorf and Fries, 2007; Kleen et al., 2010;
Singer, 2011; Zalesky et al., 2011). Although the axon has his-
torically been described merely as a reliable conduit for ordered
signal propagation, recent experimental and theoretical data have
demonstrated that the axon may be directly involved in complex
information processing (Debanne, 2004; Bakkum et al., 2013),

contribute to high frequency network oscillations (Traub et al.,
2003; Dugladze et al., 2012; Scheffer-Teixeira et al., 2012) and
possess intrinsic braking mechanisms that can potentially halt
seizure propagation (Meeks et al., 2005). Being able to reliably
record waveform activity from axons will provide the opportu-
nity to explore these mechanisms in vivo. While great strides have
been made in the diffusion weighted imaging of axonal processes
(Basser and Pierpaoli, 1996) as well as the visualization of axonal
projections (Chung et al., 2013), in vivo axonal activity, as recorded
in freely moving animals, has received little attention since early
microelectrode recordings were developed (Amassian et al., 1961;
Cooper et al., 1969) and remain poorly characterized.

Here we describe tetrode recordings of putative fibers that likely
represent extracellular axonal activity in freely moving rats. This
unit type is intuitively different from the typical somatic action
potentials as evinced by its waveform properties: its defining fea-
ture of a significantly shorter peak-trough duration, a triphasic
shape, and having its principle activity on only one wire of a
tetrode. In addition, these short duration waveforms (SDWs)
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are found in pure white-matter tracts including the alveus and
corpus callosum in the absence of neuronal cell bodies or recorded
somatic activity.

Finally, we successfully differentiated axonal and somatic
activity in CA1 of the hippocampus using the GABAAagonist Mus-
cimol. We further discuss our justifications for SDW classification
with regard to similar reports in the literature.

MATERIALS AND METHODS
SUBJECTS
Six adult male Long Evans rats were used for recordings in the
hippocampus. An additional six adult male Sprague Dawley rats
were used for recordings from white matter, the alveus and the
region of the corpus callosum. Rats were food deprived within 85%
of their pre-deprivation body weight and trained to chase sugar
pellets that dropped randomly from an overhead feeder every 30s
(see below). All procedures were approved by local institutional
animal care and use committee and conducted in accordance with
guidelines from the National Institutes of Health.

SURGERY
Rats were anesthetized with inhaled isoflurane or injected pento-
barbital (50 mg/kg i.p.) and placed in a stereotaxic frame. The skull
was exposed and four screws inserted, two anterior to the left and
right ends of bregma and two left and right over the cerebellum.
Grounding was achieved via the right cerebellar screw.

For hippocampus recordings, rats were chronically prepared
with an implant (described in detail in Barry et al., 2012; manu-
factured in the Muller laboratory at State University of New York,
Downstate Medical Center, Brooklyn, NY, USA) that allowed for
the local injection of pharmacological agents into the hippocam-
pus while recording from a 2 × 4 array of tetrodes. All tetrodes
were made from 25 μm diameter nichrome wire, twisted, and
cut square. A 22 gage injection guide cannula reached from the
top of the implant to 1.8 mm beyond its base. One array of four
electrodes was aligned 1.5 mm from the injection site while the
remaining linear array of tetrodes approached to 2.0 mm from the
injection site. The injection guide cannula was inserted in the rat
brain through an opening in the skull (0.8 mm in diameter cen-
tered at −3.5 AP and +3.7 ML, above the left dorsal hippocampus)
allowing insertion of a cannula for local drug injection. The guide
cannula was set at a brain depth of 1.8 mm DV and kept open
with 30 gage wire that reached 3.6 mm DV. A 2.6 mm hole 0.5 mm
medial to the left guide hole was made for implantation of a 2 × 4
array of tetrodes spaced 0.5 mm apart. The tips of these tetrodes
were placed 2.0 mm below the skull surface.

For white matter recordings, data were collected from two ani-
mals using the same implants and co-ordinates for hippocampus
recordings described above but from more superficial electrodes in
the alveus (∼2.4 mm DV). For four more animals the white matter
recordings were carried using a 2 × 2 array of tetrodes spaced at
0.5 mm intervals. For these four rats, a 2.1 mm hole was made
+4.1 mm AP. For two of these rats, the hole was −1.0 mm ML
and the implant set at 15◦. For the remaining two rats, the hole
was drilled at −0.5 mm ML and the implant set at 0◦. Electrodes
extended to 2.0 mm beneath the skull surface. For all implants,

each tetrode wire was gold plated before implantation until the
impedance was between 80 and 130 kOhms.

All implants were fixed to the skull via the skull screws and Grip
Cement (Dentsply). The wound was sutured and topical antibiotic
applied. The interval between surgery and the beginning of the cell
screening process was 1 week.

ELECTROPHYSIOLOGY AND RECORDING APPARATUS
Methods for training, tracking, electrophysiological recording,
and cell screening were similar to Barry and Muller (2011). The
rats were tethered to a recording cable while they foraged for sugar
pellets in either a square (76 cm × 76 cm) or a small circular (48 cm
diameter) arena. Signals from the brain were pre-amplified X1 at
the headstage and channeled through the tether cable to the signal
amplifiers and computer interface. Signals were sampled at 33 kHz
and filtered at 300–6000 Hz (Neuralynx, MT, USA) and EEG sig-
nals were recorded from one wire of a tetrode in layer stratum
oriens of the hippocampus. This signal was referenced against the
ground screw placed above the cerebellum.

The rat’s location in the arena was sampled at 30 Hz (Neu-
ralynx, MT, USA). The activity of individual units was separated
offline into different clusters based on their waveform proper-
ties (Offline Sorter, Plexon, Dallas, TX, USA). Units and tracking
data were then displayed in firing rate maps by dividing the
number of spikes in a location by the time in that location
(Muller et al., 1987). The relationship between spike and LFP
data was used to generate phase maps to show the average phase
of unit firing with respect to the theta signal as a function of
location.

Each recording day, the animals were placed into the recording
apparatus, allowed to explore the arena, and chase sugar pellets
that fell from an overhead feeder every 30 s. If no units could
be isolated the tetrode drives were lowered. In the case of hip-
pocampal electrode placements, the electrodes were advanced
until the activity of approximately 10 pyramidal cells could be
isolated. In the case of white matter placements, recordings were
carried out for four successive days or until tetrodes displayed
SDW units.

OFFLINE SORTING OF UNIT CLUSTERS
Waveform properties were defined in three-dimensional feature
space (Offline Sorter, Plexon, Dallas, TX, USA) by first compar-
ing peak amplitude across all four wires of the recording tetrode.
Further processing was performed by using the combination of
three additional features, the waveform projection onto the first
principal component (PC1), the waveform voltage at any pos-
sible hyperpolarization taking place before depolarization (Slice
1), as well as the hyperpolarization following the depolarization
(Slice 2).

(1) PC1 = �p1(t)*w(t)
(2) Slice 1 = w(i) :the waveform voltage at time t = i
(3) Slice 2 = w(i) :the waveform voltage at a second time point at

time t = i

Where w(t) = [w(1), . . ., w(n)] is the waveform (n = number
of points in a waveform), and p1(t) = [p1(1), . . ., p1(n)] is the
first principal component vector.
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FIRING RATE MAPS
The raw data recordings comprised of a series of action poten-
tial time stamps for each isolated cluster and a 30 Hz series of
time stamped x and y co-ordinates for tracking LEDs mounted
on the preamplifier connected to the implant. A 64 by 64 ele-
ment firing rate array for each cell cluster was first constructed
(custom software); each element corresponded to a square pixel
∼3.0 cm on a side. To make the spatial firing rate array, the
number of spikes for each cell was counted for each element.
The total time spent by the animal was then accumulated for
each element.

For each cell, the spike array was divided on an element by
element basis to form the rate array (Muller et al., 1987). In firing
rate maps, yellow pixels represent regions in which the firing rate
was exactly zero. Increasing firing rates are represented in the color
order: orange, red, green, blue, purple. The number key for each
map shows the median firing rate for each color category. Pixels
never visited by the rat are white.

Spike amplitude was also measured as a factor of signal to noise
ratio using custom software. Signal to noise ratio (S/N) is mea-
sured as the average peak to trough amplitude of the spike on the
tetrode wire where it is largest divided by the range of the 95%
confidence limits on the noise.

MUSCIMOL INJECTION
The method of Muscimol injection was similar to that previously
described by Barry et al. (2012). Briefly, pharmacological agents
were injected into the hippocampus of freely moving rats via the
guide cannula set in the recording implant prior to rats being
placed in the arena.

In order to dissociate the activity of putative axons and cell
bodies, the GABAA receptor agonist Muscimol (5-aminomethyl-
3-hydroxyisoxazole; Sigma, St. Louis, MO, USA) was injected
into the left hippocampus while the activity of several units was
recorded in the left hippocampus. Muscimol was used to suppress
somatic activity in the hippocampus (Hafting et al., 2008; Barry
et al., 2012). If SDWs represent the propagation of action poten-
tials propagating in axons, they should not be directly inactivated
by local Muscimol. While GABAA receptors are found on multi-
ple axonal compartments of hippocampal pyramidal cells (Brunig
et al., 2002; Trigo et al., 2008; Debanne et al., 2011), activation of
GABAA receptors along the axon with GABA or Muscimol, at least
in the case of mossy fibers, has varying effects on axonal action
currents in vitro dependent on chloride levels (Ruiz et al., 2003).
Similarly, Dugladze et al. (2012) recently recorded the activity from
both the soma and axon of pyramidal cells in the hippocampus
and showed that activating GABAA receptors in the axon did not
inhibit the propagation of orthodromic action potentials. These
results suggest that if one were to record the activity of an indi-
vidual axon, as well as the activity of somatic action potentials in
the presence of Muscimol, that the action potentials in the axon
may not be inactivated. However, the persistence of axonal activ-
ity following Muscimol exposure may vary relative to the distance
between the somatic source of the axonal activity and the drug
injection site. If the drug injection site were close to the soma,
axonal activity would appear to inactivate at the same time as the
simultaneously recorded somatic activity. To this end, diffusion of

Muscimol through the hippocampus will be taken into account
here.

We simultaneously recorded the unit activity of hippocampal
cell bodies and putative axons, whose extracellular waveforms are
described below, on the same tetrodes before and after local injec-
tions of Muscimol in order to inactivate somatic activity (Hafting
et al., 2008; Barry et al., 2012). Muscimol (0.5 μg/μl in phosphate
buffered saline) was infused into the left hippocampus (1.0 μl
at 0.33 μl/min) of six rats via a 30 gage injection cannula that
entered the brain through the surgically implanted guide cannula.
The injection cannula was withdrawn 3 min later. Approximately
5 min following the start of the injection, the rat was returned to
the recording box for a 45–60 min recording session. Unit activ-
ity was separated by tetrode for each rat and only tetrodes that
included both SDW activity and longer duration somatic activ-
ity were included in analysis. Data from three/six rats included
somatic activity and SDWs from multiple tetrodes that were either
1.5 or 2.0 mm from the injection site. These data allow for a
description of the effect of Muscimol injection on the activity of
SDWs and cell bodies over time as Muscimol diffuses through the
hippocampus.

The overall firing activity of individual units was calculated
over 3 min epochs during both a 15 min pre-injection baseline
and the post-injection recording session. The firing activity was
then normalized by the first 3 min epoch of the baseline recording
sessions. Units with an overall firing rate <0.1 Hz over the first
3 min epoch were excluded from analysis. In the post-injection
period, units were considered to be inactivated if their individual
or averaged overall firing rate was less than or equal to 5% of their
baseline firing rate.

HISTOLOGY
Brains from rats used for white matter recordings were sliced at
20 μm thickness using a cryostat before being placed directly onto
slides. The slices were then stained with either thionin, DAPI
(Dapi Fluropure, #D21490; Invitrogen, Eugene, OR, USA) or DiI
(#D282; Invitrogen, Eugene, OR, USA) in order to visualize the
electrode tracks.

RESULTS
Recordings made from tetrodes positioned in the CA1 cell layer in
6 rats yielded 53 putative pyramidal cell units having a mean peak-
trough duration of 567 ± 8.7 μs (Average S/N = 3.14 ± 0.13), 5
putative INT having a mean spike duration of 241 ± 14.1 μs
(Average S/N = 2.8 ± 0.5), and 18 SDWs having a mean spike
duration of 172 ± 8.2 μs (Average S/N = 2.5 ± 0.3). Recordings
from tetrodes in the medial white matter from 4 rats yielded 31
SDWs with a mean peak-trough duration of 193 ± 6.9 μs (Average
S/N = 1.7 ± 0.1). Finally, from tetrode recordings in the alveus
from 2 rats, 15 SDWs were found with a mean peak-trough dura-
tion of 146 ± 6.01 μs (Average S/N = 2.2 ± 0.15). Recordings
made in both white matter regions were made in the absence of
somatic action potentials. Example waveforms, the average peak-
trough duration and standard error for each cell type as well as
all SDWs are shown in Figures 1A–C). A scatterplot comparing
the amplitude (S/N ratio) and peak-trough duration (μs) of each
putative cell and SDW is shown in Figure 1D.
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FIGURE 1 | Example of waveforms from extracellular tetrode

recordings in the hippocampus from different cell types and a

putative axon: (A) pyramidal cell, interneuron, and short duration

waveform. The pyramidal cell (red) has an average spike width of
500 μs with a long lasting hyperpolarization. The interneuron (green) has
a shorter spike width of 250 μs with a shorter hyperpolarization period.
The third example is of a short duration waveform that is triphasic,
exhibiting a brief hyperpolarization period before and after a brief
depolarization; (B) overlay of the three average waveforms; (C) average

and standard error of peak-trough time for pyramidal cells (n = 53,
567 ± 8.68 μs), interneurons (n = 5, 241 ± 14.1 μs), and putative
axons (n = 64, 176 ± 4.84 μs) recorded in the medial white matter
(MWM), alveus, and pyramidal cell layer of the hippocampus;
(D) Scatter plot of signal to noise ratios for individual units against
peak-trough time for SDWs recorded in MWM, alveus, and CA1 of the
hippocampus, as well as pyramidal cells (PYR) and interneurons (INT) in
CA1 of the hippocampus. The SDWs, and pyramidal cells clearly cluster
by peak-trough time while interneurons overlap with the longer SDWs.

All SDWs were found to have triphasic extracellularly recorded
action potentials, i.e., they exhibited a brief period of positiv-
ity before and after the negative spike associated with their local
depolarizing phase. In addition, the voltage changes are largely
on only one wire of a tetrode for SDWs. In contrast, none of
the waveforms typically identified as representing INT exhibited
positivities prior to their negative spikes and they generally exhib-
ited similar magnitude voltage changes on multiple wires of a
tetrode.

SDW VARIATION BY REGION
An ANOVA comparing the peak-trough duration of SDWs
recorded from the medial white matter, alveus, and CA1 of
the hippocampus indicates that not all SDWs share a common
range of peak-trough duration (F2,61 = 9.46, p = 2.60 × 10−4).
SDWs from alveus have the shortest peak-trough duration while
those found in the medial white matter and pyramidal layer of
CA1 are not significantly different from each other (t47 = 1.90,
p = 0.063).
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FIGURE 2 | Examples of SDWs recorded from the alveus in the

absence of somatic activity compared across each wire of a tetrode

(top row) and its corresponding firing rate map (second row), phase

map (third row), and autocorrelogram (fourth row). The three examples
on the left were simultaneously recorded from one rat (A) while the
example on the far right was recorded from a different rat (B). The overlay
of 60 spikes as well as the average waveform for each SDW is displayed
for each wire (top row). The third channel in each of the two examples on
the far left is flat, denoting a malfunctioning electrode channel. recording
channel. The discharges of several of the SDWs shown are indicative of

grid patterns (second row) and appear to be organized by local theta
oscillations (third row) as spike activity advances from late to early phases
of the theta cycle as the animal passes through each grid vertex. Averaged
across the entire 16 min session, the spiking of the SDWs on entry into
the periphery of each field tends to occur on one phase, while the firing in
the central part of each field tends to be earlier by about 180◦. The firing
pattern the first putative axon in 5a resembles a place field but is phase
locked between 120 and 240◦. The bottom row shows the autocorrelation
for each putative axon and is indicative of significant theta modulation in
their firing activity.

An ANOVA comparing the S/N values of SDWs in each region
suggests that SDWs recorded in the MWM tended to be smaller
in amplitude than those recorded in the alveus or layer CA1
(F2,61 = 7.46, p = 0.001). The S/N values for SDWs in the alveus
and CA1 were similar (t31 = 0.8, p = 0.43).

CELL TYPES AND SDWS ARE DISTINCT BY DURATION
An ANOVA reveals all 64 SDWs, with a mean peak-trough dura-
tion of 176 ± 4.9 μs, were significantly different from both types
of somatic activity recorded in the CA1 cell layer of the hippocam-
pus (F2,119 = 871.62, p = 8.47 × 10−72). All three unit types are
significantly different from each other (Figure 1C) with pyrami-
dal cells having the longest peak-trough duration. This finding is
reinforced by a scatterplot for each for each recorded cell type and
SDW recording location is plotted by amplitude (AD units) and

peak-trough duration (μs; Figure 1D). The SDWs cluster toward
the left while the pyramidal cells cluster toward the right. Impor-
tantly, INT overlap somewhat with the longer duration SDWs.
In addition, many of the SDWs were similar in amplitude to the
somatic action potentials with the largest amplitude SDWs in the
alveus or medial white matter.

SPATIAL FIRING PATTERNS OF SDWS
The alveus is a border structure composed of axons. Some of these
axons carry efferent output from pyramidal cells toward the fim-
bria/fornix and the adjacent retrohippocampal areas and others
carry afferent input from more distant brain regions such as the
entorhinal cortex (Deller et al., 1996; Brun et al., 2008). Figure 2A
shows three simultaneously recorded SDW units from one rat,
while Figure 2B shows a single SDW unit recorded from a second
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rat. The activity of three of the four putative axons shown have a
triangular array of firing fields (Figure 2, second row) resembling
those typical of grid cells (Hafting et al., 2005; Boccara et al., 2010)
that could be projections from the entorhinal cortex, presubicu-
lum, or parasubiculum (Hafting et al., 2005; Boccara et al., 2010).
All of the grid-like units recorded are shown in Figure 2. Grid
cells from layer II of the MEC show phase precession (O’Keefe
and Recce, 1993; Huxter et al., 2003) in that their spike activity
advances from late to early phases of the theta cycle as the ani-
mal passes through a grid vertex (Hafting et al., 2008). A similar
organization of SDW spikes by theta oscillations is also present in
the alveus (Figure 2, third row). Averaged across the entire 16 min
session, the spiking of the SDWs while the rat is in the central part
of each field tends to occur between 180 and 240◦ of the theta cycle
while firing at the periphery of each field tends to be greater or less
than that range in the theta cycle. In contrast to the other three
putative axons illustrated, the leftmost firing rate map in Figure 2
resembles a place field but shows no evidence of phase precession.
This SDW appears to fire mainly between 120 and 240◦. The auto-
correlograms at the bottom of Figure 2 suggests that these putative
axons are also strongly theta modulated.

Figure 3 shows two simultaneously recorded SDWs (top row) in
medial white matter. The rate maps of these putative axons appear
to be complementary (middle row). That is, the firing activity of
the SDW on the left tends to be slower in the region of the place
field for the unit on the right. If the two fields were superim-
posed, they would create a rate map with high firing rate covering
the entire arena. The autocorrelation (bottom row) indicates that
neither unit is theta modulated.

Figure 4 depicts tetrode placement in white matter, near the
corpus callosum. Electrodes were coated with DiI and brain slices
were stained using DAPI. One probe is shown to the left of midline
with its lowest point toward the center of the corpus callosum.

PHARMACOLOGICAL SEPARATION OF SOMATIC AND AXONAL
ACTIVITY IN CA1
Our results to this point have been largely descriptive. The inher-
ent waveform properties of SDWs as well the fact that they are
found in white matter in the absence of somatic activity, are sup-
portive of our notion that SDWs are representative of axonal
rather than somatic activity. As Muscimol inactivates somatic
activity in the hippocampus (Hafting et al., 2008; Barry et al.,
2012) and GABAAreceptors are sparse along the extent of the axon
(Brunig et al., 2002; Trigo et al., 2008), we used Muscimol to sep-
arate the somatic activity from the putative axonal activity. In
short, local injections of Muscimol silenced somatic action poten-
tials while simultaneously recorded SDWs on the same tetrodes
remained active. The SDWs would then typically remain active
until the Muscimol diffused to their more distal somatic source
(see Figure 5 for a detailed description of the model). As there can-
not be any locally generated axonal activity if Muscimol silences
all local somatic activity from pyramidal cells and INT, any SDWs
remaining after Muscimol must come from axons whose cell
bodies are beyond the range of the Muscimol diffusion.

We compared the firing activity of 58 putative CA1 somatic
units to the activity of 18 SDWs before and after the local injection
of Muscimol into the left hippocampus. The amplitude (AD units)

FIGURE 3 |Two simultaneously recorded SDWs in the medial white

matter in the absence of somatic activity compared across each wire

of a tetrode (top row) and its corresponding firing rate map (second

row) and autocorrelogram (third row). The overlay of 60 spikes as well as
the average waveform for each SDW is displayed for each wire (top row).
The firing rate maps for the SDWs display a complimentary spatial firing
pattern where the SDW on the left fires more when the SDW on the right
fires at a low rate (second row). The autocorrelograms for each SDW (third
row) suggest that they are not theta modulated.

and peak-trough duration for all SDWs and somatic units are
shown in Figure 1C. We compared the average normalized firing
frequency of these units during the 3 min epoch when the average
somatic activity on each of the tetrodes (n = 10) reached 5% or less
of baseline rate. Our results show that the impact of Muscimol on
unit firing is significantly different for SDWs compared to somatic
units. Specifically, a t-test reveals that SDWs are significantly more
active in the presence of Muscimol, firing at an average of 84 ± 16%
of their baseline firing rate (t9 = −5.12; p = 7.23 × 10−5), when
hippocampal pyramidal cells were firing at an average 3.3 ± 0.62%
of their baseline rate.

In a few cases, SDW activity slowed during the epoch of somatic
inactivation and, with time, SDWs became inactive. An example is
shown in Figure 6A from a putative axon recorded on the tetrode
positioned closer to the injection site (near tetrode). Muscimol-
induced inactivation of somatic waveforms occurs first on the near
tetrode and, with the diffusion of Muscimol over several minutes,
occurs in somatic waveforms at the far tetrode (0.5 mm between
tetrodes). The near tetrode SDW was inactivated concurrently
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FIGURE 4 | Image depicting probe placement for one corpus callosum

animal. Electrodes were coated with DiI and brain slices were stained using
DAPI. One probe is shown to the left of midline with its lowest point in the

center of the corpus callosum. The DiI stain is compared against a coronal
section (∼4.2 mm from Bregma) taken from a non-implanted rat of the same
strain and age stained with Thionin.

with the somatic waveforms on the far bank. This implies that
the Muscimol inactivated the somatic source of the SDW activ-
ity 0.5 mm from its recording site. The SDW activity on the far
tetrode, while decreased in frequency, continued until the end
of the recording session. This indicates that the cell bodies were
further removed from the injection site. The average normalized
firing activity for both cell bodies and SDWs in this case, and for
both near and far tetrodes, is described in the line plot in Figure 6B.

The mean normalized firing rate for SDWs from each rat and
tetrode during the 3 min epoch when simultaneously recorded
somatic activity fell to <5% of baseline levels is shown in
Figure 6C. The number of somatic waveforms and SDWs
from each rat and tetrode are indicated on the right. The fir-
ing rate of SDWs in response to Muscimol was variable, with
some putative axons increasing their activity beyond baseline
firing rate while most gradually decreased activity over time.
While most SDWs continued to fire robustly in the presence
of Muscimol, there were two interesting outliers. One SDW
did inactivate at the same time as somatic waveforms recorded
on the same tetrode. As other simultaneously recorded puta-
tive axons remained active, this implies that we are able to
record different time courses from different axons on the same
tetrode. Furthermore, it suggests that the SDW was from the
axon of a nearby cell body. Another SDW fell to 14% of base-
line 16 min post injection but fell no further after 53 min of
recording.

Our results suggest that the SDWs are representative of the
propagation of action potentials along axons that extend from dis-
tant cell bodies. Moreover, the results imply that SDWs cannot be
somatic action potentials as Muscimol reliably inactivates somatic
activity. Finally, axons may show different pharmacodynam-
ics than simultaneously recorded somatic activity as Muscimol
may cause brief periods of excitation in the activity of some

SDWs (Figure 6C), perhaps due to disinhibitory processes via
suppression of an intervening interneuron.

DISCUSSION
We have successfully demonstrated that it is possible to monitor
axonal activity in white and gray matter and to simultane-
ously record ensembles of cells and axons using conventional
tetrodes. We describe tetrode recordings of SDWs using chron-
ically implanted tetrodes in awake, freely moving rats. These
recordings were made in the gray matter of the hippocampus in
layer CA1 or from white matter tracts near the corpus callosum
and the alveus. The principal feature of SDWs is brief, triphasic
action potentials with a mean peak-trough duration of 176 μs. We
have also shown that, in hippocampal gray matter recordings, a
local injection of Muscimol near the recording tetrodes inactivates
somatic action potentials while many SDWs show no signifi-
cant change in firing rate, at least in the first couple of minutes
after somatic inactivation. We suggest this is because the recorded
SDWs are representative of axonal activity projecting from somata
more distant from the site of injection and are therefore relatively
unaffected by Muscimol. Moreover, the sparse density of axonal
GABAA receptors would preclude an effect of Muscimol on the
axons themselves. Taken together with the inherent properties of
the SDWs that we have described, we strongly suggest that SDWs
are representative of axonal activity as opposed to direct somatic
activity.

SDWs REPRESENT AXONAL ACTIVITY
We propose that SDWs represent the propagation of action poten-
tials along axons based on three electrophysiological features: first,
SDWs were of extremely short duration. Second, SDWs exhibited
three phases (from a brief small positive phase, to a longer-
duration negative phase, to another brief small positive phase).
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FIGURE 5 | Model for the pharmacological separation of putative

axonal activity from somatic activity using the GABAA agonist

Muscimol. As axons tend to have a sparse density of GABAA receptors,
axonal activity should not be inactivated by local injections of Muscimol. We
record somatic action potentials and SDWs simultaneously on the same
tetrode (A). Somatic action potentials are inactivated over time as
Muscimol diffuses through the hippocampus (B). If SDWs are truly
representative of action potential propagation along axons (example SDW
shown in blue), then Muscimol should inactivate local somatic activity
when it diffuses to the recording site (example pyramidal waveform shown
in red) while local SDW activity should persist (B) until sufficient diffusion
time has elapsed for Muscimol to inactivate the distal somatic source of
the axonal action potential (C).

Both of these features have been associated with extracellular
recordings of action potentials in axons in vitro (Johnston and
Wu, 1995; Raastad and Shepherd, 2003; Meeks et al., 2005; Kole
et al., 2007; Meeks and Mennerick, 2007; Dugladze et al., 2012).
The waveform shape of the axonal action potentials reported
by Raastad and Shepherd (2003) are a particularly close match
to the examples of SDWs provided here. With regard to spike
duration, Kole et al. (2007) found a significant decrease in the
length of action potentials from the soma through the extent
of the axon in layer five pyramidal cells. The half-width of the
action potential decreased significantly as the patch recording sites
moved from the soma (503 ± 7.4 μs), the most distal region of
the axon initial segment (290 ± 18.8 μs), to axon blebs up to
720 μm from the axon hillock (266 ± 8.5 μs). The first order

derivative of axon bleb values match the duration values of extra-
cellularly recorded SDWs (see Henze et al., 2000). Morever, Kole
et al., further provide a mechanism for the compression of the
spike signal from the soma through the axon. The authors pro-
pose that Kv1 channels strategically positioned in the axon initial
segment decrease the duration of the axonal action potential wave-
form and allow for the integration of slow subthreshold signals.
In this manner the Kv1 channels are able to control the presy-
naptic action potential waveform and synaptic coupling in local
circuits.

Our description of SDWs also matches that of classic fiber
tract recordings using 3 μm diameter tungsten wires set in
micropipettes. Both Amassian et al. (1961) and Cooper et al.
(1969) reported recordings of brief triphasic action potentials
approximately 130 μs in duration in a variety of species (cat,
squirrel, squirrel monkey) and recording locations (optic tract,
geniculostriate fibers in the visual cortex, pons and medulla, and
also the cuneate nucleus). Similar to these reports, SDWs were
also found to be quite stable (see 24 h recordings of SDWs in
Figure 6A). While the largest amplitude axonal spikes reported
by Cooper et al. (1969) were ∼150 μV, we have recorded several
SDWs that were significantly larger in amplitude, particularly in
the alveus (see Figure 1C).

While we are cautious to generalize the applicability of our
peak-trough duration values as criteria for SDW classification in
all species and all brain regions, particularly when there is varia-
tion between white matter regions, duration in combination with
waveform shape should serve as general guidelines for the isola-
tion of in vivo axonal activity. In the case of tetrode recordings,
activity for SDWs also appears to be typically restricted to a single
wire and is therefore suggestive of a much smaller source area as
compared to recordings in the area of the soma. This feature could
also be added to the short list of SDW criteria.

BRIEF DURATION WAVEFORMS THAT ARE NOT REPRESENTATIVE OF
AXONAL ACTIVITY
An illustration of the dangers of using peak-trough duration as the
sole criteria for unit identification can be seen in Figure 1C. While
the average interneuron peak-trough duration is significantly dif-
ferent from SDWs in each region as well as the average of all SDWs,
the INT can overlap with the upper range of SDWs. While the
peak trough-duration of the INT in our data set were over 200 μs,
Bartho et al. (2004) report putative INT that fall well within the
lower range of our SDWs. Assuming that these brief INT were not
axonal, it is possible that SDWs could be easily misclassified as
INT. Even in early descriptions of putative cortical stellate neuron
waveforms, Mountcastle et al. (1969) preferred to refer to their
waveforms with the neutral descriptive term “thin spikes” due to
the uncertainty that they may have been thalamocortical fibers.
As we recorded SDWs in white matter and distinguished between
somatic and axonal activity using Muscimol, we are confident that
our SDWs were not INT. Moreover, as none of the INT in our
data set were triphasic, we suggest that waveform shape, in com-
bination with spike duration, should be a secondary criteria for
neuronal characterization.

While the distinction between axon and interneuron peak-
trough duration may be sufficiently problematical, there is an

Frontiers in Neural Circuits www.frontiersin.org November 2013 | Volume 7 | Article 181 | 8

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


“fncir-07-00181” — 2013/11/16 — 13:56 — page 9 — #9

Robbinset al. SDWs are representative of axonal activity

FIGURE 6 | Continued
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FIGURE 6 | Continued

Pharmacological separation of simultaneously recorded SDWs and

somatic activity following local Muscimol injection. Somatic activity is
inactivated my Muscimol while putative axonal activity persists. (A) An
example of the separation of axonal and somatic activity recorded on the
same tetrodes by Muscimol. The top row shows the overlay of several
spikes and the average waveform of somatic action potentials as well as the
SDWs of putative axons compared across each wire of a tetrode. The
examples of the far left were recorded on a tetrode 1.5 mm from the
injection site (near tetorde) while those on the right were recorded 2.0 mm
from the injection site (far tetrode). One of the SDWs on the far tetrode was
triphasic but inverted, suggesting it was inside or very close to a putative
axon. This was the only case of inversion found from all SDWs. The second
row displays the firing rate maps for each unit type shown above as well as
the number of spikes on the upper right. The somatic action potentials were
found to have clear firing fields while the SDWs did not. The waveforms, as
well as firing rate maps are then shown for the same units for 10 min
recording sessions 35 min, 1, and 25 h post injection. Waveforms identified
as somatic action potentials were silenced before SDWs. The SDW on the
near tetrode was inactivated at the same time as somatic action potentials
on the far tetrode. This implies that the somatic source of the axonal
activity, as represented by the SDW, was approximately 0.5 mm away.
Recordings made from the same units 25 h after Musicmol injection
(bottom row) shows the reinstatement of all unit activity following the
clearance of Muscimol. SDWs therefore tend to be as stable as somatic
action potentials; (B) Line Plots of the averaged normalized firing rates as a
function of time for somatic action potentials and SDWs on near and far
tetrodes for the example shown in (A). Cells on the far tetrode become
silent after cells on the near tetrode as a product of Muscimol diffusion
time. Similar time courses are seen for the SDWs although their activity is
prolonged on both near and far tetrodes compared to cells. Note that SDW
activity on the far tetrodes continues beyond 60 min after the Muscimol
injection; (C) average normalized overall firing rate for SDWs from each rat
and tetrode during the 3-min epoch when simultaneously recorded somatic
activity dropped to at least 5% of baseline levels. The number of cells and
SDWs from each rat and tetrode are indicated on the right. The vast majority
of SDWs are significantly active while the somatic activity recorded from
the same tetrodes has been silenced by Muscimol.

additional ongoing debate that pyramidal cells in primate neocor-
tex may have much briefer spikes than in rodents (Vigneswaran
et al., 2011). As a consequence, the well established differences
between spike durations of INT and pyramidal neurons have now
been blurred. Assuming that pyramidal cells that exhibit “thin
spikes” are not axons, this finding further points to the pitfalls of
using spike duration as a means of globally characterizing neuronal
activity.

REPORTS OF PUTATIVE SDWS
Leutgeb et al. (2000, 2007) have reported head direction units in
the hippocampus as well as grid unit in the axon terminals of the
perforant path, that may both serve as a source of convergence
onto place cells. In the case of Leutgeb et al. (2007), the authors
imply that the spikes generating grid patterns may have originated
from intact or punctured axons but were hesitant to refer to them
as such. Moreover, several of the units shown in Leutgeb et al.
(2000) as well as the four units shown in Leutgeb et al. (2007) have
similar spike durations and have the same triphasic waveform of
the SDWs that we show here. In addition, histology shown in Leut-
geb et al. (2000) indicates that several of these head direction units
were recorded near white matter tracts in the region of the alveus
as well as in the stratum lacunosum-moleculare. In the case of
Leutgeb et al. (2007), units displaying grid patterns were recorded

in the axon terminals of the entorhinal cortex in the perforant
path. Given these similarities, we suggest that the short duration
units described in these studies may have been action potentials
propagating along axons from other regions of the brain. In addi-
tion, the putative grid SDWs we describe here may provide further
evidence of such spatial information converging on the hippocam-
pus. As both Leutgeb et al. (2000) and Leutgeb et al. (2007) suggest,
the combination of both head direction and grid signals in the
hippocampus would allow for strong synaptic interactions which
could integrate these spatial processes in the generation of hip-
pocampal place representations. It is our hope that recordings of
SDWs in freely moving animals could lead to new ideas regarding
the integration of multiple streams of converging spatial informa-
tion in the generation of the cognitive map (O’Keefe and Nadel,
1978).
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