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Designing informative ecological experiments can be a
very challenging endeavor, particularly for researchers

studying continuous independent variables for which
either analysis of variance (ANOVA) or linear regression
could be used to analyze the results. Although ecologists
have relied heavily on ANOVA to design and analyze their
experiments for most of the past century, there are many
reasons to use regression-based experimental designs (cf
Gotelli and Ellison 2004). The aim of this review is to
demonstrate why ecologists should prefer experiments
designed for analysis with regression, when appropriate.

ANOVA-based experiments are designed to answer
qualitative questions, such as, “Does the response vari-
able (Y) differ across different levels of the independent
variable(s) (X)?” and “If there are differences in Y, which
treatments are different?” Typically, X is either a discrete
variable (eg type of disturbance; the presence/absence of

predators, disease, or an invasive species) or a continuous
variable that can be readily grouped into categories or
classes (eg low, medium, and high levels of nitrogen; low
and high population density). 

In contrast, regression-based experiments are designed
to answer the quantitative question, “How does the
response variable change with the independent vari-
able(s)?” by building a model that describes the shape of
the relationship between X and Y using as few parameters
as possible. Regression is therefore appropriate only for
continuous independent variables, such as environmental
characteristics that lie along gradients (eg light, pH, tem-
perature, nutrient concentration, disturbance frequency)
or continuous biological characteristics (eg species rich-
ness, organism size, disturbance magnitude). 

For some ecological research scenarios, the choice
between designing an experiment for analysis with
ANOVA or regression is relatively straightforward. For
example, ANOVA is the only appropriate approach for
studying factors that cannot be made continuous (eg male
versus female; genotypes that are sensitive to a pathogen
versus those that are resistant), while regression is the
most appropriate approach when the research question
involves building a quantitative model to describe the
relationship between X and Y. ANOVA is also a useful
starting point for new empirical research, such as testing a
specific hypothesis about the effect of X on Y derived
from a theoretical model. More generally, simple
ANOVA experiments to refute or accept a proposed
effect allow a researcher to determine whether that factor
is worthy of further investigation (see Case Study Panel 1).

There are, however, many ecological scenarios for
which either ANOVA or regression would be appropri-
ate. In such cases there is at least one independent vari-
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Knowing when to draw the line: designing
more informative ecological experiments  
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Linear regression and analysis of variance (ANOVA) are two of the most widely used statistical techniques in
ecology. Regression quantitatively describes the relationship between a response variable and one or more con-
tinuous independent variables, while ANOVA determines whether a response variable differs among discrete
values of the independent variable(s). Designing experiments with discrete factors is straightforward because
ANOVA is the only option, but what is the best way to design experiments involving continuous factors?
Should ecologists prefer experiments with few treatments and many replicates analyzed with ANOVA, or
experiments with many treatments and few replicates per treatment analyzed with regression? We recom-
mend that ecologists choose regression, especially replicated regression, over ANOVA when dealing with con-
tinuous factors for two reasons: (1) regression is generally a more powerful approach than ANOVA and (2)
regression provides quantitative output that can be incorporated into ecological models more effectively than
ANOVA output. 
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In a nutshell:
• Analysis of variance (ANOVA) and linear regression are

widely used by ecologists, but surprisingly little information is
available regarding their relative merits

• As linear regression is more powerful than ANOVA and pro-
vides quantitative information that can be used to build eco-
logical models, we suggest that ecologists use regression when-
ever possible

• In particular, replicated regression designs provide the flexibil-
ity to analyze data with regression when appropriate and with
ANOVA otherwise
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able that could be considered as either a continuous or
discrete variable, depending on context, and the research
question is flexible enough to be explored as either a
regression or an ANOVA problem. For example, in Case
Study Panel 1, Julie plans to evaluate the effect of light
on ecosystem respiration, but she has not yet refined her
research question to the point where the choice between
regression and ANOVA is obvious. Julie can therefore
define light as a discrete variable (by having shaded ver-
sus unshaded treatments) or a continuous variable (by
using shade cloths that pass different percentages of the
incident light). In a situation like this, what are the
advantages and disadvantages of choosing a regression-
based design versus an ANOVA-based design? 

This review provides concrete suggestions for choosing
between regression- and ANOVA-based experiments for
research questions involving at least one continuous
independent variable and for which the choice of
approach is not dictated by the research question. We
begin with an overview of the general linear model that
underlies both techniques. We then make a head-to-head

comparison between the power of regression and
ANOVA models before introducing replicated regres-
sion, an approach that maximizes both power and flexi-
bility. Throughout, we use the main text to make our
major messages accessible to all readers, Case Study
Panels to apply our findings (eg Case Study Panel 1), and
Statistical Panels to provide details for interested readers
(eg Statistical Panel 1). 

! Some key information about regression and
ANOVA 

Although most introductory statistics courses make a
clear distinction between fitting a curve to data (regres-
sion) versus testing for differences between treatment
means (ANOVA), few point out the underlying similar-
ity between these techniques. ANOVA and linear regres-
sion share the same underlying mathematical model, the
general linear model, which is expressed in matrix form as
Y = X ! + " (Web-only Appendix 1; Neter et al. 1996).
In this model, Y represents the response variable, X a
matrix of the independent variable(s), ! the parameters
associated with each independent variable, and " the
errors. The matrix of independent variables X determines
whether we are performing a regression or an ANOVA.
In regression, the X matrix contains only continuous
variables, while ANOVA uses only discrete variables
(sometimes called “indicator” or “dummy” variables).
The elements of the ! matrix of a regression quantify the
shape of the relationship between Y and X, while the ele-
ments of the ! matrix of an ANOVA provide informa-
tion about treatment means. Alternatively, the X matrix
can contain a mix of discrete and continuous variables,
allowing researchers to compare the shapes of relation-
ships across different treatment groups (eg ANCOVA
and indicator variables regression; Neter et al. 1996); we
do not address these intermediate cases here. 

Although they have the same underlying mathematical
framework, regression and ANOVA are different in several
fundamental ways. For example, because these techniques
address different questions (or, alternatively, test different
hypotheses), their underlying assumptions are subtly differ-
ent (Statistical Panel 1). Most importantly, the general lin-
ear model assumes that the relationship between Y and X
can be described using a linear equation (Neter et al. 1996),
so that regression is inappropriate when the relationship
cannot be made linear in the parameters (eg through trans-
formations or polynomial terms). In contrast, ANOVA
does not assume any particular relationship between Y and
X, and so is appropriate even when the response to the
independent variable(s) is highly nonlinear.

Another key difference between regression and
ANOVA lies in the number of columns used to define
the X matrix, which determines the number of parame-
ters in the general linear model. Given a particular
experimental design, the X matrix for ANOVA generally
has more columns than the X matrix for regression
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Case Study Panel 1. Julie’s dilemma  
Julie is a second-year graduate student trying to decide how to
set up her next field experiment. Last summer, she conducted a
number of preliminary studies; the most promising evaluated the
effects of plant community diversity and light on ecosystem
processes using a 2 x 2 factorial experiment in aquatic meso-
cosms. Although no effect of diversity was detected, the light
treatment – shaded versus unshaded – had modest but interest-
ing effects on several key response variables, including ecosystem
respiration. Julie has therefore decided to evaluate the effect of
light more thoroughly this year, but she is not sure how to design
the experiment. Because she has a fixed number of mesocosms
(24) available for her study, she faces an important decision
about allocating experimental units to treatments (light levels)
versus replicates. Should she repeat the design from last year,
with just two levels of light, to maximize her power to detect an
effect of light? Or should she create a gradient of light levels in
order to map how her response variables vary with light? If she
has more than two light levels, how many should she have, and
how should they be selected? Moreover, because light is a con-
tinuous variable, should she plan to analyze her results with
ANOVA, linear regression, or some combination of these
approaches? This paper attempts to provide guidance to Julie and
others who are faced with tough decisions about designing eco-
logical experiments.
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because ANOVA requires each treatment to be identified
using a separate column of X (Web-only Appendix 1). To
make this statement more concrete, consider our case
study. Suppose that Julie set up her mesocosm experiment
to quantify the effects of light on ecosystem respiration
using five levels of light. A simple linear regression to
account for light effects would have two columns in X,
corresponding to the intercept and slope. On the other
hand, a one-way ANOVA model for the same experi-
ment would require five columns, each specifying the
mean for a treatment. This difference in the number of
parameters grows more extreme as the number of treat-
ments increases. For example, suppose Julie added tem-
perature as a second factor, such that she had two levels of
temperature and five levels of light. A typical multiple
regression model would have four parameters (intercept,
main effects of light and temperature, and a light x tem-
perature interaction), while the two-way ANOVA would
require ten parameters (grand mean, four parameters for
light effects, one parameter for temperature effects, and
four light x temperature interactions).

! The relative power of regression and ANOVA

This difference in the number of parameters leads us to
one of the most important take-home messages from this

review: because regression requires fewer parameters, it is
generally a more powerful statistical approach than
ANOVA. Statisticians define power as the probability of
detecting an effect when that effect is present (ie the
probability of rejecting the null hypothesis when the null
hypothesis is false). In regression, the null hypothesis is
that Y is not predicted by a specific linear function of X,
while in ANOVA, the null hypothesis is that treatments
do not differ. The power for the overall F-test is calcu-
lated in the same way for all general linear models
(Statistical Panel 2); we used this procedure to generate
power curves (graphs showing how the ability to detect
an effect changes with effect size) for a variety of one- and
two-way experimental designs (Figure 1). Several inter-
esting features emerged from this analysis:
(1) The power curve for ANOVA is determined by the

number of replicates per treatment, as power increases
with increased replication (Figure 1). This should
come as no surprise to anyone who has taken a course
in experimental design. If the number of experimen-
tal units is fixed by logistical constraints, power
increases when these units are allocated to fewer
treatments with more replicates per treatment.
Moreover, the power for the overall F-test is deter-
mined by the total number of treatment combina-
tions, not the number of factors (independent vari-
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Statistical Panel 1. Assumptions and their violation  
Here we highlight the major assumptions for regression and ANOVA.Violation of some of these assumptions can be a serious issue, lead-
ing to erroneous or biased conclusions, while violations of other assumptions may be less serious.

Response variable and residuals
Both regression and ANOVA assume that the response variable Y and residuals " are independent, normally distributed random variables
with the same variance (homoskedastic). Importantly, analysis of the residuals ", not the response variable Y, is the best way to test these
assumptions for both regression and ANOVA (Neter et al. 1996; Quinn and Keough 2002; Kéry and Hatfield 2003). If the residuals meet
the assumptions of normality and equal variance, then the underlying rules of probability calculus imply that the response variable was
also normally distributed and homoskedastic (Larsen and Marx 1986; Miller 1986).

Unequal variance (heteroskedasticity) can be extremely problematic in both regression and ANOVA. With regression, strong het-
eroskedasticity causes the variance around the estimated slope and intercept to be underestimated (Miller 1986), potentially leading to
overestimates of statistical significance. In ANOVA, heteroskedasticity alters the assumptions underlying the F-test and may cause the
P value to be over- or underestimated (Miller 1986). Most researchers cope with heterogeneous variances through transformations,
commonly a logarithmic or root transformation for residuals that funnel out or a reciprocal transformation for residuals that funnel in
(Neter et al. 1996). Importantly, moderate violation of homoskedasticity can be ignored in balanced ANOVA designs (those with equal
numbers of replicates for each treatment), because the bias in the P value is small (Box 1954a,b). In regression designs, quantile regres-
sion can be a powerful tool for dealing with heteroskedasticity (Cade and Noon 2003).

Failure to meet the normality assumption is usually of minimal concern in both ANOVA and regression, unless the errors are highly
non-normal (eg skewed).The F-tests used in ANOVA and regression tend to be robust to non-normal errors, except when an experi-
ment is highly unbalanced, although power may be reduced by non-normality (Miller 1986; but see Wilson and Grenfell 1997). Moreover,
parameter estimates from regression analyses are robust to non-normality, except when the non-normality is due to outliers (Miller
1986). Importantly, when errors are highly non-normal, generalized linear models need to be used instead of regression or ANOVA (eg
McCullagh and Nelder 1997; Wilson and Grenfell 1997).

More generally, outliers that cause skew, unequal variance, or non-normality in the errors are extremely problematic and need to be
dealt with carefully (Miller 1986).

Independent variable(s)
Unlike the rigid distributional assumptions for Y and ", neither regression nor ANOVA make assumptions about the distribution(s) of the
independent variable(s) X. Thus, X does not need to be normally distributed in order to proceed with regression. However, the inde-
pendent variables need to be either controlled by the researcher or measured as accurately as possible.

Imprecise or inaccurate estimates of the independent variables are a particular concern for regression, which explicitly assumes that
all predictors are measured without error, or at least with much less error than the response variable Y. Violation of this assumption
leads to “errors in variables” (EIV) and biased parameter estimates. For example, in simple linear regression, EIV bias regression slopes
towards zero (Sokal and Rohlf 1995; McArdle 2003), potentially altering biological conclusions and complicating the use of regression
models in further research.
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ables) or the number of levels of each factor
(Statistical Panel 2). Thus, an experiment with eight
levels of Factor A has the same power curve as an
experiment with four levels of Factor A crossed with
two levels of Factor B, or a three-way experiment
with two levels of each factor. 

(2) The power curves for regression are determined by
the number of factors and the number of experimen-

tal units, but not the number of treatments or repli-
cates (Figure 1). Given a fixed number of experimen-
tal units, the regression power curve is determined by
the number of factors (compare the red and yellow
lines in Figure 1). Given a fixed number of factors,
power increases with the number of experimental
units (compare lines with the same colors in the top
and bottom panels of Figure 1). It is only in ANOVA
that the allocation of experimental units to treat-
ments versus replicates determines power. 

(3) When there are only two levels per factor, the power of
ANOVA is always equivalent to the power of regression
because both have the same number of parameters.
Thus, a one-way ANOVA with two levels of the inde-
pendent variable has the same power as a simple linear
regression (red lines in Figure 1), while a two-way
ANOVA with two levels per factor has the same power
as a multiple regression model with main effects and an
interaction (yellow lines in Figure 1). 

(4) For all other designs, regres-sion is more powerful than
ANOVA. In designs with one factor, simple linear
regression is more powerful than ANOVA, unless there
are just two levels of the factor. Similarly, in designs
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Figure 1. Power curves for all possible balanced one- and two-
way regression and ANOVA models when there are (a) 24 and
(b) 48 experimental units. Identifying information for each curve
is provided below the figure; the number of replicates per treatment
can be determined by dividing the number of experimental units by
the number of treatments. Note that regression generally has
greater power than ANOVA, except in the special case where the
ANOVA only involves two levels per factor.

Statistical Panel 2. Details for power calculations   
The power of the overall F-test for regression and ANOVA is
calculated in the same way (Cohen 1988), as long as the ANOVA
considers fixed effects and the regression is with little error in
X. As with all power calculations, we begin by specifying the null
(Ho) and alternative (Ha) hypotheses of interest and the signifi-
cance level # for rejecting Ho.The null hypothesis in either case
is that the variability in Y is due to chance rather than biological
differences – that is, Ho: R2

Y•! = 0, where R2
Y•! indicates the

fraction of variation in Y explained by the model with parame-
ters !.We express Ha as a function of the minimum variability
explained by the model (a minimum R2

Y•! ) thought to be of
biological significance.We then translate the target R2

Y•! into an
effect size f 2 using the ratio of explained to unexplained vari-
ance:

f 2 = R2
Y•! / (1 - R2

Y•! )

The critical value of the F-statistic (Fcrit) that will cause us to
reject Ho is determined from # and the numerator (u) and
denominator (v) degrees of freedom (df) for the particular
experimental design used. Because the total number of treat-
ments determines u and v in the overall F-test (see table at the
end of Web-only Appendix 1), there is no change in the power
curves when there are multiple factors under investigation.

Given u, v, and a target f 2 (Ha), we calculate the non-centrality
parameter $ of the non-central F-distribution with u,v df as 

$ = f 2 (u + v + 1)

Finally, we calculate the power of the overall F-statistic as one
minus the probability associated with the non-central F-distribu-
tion at the value specified by Fcrit, u, v, and $.

The power curves in Figure 1 were generated using this algo-
rithm implemented in Matlab 6.5 (MathWorks,Natick,MA). For a
particular experimental design, we calculated u, v, and Fcrit for
both the regression and ANOVA models.We then determined $
and power given these values for all effect sizes corresponding to
R2 from 0 to 1 at steps of 0.05. Our programs and data files with
the power curves are available online (Web-only Appendix 4).
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with two factors (ie at least four
treatments), regression is more
powerful than ANOVA unless
the design is a 2 x 2 factorial.

Based on the above findings, we
recommend that ecologists use
regression-based experimental de-
signs whenever possible. First,
regression is generally more power-
ful than ANOVA for a given num-
ber of experimental units (Figure
1). Second, regression designs are
more efficient than ANOVA
designs, particularly for quantifying
responses to multiple factors
(Gotelli and Ellison 2004). Third,
regression models have greater
information content: regression
results can be readily incorporated
into theoretical ecological models
(eg Aber et al. 1991) or used to
make empirical predictions for new
systems (eg Meeuwig and Peters
1996). Modelers frequently be-
moan the lack of empirical data to
develop equations and parameters
for simulation studies (Canham et
al. 2003), and a greater emphasis on
regression-based designs may help
to fill this gap (Gotelli and Ellison
2004). 

It should be remembered, how-
ever, that regression is not appropriate in all situations.
For example, standard linear regression is inappropriate

when there are thresholds and non-linearities in the data
that cannot be accommodated by a linear model or trans-
formations (Figure 2; Web-only Appendix 2), or when
there are measurement errors in one or more independent
variables (“errors-in-variables”; Statistical Panel 1).
Because these situations are not uncommon, a regression
design that does not replicate treatments can be risky
(Case Study Panel 2). This makes replicated regression
experiments (Figures 2c and d), which provide the flexi-
bility to analyze the resulting data with either regression
or ANOVA, extremely attractive. 

! Replicated regression: a powerful hybrid

Replicated regression (RR) combines the pattern-distin-
guishing abilities and statistical power of regression with
ANOVA-like replication of treatments (Figure 2). In RR
designs, researchers make multiple independent observa-
tions of the response variable for at least some values of the
independent variable(s). Here, we focus on the case where
there are equal numbers of replicates for every treatment
because balanced designs give unbiased results even with
some heterogeneity in error variance (Statistical Panel 1).
Because the regression power curve is determined by the
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Figure 2. Contrasting outcomes for replicated versus unreplicated regression-based
experimental designs. In the left column, data were simulated using a linear relationship; in
the right column, data were simulated using a sigmoidal relationship. In the top row, each
level of X is unreplicated, so it is not possible to “fall back” to ANOVA when linear
regression is not appropriate (b). However, in the bottom row, there are replicate
observations at each level of X, allowing us to use ANOVA to test for differences in mean
response across levels of X (grey bars ± 1 SE) – particularly when linear regression is not
appropriate (d).

Case Study Panel 2. Choosing between regression
and ANOVA
After seeing Figure 1, Julie becomes very enthusiastic about
using a regression design for her field experiment. She decides
that she should monitor changes in ecosystem respiration
across 12 different levels of light (with two replicate mesocosms
per level) and then analyze the results with linear regression.
Pleased with herself, Julie goes to her advisor to explain her pro-
posed design.A self-described “ANOVA-head”, the advisor asks
Julie to briefly justify why she has chosen this particular design.
Julie argues that:
• By using more levels of light, she’ll be able to better describe

exactly how respiration changes with light.
• Her regression relating respiration and light could become

part of a simulation model to evaluate how aquatic ecosystem
respiration might respond to changes in cloud cover predicted
by global warming.

Julie’s advisor concedes that these are both worthy points, but
then asks a single, pointed question: “What will you do if the
relationship between ecosystem respiration and light cannot be
described using a linear model?” At this point, Julie realizes that a
regression-based experiment might be more complicated than
she realized.
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number of experimental units, and not the number of
replicates per treatment, allocating some experimental
units to replication increases analytical flexibility without
decreasing power.

RR designs make it possible to use lack-of-fit tests to
evaluate the appropriateness of a regression model
(Web-only Appendix 2) and/or use ANOVA as a “fall
back” analysis when data violate the assumptions of
standard linear regression (Figure 2). When there are
thresholds and non-linearities in the response variable,
nonlinear regression (eg Draper and Smith 1998),
piecewise regression (eg Toms and Lesperance 2003),
and quantile regression (eg Cade and Noon 2003) are
often valid alternatives. However, many ecologists are
unfamiliar or uncomfortable with these approaches. For
these researchers, ANOVA is also a valid alternative,
but only if the experiment included replicates at some
levels of X.

“Falling back” to ANOVA almost always entails a
reduction in statistical power (Figure 1), but it is possible
to design experiments such that regression can be used to
analyze the results when the resulting data are appropri-
ate and ANOVA when they are not, without sacrificing
too much statistical power (Case Study Panel 3).

Designing such experiments requires balancing two com-
peting needs: having enough levels of the independent
variable(s) X to fit a meaningful quantitative model
while at the same time protecting against the possibility
of non-linearity or errors-in-variables by having more
replicates at each level of X. Decisions about this trade-
off should be based on the following criteria:

The importance of building a quantitative model for
the relationship between X and Y 

When the primary research objective is to develop a
predictive model for Y, then sampling as many levels of
the independent variables as possible should be given
the highest priority. In this situation, we recommend
“falling back” to alternative regression models (eg non-
linear, piecewise, or quantile regression) instead of
ANOVA, because ANOVA is unlikely to yield satisfac-
tory conclusions.

The potential size of the experiment

The number of experimental units dictates the potential
power of the regression analysis, as well as the list of
potential RR designs. Generally speaking, the more
experimental units there are, the more powerful the
analysis will be, although logistical constraints usually
provide an upper boundary on experiment size.

The probability of a regression model being
inappropriate

If problems with regression are unlikely (see Statistical
Panel 1), we suggest having more treatments and fewer
replicates per treatment. However, when there may be
problems with regression, we recommend adopting a
design with fewer treatments and more replicates per
treatment. The likelihood that regression will be inappro-
priate can be estimated by studying the literature, as well
as by intuition and pilot experiments (see Case Study
Panels 2 and 3 for an example).

The expected variability among replicates

As with all power analyses, an a priori estimate of variabil-
ity within treatments is necessary (Quinn and Keough
2002). The greater the expected variability, the stronger
the need for more replicates. In particular, a rough esti-
mate of the expected ratio of the variability within treat-
ments to the overall variability in the response variable
can be used to choose between alternative RR designs
(Case Study Panel 3; Web-only Appendices 2, 3).

The desired power of the “fall back” ANOVA

To ensure that a “fall-back” ANOVA has high power, a
researcher should increase the number of replicates and
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Case Study Panel 3. Planning for a “fall back” ANOVA
After thinking about her advisor’s comment, Julie realizes that a
regression experiment with only two replicates per treatment
might not be the best choice. She has 24 experimental units
available for her experiment, so she decides to evaluate all of the
options: she can have 12, 8, 6, 4, 3, or 2 treatments with 2, 3, 4, 6,
8, or 12 replicates, respectively.

Julie first decides that she would definitely like to know some-
thing about the shape of the response of respiration to light, and
therefore needs at least four light treatments. Next, she admits
that she knows little about how linear the response to light
might be, since last year she only had two light levels. However, it
seems reasonable to expect some sort of saturating function,
based on plant physiology: at high light levels, physiological
processes probably become limited by some other factor. She
concedes that her advisor was right – she needs to plan for the
contingency of a non-linear relationship. Moreover, because she
wants her results to be publishable, regardless of the analysis
used, Julie aims for a minimum ANOVA power of at least 0.8. She
knows from her experiments last summer that the variability
among replicate mesocosms (the sums-of-squares due to pure
error, or SSPE; see Web-only Appendix 2) could be quite high,
accounting for as much as 50–60% of the overall variability in the
response variable (the total sums-of-squares, or SST).

Armed with this information, Julie consults Figure 3. She
decides to ensure a power of 0.8 with 24 experimental units
(blue curves) by using six treatments of four replicates each.This
design will allow her the flexibility to “fall back” to ANOVA
should she encounter a saturating response, but it also provides
her with enough levels of the independent variable to reasonably
map out a response, potentially using nonlinear regression.With
six treatments, Julie needs an overall R2 > 0.4 or a SSPE/SST ratio
<0.6 to achieve a power of 0.8. She feels that these constraints
are reasonable, given her results from last summer.

Julie returns to her advisor with this revised design, and they
agree that a 6-level, 4-replicate design is an appropriate compro-
mise between the potential power of the linear regression
approach and the possible scenario requiring a “fall back”
ANOVA.
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decrease the number of treatments. The exact number of
treatments and replicates required to meet a particular min-
imum power demand can be determined using power curves
together with an estimate of the expected variability in the
system (see Case Study Panel 3). 

! A cautionary note

Readers should be aware that there are situations for
which the general linear model is inappropriate, prohibit-
ing the use of either ANOVA or linear regression. For
example, highly non-normal errors require generalized
linear models, which allow for a diversity of error distrib-
utions (eg log-
normal, Poisson, or negative binomial; McCullagh and
Nelder 1997; Wilson and Grenfell 1997). It is currently
impossible to state whether our conclusions regarding the
relative power of regression and ANOVA also extend to
generalized linear models, since calculations of power for
such models are still in their infancy. However, we
hypothesize that our conclusions will hold for this more
general class of models, since regression models will
include fewer parameters than ANOVA models for all
but the simplest experiments. Testing this hypothesis is
an important area for further research.

! Conclusions
This review was motivated by a perceived shortage of
information about the relative merits of regression- and
ANOVA-based experiments when there is at least one
continuous variable and the research question can be
answered with either regression or ANOVA. Many current
ecological questions fall into this category, including inves-
tigations of the relationships between species richness and
ecosystem functioning (eg Loreau et al. 2001) and between
metabolic rate and population/community parameters (eg
Brown et al. 2004). To aid researchers working on these
and other questions, we have shown that:
(1) Regression and ANOVA are more similar to one

another than they are different. The key distinction is
that regression builds a quantitative model to describe
the shape of the relationship between X and Y, using
as few parameters as possible. 

(2) In testing the assumptions of regression and
ANOVA, homogeneity of variance tends to be far
more critical than normality for most ecological vari-
ables (Statistical Panel 1). 

(3) Regression is generally more powerful than ANOVA,
and also provides additional information that can be
incorporated into ecological models quite effectively.

(4) Because unreplicated regression designs can be risky,
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Figure 3. Guidelines for choosing between possible replicated regression designs when 24, 36, or 48 experimental units are available.
Lines show (a) the minimum required R2 or (b) the largest possible allowable SSPE/SST for the target power level 0.8; line symbols
and colors indicate the number of experimental units under consideration. To generate similar figures for other sample sizes or powers,
see Web-only Appendix 3.

Number of treatmentsNumber of treatments

M
ax

im
um

 a
llo

w
ab

le
 S

S
P

E
/S

S
T

M
in

im
um

 R
2



Reasons to choose regression over ANOVA  KL Cottingham et al.

we recommend replicated regression designs that
allow researchers to use either regression or ANOVA
to analyze the resulting data. 

(5) In replicated regression, how experimental units are
allocated to treatments versus replicates has a major
effect on the overall power of the “fall back”
ANOVA. Decisions about the numbers of treatments
should be based on the tradeoff between building a
quantitative model and allowing for the possibility of
falling back to ANOVA if necessary. To help ecolo-
gists choose among the alternatives, we have pro-
vided an example (Case Study Panel 3) and instruc-
tions for drawing Figure 3 for other design scenarios
(Web-only Appendix 3).

! Acknowledgments

Many people have provided constructive feedback on
previous drafts of this manuscript, including R Thum, M
McPeek, J Butzler, A Dawson, M Donahue, N
Friedenberg, J Kellner, M Ayres, and J Pantel. J Aber, C
Canham, J Pastor, and others who attended Cary
Conference IX stimulated our thoughts about the role of
regression-based designs in contributing to the develop-
ment of ecological models. Our research is supported by
NSF-DEB 0108474, NSF-DDIG 0206531, USGS/NIWR
2002NH1B, and the Cramer Fund at Dartmouth College.

! References
Aber JD, Melillo JM, Nadelhoffer KJ, et al. 1991. Factors control-

ling nitrogen cycling and nitrogen saturation in northern tem-
perate forest ecosystems. Ecol Appl 1: 303–15.

Box GEP. 1954a. Some theorems on quadratic forms applied in the
study of analysis of variance problems, I. Effect of inequality of
variance in the one-way classification. Ann Math Stat 25:
290–302.

Box GEP. 1954b. Some theorems on quadratic forms applied in the
study of analysis of variance problems, II. Effects of inequality
of variance and of correlation between errors in the two-way

classification. Ann Math Stat 25: 484–98.
Brown JH, Gillooly JF, Allen AP, et al. 2004. Toward a metabolic

theory of ecology. Ecology 85: 1771–89.
Cade BS and Noon BR. 2003. A gentle introduction to quantile

regression for ecologists. Front Ecol Environ 1: 412–20.
Canham CD, Lauenroth WK, and Cole JJ. 2003. Models in ecosys-

tem science. Princeton, NJ: Princeton University Press.
Cohen J. 1988. The analysis of variance and covariance: statistical

power analysis for the behavioral sciences. Hillsdale, NJ:
Lawrence Erlbaum Associates. 

Draper NR and Smith H. 1998. Applied regression analysis, 3rd
edn. New York, NY: Wiley-Interscience. 

Gotelli NJ and Ellison AM. 2004. A primer of ecological statistics.
Sunderland, MA: Sinauer Associates, Inc. 

Kéry M and Hatfield JS. 2003. Normality of raw data in general lin-
ear models: the most widespread myth in statistics. Bull Ecol Soc
Am 84: 92–94.

Larsen RJ and Marx MJ. 1986. An introduction to mathematical
statistics and its applications. Englewood Cliffs, NJ: Prentice-
Hall. 

Loreau M, Naeem S, Inchausti P, et al. 2001. Biodiversity and
ecosystem functioning: current knowledge and future chal-
lenges. Science 294: 804–08.

McArdle BH. 2003. Lines, models, and errors: regression in the
field. Limnol Oceanogr 48: 1363–66.

McCullagh P and Nelder JA. 1997. Generalized linear models, 2nd
edn. New York, NY: Chapman & Hall/CRC. 

Meeuwig JJ and Peters RH. 1996. Circumventing phosphorus in
lake management: a comparison of chlorophyll a predictions
from land-use and phosphorus-loading models. Can J Fish
Aquat Sci 53: 1795–1806.

Miller RG. 1986. Beyond ANOVA: basics of applied statistics.
New York, NY: Wiley Press. 

Neter J, Kutner MH, Nachtsheim CJ, and Wasserman W. 1996.
Applied linear statistical models. Chicago, IL: Richard D
Irwin, Inc. 

Quinn GP and Keough MJ. 2002. Experimental design and data
analysis for biologists. New York, NY: Cambridge University
Press. 

Sokal RR and Rohlf FJ. 1995. Biometry. New York, NY: WH
Freeman and Company. 

Toms JD and Lesperance ML. 2003. Piecewise regression: a tool for
identifying ecological thresholds. Ecology 84: 2034–41.

Wilson K and B.T. Grenfell. 1997. Generalized linear modelling for
parasitologists. Parasitol Today 13: 33–38.

152

www.frontiersinecology.org © The Ecological Society of America



www.frontiersinecology.org © The Ecological Society of America

! The matrix formulation for regression and ANOVA
(Neter et al. 1996).

Both regression and ANOVA can be described using the
general linear model Y = X! + ", where

Y = an n x 1 column vector of values of the
response variable Y
There are n observations.
X = an n x p matrix with columns corresponding to
the p predictor variables Xi
! = an p x 1 column vector of parameters, with row
numbers corresponding to the column numbers in X
" = an n x 1 column vector of errors

In regression, the columns in X are fairly straightfor-
ward.  Most regression models contain an intercept (!o),
which is fit by setting the first column of X to a dummy
variable Xo with value=1 for all observations.  One col-
umn is added to the X matrix for each of the predictor
variables, and if there are interaction terms or polynomial
terms, the appropriate products or powers of the predictor
variables are added as additional columns. For example, in
simple linear regression, we use:

1    x11
1    x21

X =  1    x31.     ..     ..     .
1    xn1

In multiple regression with two predictors and an inter-
action, we use: 

1     x11 x12 x11 *x12
1     x21 x22 x21 *x22

X =  1     x31 x32 x31 *x32.      . . . ..      . . . ..      . . . .
1     xn1 xn2 xn1*xn2

In ANOVA, the X matrix contains qualitative indicator
variables indicating membership in treatment groups.  If
there are m groups, there are m columns in X. There are an
infinite number of ways to define the qualitative variables,
but one way is to calculate the overall mean for Y (using
the same approach described for !o, above) together with
deviations of particular treatments from this overall mean.

This involves assigning a column in X to all but one treat-
ment group; because the overall mean is already known,
the deviation for the last group is determined from the
sum of the other deviations. The indicator variables are
set to 1 when an observation (row) is in the group that
corresponds to that X variable, -1 if the observation is in
the treatment group without its own column, and 0 other-
wise.  For example, suppose there were four treatment
groups and three observations per group. The X matrix for
the models described in Table 1 might look like:

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0X = 1 0 0 1
1 0 0 1
1 0 0 1
1 -1 -1 -1
1 -1 -1 -1
1 -1 -1 -1

Regardless of how X is formulated, the equation
Y = X ! + " is solved for ! using the normal equations,
giving the parameter estimates

b
^  

= (Xl X)-1 Xl Y.

Once the parameters are estimated, we partition the
overall variance in the data as follows, given that p is the
number of columns in X (ie p=2 for a simple linear regres-
sion, p=4 for a two-factor regression, and p=m, the total
number of treatments, for any ANOVA).

Source SS df MS F
Model (M) bl Xl Y – nY

– 2 p-1 MSM MSM/MSE
Error (E) Yl  Y – bl Xl Y n-p MSE
Corrected
Total (T) Yl  Y –nY

– 2 n-1

We also determine the percent of variability explained
by the model, R2, as SSM/SST.

! Reference
Neter J, Kutner MH, Nachtsheim CJ, and Wasserman W. 1996.

Applied Linear Statistical Models. Chicago: Richard D Irwin,
Inc. 

Cottingham – Web-only material Appendix 1.
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! Using RR designs to see the parallels between
regression and ANOVA

Replicated regression provides a currency for relating the
model and residual sums-of-squares (SS) for regression
and ANOVA models fit to the same data (Table 2B). The
alternative partitioning of sums of squares and degrees of
freedom has some interesting implications. Most impor-
tantly, the lack-of-fit SS (SSLOF) are part of the error SS
in regression (SSE), but part of the model SS in ANOVA
(SSA). As a result, we expect changes in R2 (and thus
effect size) between regression and ANOVA models
applied to the same dataset. R2 will always be bigger for
ANOVA than for regression by the amount SSLOF/SST. 

Table 2B. Partitioning variability in a RR dataset
according to the regression, RR, and ANOVA models

As a regression As a replicated As an ANOVA
regression

Source SS df SS df SS df

Model SSR 1 SSR 1 SSA m-1

Error SSE N-2 SSLOF m-2
SSPE N-m SSPE N-m

Total SST N-1 SST N-1 SST N-1

! Lack of fit tests
RR designs provide an underappreciated opportunity to
test whether a particular regression model is appropriate
for the data using lack-of-fit tests (Draper and Smith
1998). These tests are particularly good at diagnosing
deviations from the linear model that may be difficult to
detect by eye. Lack of fit tests work by partitioning resid-
ual variation around a regression line into two compo-
nents: that due to variability among replicates within a
treatment (the “pure error”) and that due to deviations of
the treatment means from the fitted curve (the “lack of
fit”; Table 2A). The pure error is obtained from an
ANOVA that uses the predictor variable(s) as a classifi-
cation factor rather than as a quantitative one, and the
lack-of-fit component is estimated from the difference
between the error SS from the regression model and the
error SS from the ANOVA model. There is significant
lack-of-fit when the ratio of the mean squares lack-of-fit
(MSL) to mean squares pure error (se

2) exceeds a critical
F-statistic. If there is no significant lack-of-fit, then the
regression model is appropriate for the data and conclu-
sions can be drawn accordingly. If, however, there is sig-
nificant lack-of-fit, remedial action is required. In some
cases, the regression model can be modified to be more
appropriate for the data, for example by adding polyno-
mial terms (which will reduce the power somewhat due to
the additional parameters). However, in other cases,
there is no appropriate linear model for the data. In this
case, researchers can switch to non-linear regression or
“fall back” to drawing conclusions using ANOVA. 

We note briefly that lack-of-fit tests are also available
for nonlinear regression, although we do not develop
them here (see Draper and Smith 1998 instead), provid-
ing another argument for the use of RR designs in ecolog-
ical research.

Table 2A. ANOVA table for a replicated regression
N indicates the total number of experimental units, p is
the number of columns of X, m indicates the number of
treatments with replicates, and nj is the number of repli-
cates for treatment j. 

Source SS df MS
Model Regression SS SSR p-1

Error Lack of fit SSLOF m-p MSL s2

Pure error SSPE N-m se
2

Total (corrected) N-1

Cottingham – Web-only Appendix 2. Replicated regression (RR) designs
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! How Figure 3 was created
To create the scenarios in Figure 3, we started with power
curves (as explained in Statistical Panel 2) for experi-
mental designs with 24 (Figure 1a), 36 (not shown), and
48 (Figure 1b) experimental units. We then selected a
minimum power for the ANOVA (0.8, following conven-
tion).

1. Left panel:  Minimum R2 vs the number of treatments.
On the power curves for experiment size, we drew a
line horizontally across the figure at the target power
level.  At each intersection of this “minimum power”
line with a power curve, we dropped down to the
X-axis and recorded R2 at that point, which is the min-
imum R2 required to produce that power for that exper-
imental design.  We then plotted this minimum R2

versus the number of treatments in that design in
Figure 3a. 

2.  Right panel:  Maximum allowable ratio of SSPE/SST
vs number of treatments
Statistical Panel 3 introduces several abbreviations for
the sum-of-squares terms in a replicated regression:  
• SSR = sums-of-squares due to regression
• SSPE = sums-of-squares due to pure error, the vari-

ability around the mean for each level of the predic-
tor variable(s)

• SSLOF = sums-of-squares due to lack of fit, the devi-
ation from the regression line not explained by the
ANOVA (determined as SSR-SSPE).  

From Table 2B in Web-only Appendix 2, we also
know that R2

anova = (SSR+SSLOF) / SST.  

Therefore, we can define
1-R2

anova = SST/SST – (SSR+SSLOF)/SST =
SSPE/SST, which provided us with a formula to con-
vert the minimum R2 obtained in Step 1 to the frac-
tion of the total variability that is explained by the
pure error, or variability among replicates within a
treatment.  

Estimates of SSPE/SST are closely related to those
used to calculate power analyses in t-tests and
straightforward ANOVA models, and so are fre-
quently estimable from past experiments (eg Case
Study Panel 3).

Cottingham – Web-only Appendix 3.



© The Ecological Society of America www.frontiersinecology.org

Cut and paste the code for use in Matlab. The raw data file used for the simulation is available from the authors.

% calculatepower.m
% determine power for a series of potential one- and two-way experimental designs specified by the user
% author KL Cottingham (cottingham@dartmouth.edu)
% created 19 Dec 03 from compareRvsA_vsf2.m; 
% last modified 23 December 2004 for Frontiers website

% 888888888888888888888888888888888888888888888
% give the necessary info
% 888888888888888888888888888888888888888888888

clear;
lookpowerfigs=0; % toggle figures on and off
lookthresholds=0; % toggle evaluating thresholds on and off

% setups
output=[];
thresholds=[];

% specify the target p-value
alpha=0.05;

% prepare figures (if desired)
if lookpowerfigs,

figure(1); clf; orient tall;
end;

% set constraints
minnr=2; % minimum number of replicates per treatment
maxnr=5; % maximum number of replicates per treatment

% 888888888888888888888888888888888888888888888
% looping structure
% 888888888888888888888888888888888888888888888

% specify number of levels of factor A
for Alevels=2:4, %input('Number of levels of factor A? ');

% specify number of levels of factor B
for Blevels=1:4, %input('Number of levels of factor B? ');

% specify number of replicates of each cell
for nreps=minnr:maxnr, %input('Number of replicates per cell? ');

% 888888888888888888888888888888888888888888888
% determine df for regression & for ANOVA
% 888888888888888888888888888888888888888888888

% calculate number of EU
N=Alevels*Blevels*nreps;

% assume we're fitting a regression with three parameters: effects of A & B
% and their interaction
if Blevels==1, 

Cottingham – Web-onlWeb-only appendix 4.A Matlab program for calculating power.
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DFM_reg=1; 
else DFM_reg=3; 

end;
DFE_reg = N - DFM_reg - 1;

% assume we're fitting an ANOVA with main effects and interactions
DFM_anova=(Alevels-1) + (Blevels-1) + (Alevels-1)*(Blevels-1);
DFE_anova=N - DFM_anova - 1;

% 888888888888888888888888888888888888888888888
% calculate the power of each design, based on case 0 of Cohen Ch 9
% delta = (effect size)squared * (u+v+1)
% 888888888888888888888888888888888888888888888

% determine critical value of F needed to reject Ho: no difference for each design
Fcrit_reg=finv(1-alpha,DFM_reg,DFE_reg);
Fcrit_anova=finv(1-alpha,DFM_anova,DFE_anova);

% list of R2 to compare
R2 = (0 : 0.01 : 0.99)';

% list of effect sizes that go with those R2 values
% f2 = R2 / (1 - R2)
ES = R2 ./ (1-R2);

% calculate delta as f2 * (u+v+1)
delta = N.*ES;

%calculate the power for each design here following other program
power_reg=1-ncfcdf(Fcrit_reg,DFM_reg,DFE_reg,delta);
power_anova=1-ncfcdf(Fcrit_anova,DFM_anova,DFE_anova,delta);

output=[output; ones(length(ES),1)*[Alevels Blevels nreps] ES power_reg power_anova];

% 888888888888888888888888888888888888888888888
% plot power vs. effect size
% 888888888888888888888888888888888888888888888

if lookpowerfigs,
sb=sb+1;
if sb>8, sb=1; figno=figno+1; figure(figno); clf; orient tall; end;
subplot(4,2,sb);
semilogx(ES,power_reg,'r-',ES,power_anova,'k:');

if sb==1, legend('Regression','ANOVA',2); end;
ylabel('power');
xlabel('Effect Size');
title([num2str(Alevels) ' x ' num2str(Blevels) ' x ' num2str(nreps) ' design']);

end;

% 888888888888888888888888888888888888888888888
% determine thresholds of interest
% 888888888888888888888888888888888888888888888

reggtpt8=min(ES(find(power_reg>=0.8)));
anovagtpt8=min(ES(find(power_anova>=0.8)));
reggtanova=min(ES(find(power_reg>=power_anova)));
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reggtanovaandpt8=min(ES(find(power_reg>0.8 & power_reg>=power_anova)));

% 888888888888888888888888888888888888888888888
% use algebra to determine what SSR & SSPE need to be to exceed these
% thresholds
% 888888888888888888888888888888888888888888888

% regression power > 0.8
minpctSSR=reggtpt8./(reggtpt8+1);

% anova power > 0.8
maxpctSSPE=1./(anovagtpt8+1);

% (regression power > anova power) & (regr power > 0.8) -> works out to
minpctSSRforRtowin=reggtanovaandpt8./(reggtanovaandpt8+1);
maxpctSSPEforRtowin=1./(reggtanovaandpt8+1);

% 888888888888888888888888888888888888888888888
% collect these thresholds for particular designs: are there patterns?
% 888888888888888888888888888888888888888888888

thresholds=[thresholds; Alevels Blevels nreps minpctSSR maxpctSSPE minpctSSRforRtowin
maxpctSSPEforRtowin reggtanovaandpt8];

end; % for nreps 

end; % for Blevels
end; % for Alevels

save powervsESinfo.dat output /ascii;
save thresholds.dat thresholds /ascii;
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els improves R2 and, consequently,
power (note, however, that this con-
clusion may not hold for non-linear
relationships). For example, an ex-
periment with two treatment levels
at the extremes in natural variation
will have greater dispersion and thus
higher R2 and greater power than an
experiment with two or more treat-
ment levels at intermediate intensity
(assuming same total sample size;
Steury et al. 2002). Cottingham and
colleagues suggest that the power of
these two experimental designs
should be equivalent and that power
is not a function of the number of
treatment levels in either regression
or ANOVA; this conclusion is only
true if R2 is identical between exper-
iments. However, the number and
distribution of treatment levels (and
samples among those levels) cer-
tainly affect their dispersion, and
thus both R2 and power. Ecologists
should therefore carefully consider
the relationship between the distrib-
ution of treatment levels and both
precision (R2) and power when
designing experiments. 

However, precision and power
should not be the sole factors consid-
ered when selecting treatment lev-
els. As Cottingham et al. note, one
potential problem with regression is
its assumption of linearity between
dependent and independent vari-
ables. We agree that to address this
limitation, experimenters should
have replicates at each treatment
level, so that lack-of-fit tests can be
used to assess linearity. To perform a
lack-of-fit test, an experimenter
must have at least one more treat-
ment level than the number of para-
meters in their model (three for lin-
ear, four for quadratic, etc; Draper
and Smith 1998). Furthermore, the
power of the lack-of-fit test is a func-
tion of the number of replicates at
each treatment level, which influ-
ences the “within-treatment-level”
variance (Draper and Smith 1998).
Armed with this information and an
appreciation of the importance of
treatment levels to power, our sug-
gestions for treatment-level selec-
tion conflict with those proposed by

Regression versus ANOVA
(Peer-reviewed letter)

In their recent article in Frontiers,
Cottingham et al. (2005) argue
that regression-based experimental
designs (and analyses) are preferable
to those based on ANOVA because
of the greater inference gained from
regression. We agree completely
with the authors and commend them
for addressing this important issue.
Too often, ANOVA is used to ana-
lyze ecological experiments when
regression would be more advanta-
geous in terms of both inference and
statistical power. Further-more, ecol-
ogists commonly rely on experiments
with dichotomous treatment levels
when multiple-treatment-level exper-
iments (analyzed with regression)
would provide stronger inference
(Steury et al. 2002).

However, we contend that Cotting-
ham et al. (2005) overlook the fact
that the number and range of treat-
ment levels can influence R2 and thus
power in regression (and ANOVA)
and that, consequently, their recom-
mendations for treatment-level selec-
tion in experimental design are mis-
guided. When a treatment (indepen-
dent variable) is continuous and has a
proportional (linear) effect on the
response (dependent variable), the dis-
persion in the treatment levels influ-
ences the model R2, and thus the
power of both ANOVA and regression.
Specifically, R2 can be expressed as:

R2 = 1 – SSE
TSS

where SSE is the sum of squares due
to error (the dispersion in the
response variable that cannot be
accounted for by dispersion in the
treatment levels) and TSS is the
total sum of squares (total disper-
sion) in the response variable.
Increasing the dispersion in the
treatment levels used in an experi-
ment will also increase the disper-
sion in the measured response vari-
able (TSS); however, SSE remains
unchanged. Therefore, increasing
the dispersion in the treatment lev-

Cottingham et al. (2005). These
authors suggest that if the assump-
tion of linearity is likely to be
upheld, experimenters should choose
many treatment levels with few
replicates. We argue that if the rela-
tionship between treatment and
response variables is known to be
linear, having many treatment levels
is unnecessary, and one should put
all replicates in two treatment levels
at the extremes in natural variation.
This design maximizes R2 and power.
Of course, rarely does one know a
priori that a relationship will be lin-
ear. Alternatively, Cottingham and
colleagues argue that when the
assumption of linearity is likely to
fail, the chosen experimental design
should include few treatment levels,
each with many replicates. However,
while such a design may maximize
power in ANOVA, it may also pre-
clude fitting non-linear curves and
conducting lack-of-fit tests. In gen-
eral, to determine the best experi-
mental design we recommend that:
(1) the most parameterized model
that may describe the data be deter-
mined a priori; (2) the number of
treatment levels should be one
greater than the number of parame-
ters in that model in the experimen-
tal design; and (3) treatment levels
should be distributed in a manner
that maximizes dispersion, while
maintaining the ability to reveal
non-linear relationships (Draper and
Smith 1998; Steury et al. 2002).
Such designs should maximize power
of both regression and lack-of-fit
tests, and facilitate exploration of
non-linear fits. 

We agree with Cottingham et al.
that when independent variables are
continuous, regression-based experi-
mental designs and analyses are
preferable. However, we argue that

WRITE BACK  WRITE BACK WRITE BACK
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the number of treatment levels and
their distribution have greater
importance in experimental design
than the authors suggest.

Todd D Steury1 and 
Dennis L Murray2
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Washington University
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Cottingham et al.’s (Front Ecol Environ
2005; 3: 145–52) recommendation
in favor of regression over analysis of
variance (ANOVA) left me with
serious concerns, because these are
two very different tools. Regression is
an estimation procedure and is a
wonderful tool if one wishes to
describe the relationship between
variables. Successful use of regression
for model development depends on
drawing a random sample of paired
observations from the population of
interest. Sokal and Rohlf (1995) pro-
vide a good summary of the uses of
regression analysis; Burnham and
Anderson (2002) give an excellent
overview of how to select the best
model. 

Analysis of variance, in contrast, is
a method for testing hypotheses. If
one wants to test a specific hypothe-
sis, then one should choose the num-
ber of treatment levels and replicates
appropriate for that specific hypothe-
sis (Sokal and Rohlf 1995; Petraitis
1998). Individuals, plots, etc, are ran-
domly assigned to fixed treatment
levels, which are controlled by the

experimenter. Treatment levels used
in an experiment are not randomly
drawn from all possible levels, which
underscores the distinction between
estimation and hypothesis testing.
Part of the problem is that Cotting-
ham et al. make two common mis-
takes in their attempt to compare the
merits of regression and ANOVA.
First, they assume that data collected
as part of an ANOVA can be used “as
is” in a regression analysis. In a sense,
they advocate pooling sources of
variation to increase degrees of free-
dom, and thus power. This is not cor-
rect, and is a form of sacrificial
pseudoreplication (Hurlbert 1984).
A regression analysis can be done
within an ANOVA, but only as a lin-
ear contrast that is nested within the
ANOVA (Sokal and Rohlf 1995;
Petraitis 1998). For example, a linear
regression within an ANOVA with
six treatment levels and 24 experi-
mental units (as in Cottingham et al.’s
Figure 1) has one and four degrees of
freedom, not one and 22. The power
of a linear regression done within an
ANOVA will be similar to the power
of a simple linear regression if done
correctly and matched with the cor-
rect degrees of freedom. Second,
Cottingham et al. incorrectly assume
that power of different designs can be
compared in a meaningful way.
Petraitis (1998) provides several
examples of how effect size, R2, and
power depend not only on the num-
ber of replicates, but also on the
number of treatment levels. 

More than 20 years ago, Hurlbert
(1984) lamented the lack of statisti-
cal sophistication among ecologists
and its effect on the field. Assuming
Cottingham, her two co-authors,
more than 12 acknowledged col-
leagues, at least two reviewers, and
an editor represent a sample ran-
domly drawn from the population of
well-trained ecologists in the US,
one might infer that not much has
changed.

Peter S Petraitis
Dept of Biology
University of Pennsylvania
Philadelphia, PA

Burnham KP and Anderson DR. 2002.
Model selection and multimodel infer-
ence: a practical information–theoretic
approach. 2nd edn. New York, NY:
Springer-Verlag.

Hurlbert SH. 1984. Pseudoreplication and
the design of ecological field experi-
ments. Ecol Monogr 54: 187–211.

Petraitis PS. 1998. How can we compare
the importance of ecological processes if
we never ask, “compared to what?” In:
Resetarits Jr WJ and Bernardo J (Eds).
Experimental ecology: issues and per-
spectives. New York, NY: Oxford
University Press.

Sokal RR and Rohlf FJ. 1995. Biometry.
3rd edn. New York, NY: WH Freeman
and Company.

Cottingham et al. (Front Ecol Environ
2005; 3: 145–52) consider the choice
between discrete and quantitative
versions of an explanatory variable in
designing an experiment, and con-
clude that “regression [using a quanti-
tative predictor] is generally a more
powerful approach than ANOVA
[using a discrete predictor]”. Because
of the way they choose to specify the
alternative in their power calcula-
tions, however, their work amounts to
showing that, given two models that
“explain” the same amount of vari-
ability in the response, the one based
on fewer parameters is preferred – not
a very novel conclusion.

The point is that the two
approaches will not, in general, have
the same explanatory power. Depend-
ing on how linear the relationship is
between predictor and response, the
extra variability explained by the
ANOVA model may or may not be
enough to counterbalance the degrees
of freedom it uses up, compared to the
simpler regression model. One
approach is not inherently more pow-
erful than the other. These ideas are
discussed in many statistics textbooks
(eg Ramsey and Schafer 2002).

Paul Murtaugh
Dept of Statistics
Oregon State University
Corvallis, OR 

Ramsey FL and Schafer DW. 2002. The sta-
tistical sleuth: a course in methods of data
analysis. Pacific Grove, CA: Duxbury.
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Write Back

The authors reply 
We are pleased that our review (Front
Ecol Environ 2005; 3: 145–52) on
regression and ANOVA has generated
such spirited discussion regarding the
design of more effective ecological
experiments. We agree with Murtaugh
that our conclusions in favor of regres-
sion are “not … very novel” – they
should come as no surprise to statisti-
cally savvy ecologists, particularly
those weaned on newer textbooks,
such as Ramsey and Schafer (2002)
and Gotelli and Ellison (2004).
Unfortunately, the major points raised
in our review are not discussed in clas-
sic biostatistics texts (eg Sokal and
Rohlf 1995), and it is clear that not all
ecologists believe regression is appro-
priate for experimental data (see com-
ment by Petraitis).

Petraitis argues that regression is an
estimation procedure that cannot be
used to test hypotheses. There is no
theoretical or mathematical rational-
ization for this view. As explained in
our paper, regression and ANOVA
share the same underlying mathe-
matical framework (see Web-only
Appendix 1 of our paper) and differ
only in how they are applied. Either
approach can be used to test hypothe-
ses, as long as the treatment levels are
under the control of the investigator.
Petraitis also suggests that using
regression to analyze experimental
data involves “sacrificial pseudorepli-
cation”. As defined by Hurlbert
(1984), and clarified by Quinn and
Keough (2002), pseudoreplication
refers to the lack of independence
caused by subsampling experimental
units; we certainly do not advocate
this. Petraitis specifically contends
that we “[pool] sources of variation to
increase degrees of freedom and thus
power”. We show that this is not the

case in Table 2a of Web-only
Appendix 2; the extra degrees of free-
dom gained from replicate samples at
each level of X are appropriate in
testing for a linear effect when there
is no lack-of-fit (see also Draper and
Smith [1998] and the comment from
Steury and Murray above).

A common theme running through
all three comments is the use of R2

to generate power curves. Murtaugh
notes that regression and ANOVA
“will not in general have the same
explanatory power”. As explained in
our Web-only Appendix 2, nonlin-
earity in the relationship between X
and Y is captured by the lack-of-fit
sums-of-squares, which become part
of the error term in regression and
part of the model term in ANOVA.
R2 will therefore always be bigger for
ANOVA than for regression by an
amount proportional to this lack-of-
fit term (Table 2b). Of course, regres-
sion is not appropriate when the X–Y
relationship is not linear, which is
why regression is more powerful than
ANOVA only in situations when the
assumptions of both tests are met.
Steury and Murray, and Petraitis, cor-
rectly critique our claim that R2 for
regression designs does not depend
on the numbers of replicates and
treatment levels. Importantly, Steury
and Murray explain why this is the
case and provide additional recom-
mendations regarding the design of
replicated regression experiments in
different research situations. We en-
courage readers to study these recom-
mendations carefully. 

Clearly, the use of regression to ana-
lyze experimental data is a controver-
sial topic for some ecologists. This con-
troversy may stem from historical
biases in the field of ecology, which
have favored ANOVA in experimen-

tal studies. However, our review
demonstrates that regression is often
equally applicable, and in many cases
superior to ANOVA. Because the
printed text of our paper was written to
be readily accessible to all readers,
including those with little background
in statistics, many of the statistical
details supporting our recommenda-
tions appear online in the web-only
materials. Our critics may have missed
these. We therefore en-courage inter-
ested readers to read the web-only
appendices carefully and, most impor-
tantly, to decide for themselves what
statistical approach will be most appro-
priate for their research questions.
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