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Many Ras GTPases localize to membranes via C-terminal farnesylation and palmitoylation, and localization
regulates function. In Candida albicans, a fungal pathogen of humans, Ras1 links environmental cues to
morphogenesis. Here, we report the localization and membrane dynamics of Ras1, and we characterize the
roles of conserved C-terminal cysteine residues, C287 and C288, which are predicted sites of palmitoylation
and farnesylation, respectively. GFP-Ras1 is localized uniformly to plasma membranes in both yeast and
hyphae, yet Ras1 plasma membrane mobility was reduced in hyphae compared to that in yeast. Ras1-C288S
was mislocalized to the cytoplasm and could not support hyphal development. Ras1-C287S was present
primarily on endomembranes, and strains expressing ras1-C287S were delayed or defective in hyphal induction
depending on the medium used. Cells bearing constitutively activated Ras1-C287S or Ras1-C288S, due to a
G13V substitution, showed increased filamentation, suggesting that lipid modifications are differentially
important for Ras1 activation and effector interactions. The C. albicans autoregulatory molecule, farnesol,
inhibits Ras1 signaling through adenylate cyclase and bears structural similarities to the farnesyl molecule
that modifies Ras1. At lower concentrations of farnesol, hyphal growth was inhibited but Ras1 plasma
membrane association was not altered; higher concentrations of farnesol led to mislocalization of Ras1 and
another G protein, Rac1. Furthermore, farnesol inhibited hyphal growth mediated by cytosolic Ras1-
C288SG13V, suggesting that farnesol does not act through mechanisms that depend on Ras1 farnesylation.
Our findings imply that Ras1 is farnesylated and palmitoylated, and that the Ras1 stimulation of adenylate
cyclase-dependent phenotypes can occur in the absence of these lipid modifications.

Ras GTPases are highly conserved signaling proteins that
play central roles in key physiological processes, such as
growth, morphology, and survival in eukaryotes from yeast to
humans and additionally regulate virulence in a variety of plant
and human fungal pathogens (20, 44, 51, 55). In Candida al-
bicans, one of the most prominent human fungal pathogens
(56), Ras1 regulates a diverse array of phenotypes critical for
both commensal and pathogenic lifestyles within the host (44,
72). Morphological plasticity, characterized by its ability to
grow in filamentous or yeast forms in response to in vivo
stimuli, is an important contributor to pathogenesis (67).
Growth at 37°C in combination with chemical signals, such as
serum and N-acetylglucosamine (GlcNAc) (10, 19), Hsp90 de-
pletion (63), or growth within a matrix (17, 47), promotes Ras1
signaling through the cyclic AMP (cAMP) or Cek1 mitogen-
activated protein (MAP) kinase signaling cascades (10, 17, 19,
44, 58), initiating the hyphal growth program. These pathways

also regulate the expression of a number of cell wall adhesins
and secreted proteases that mediate interactions between C.
albicans and the host (30, 34, 49). Consequently, strains lacking
functional Ras1 are unable to efficiently undergo filamentation
and are attenuated in virulence (19, 44, 45, 72, 77).

Ras proteins cycle between inactive GDP-bound and active
GTP-bound states and can functionally interact with effectors
in the latter conformation. The intrinsic GTPase activity of Ras
proteins is slow, thus the ratio of Ras-GTP to Ras-GDP is
mediated by GTPase-activating proteins (GAPs) that facilitate
GTP hydrolysis and guanine nucleotide exchange factors
(GEFs) that catalyze the exchange of GDP to GTP (6). Cells
lacking the Ras1-GAP, Ira2, phenocopy cells bearing Ras1
with a G13V mutation that stabilizes the GTP-bound confor-
mation, rendering cells hyperfilamentous and more sensitive to
heat stress than wild-type cells (10, 19, 44). The C. albicans
genome contains a single gene encoding a Ras1 GEF, CDC25,
and cells lacking Cdc25 are hypofilamentous (16, 63, 69). In the
presence of serum, a functional interaction between Ras1 and
adenylate cyclase (Cyr1) is required for the stimulation of
cAMP synthesis (17) and the subsequent protein kinase A
(PKA) induction of the yeast-to-hypha transition. Therefore,
the initiation of hyphal growth in response to serum (44, 47),
glucose (47), or muramyldipeptides, which are present in se-
rum and directly activate Cyr1, also requires Ras1 (75).

Both mammalian and fungal Ras proteins are localized to
the plasma membrane via posttranslational modifications at
the C terminus (14, 29, 51, 54). In the budding yeast Saccha-
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romyces cerevisiae, the cysteine in the highly conserved CAAX
box (C, cysteine; A, aliphatic amino acid; X, any amino acid) is
the site of farnesylation (22), and this modification promotes
Ras association with the endoplasmic reticulum (ER) (3).
Farnesylation is followed by the cleavage of the three C-ter-
minal residues (7, 18) and the subsequent carboxymethylation
of the farnesyl-cysteine (12). In both S. cerevisiae and Schizo-
saccharomyces pombe, the palmitoylation of a single cysteine
residue adjacent to the farnesyl-cysteine enables efficient traf-
ficking from endomembranes to the plasma membrane (14, 21,
54). Cryptococcus neoformans Ras1 has two adjacent cysteines,
and the palmitoylation of either residue is sufficient for some
plasma membrane localization (51).

Ras signaling in diverse organisms can be propagated from
different cellular locations, such as the plasma membrane, en-
dosomes, Golgi apparatus, endoplasmic reticulum, or mito-
chondria (28, 50), yielding distinct biological outputs (2, 9, 14,
51, 54). For example, in C. neoformans, Ras1 signaling from
the plasma membrane is required for morphogenesis but not
mating (51), while the reverse is true for S. pombe Ras1 (54).
The anterograde and retrograde trafficking of Ras proteins
between the endomembranes and plasma membrane occurs in
part as a result of a cycle of palmitoylation and depalmitoyla-
tion (24, 59), but little is known about the regulation of these
processes.

C. albicans secretes an acyclic, sesquiterpenoid alcohol,
farnesol, that accumulates in culture supernatants and coordi-
nates population-level behaviors (37, 42). Quorum-sensing
(QS) systems permit single organisms within a population to
sense the cell density through the accumulation of signaling
molecules. These systems have been well characterized in
many bacteria (39), and farnesol represents the first QS mol-
ecule identified in a eukaryotic organism (37, 52). Farnesol
negatively regulates signaling through the Ras1-cAMP-PKA
pathway (10, 13), thereby repressing the yeast-to-hypha tran-
sition (10) and biofilm formation (57) and derepressing certain
stress response genes, including CTA1, which encodes catalase
(10, 13, 15, 57, 74). While recent work indicates that farnesol
directly inhibits the Ras1 effector, Cyr1 (27), structural simi-
larities between farnesol and the farnesyl moiety that modifies
Ras proteins leads to the appealing prediction that farnesol
also perturbs Ras1 posttranslational modifications or the in-
teractions of farnesylated Ras1 with membranes. A farnesyl-
cysteine mimetic, S-trans, trans-farnesylthiosalicylic acid (FTS),
promotes the removal of H-Ras, a mammalian homolog of
Ras1, from membranes, resulting in decreased whole-cell H-
Ras levels and activity without affecting the posttranslational
processing of the protein (26).

In this report, we provide the first demonstration that GFP-
Ras1 is functional in C. albicans and confirm that it is localized
at the plasma membrane in C. albicans yeast (64, 77). We show
that Ras1 also localizes to the plasma membranes of hyphae
with no detectable areas of enrichment. C. albicans Ras1 vari-
ants with mutations of the cysteine residues in the C-terminal
motif that contains lipid modification sites in other fungal Ras
proteins were mislocalized. GFP-Ras1-C287S, bearing a mu-
tation at the only predicted site of palmitoylation, was largely
associated with endomembranes, while GFP-Ras1-C288S,
lacking the predicted farnesylation site, was cytosolic. To de-
termine the link between Ras1 localization and function, the

phenotypes of ras1�/ras1� strains expressing these Ras1 vari-
ants were assessed. By combining the G13V substitution with
mutations that alter Ras1 subcellular localization, we found
that Ras1 localization is critical for activation but not essential
for its interaction with the effector adenylate cyclase. Fluores-
cence recovery after photobleaching (FRAP) analysis of Ras1
indicated that its mobility in yeast was similar to that reported
for Ras proteins in other organisms. Ras1 was more dynamic in
yeast than in hyphae, and the differences were neither specific
to protein near the growing hyphal tip nor dependent on the
Ras1 activation state. Farnesol, at biologically relevant concen-
trations, did not alter Ras1 plasma membrane localization but
did inhibit hyphal induction mediated by a cytosolic-targeted
Ras1 mutant. These studies provide new insights into the reg-
ulation of the Ras1-Cyr1 signaling pathway.

MATERIALS AND METHODS

Strains and growth conditions. For a list of all strains and plasmids used in this
study, refer to Table 1. C. albicans strains were streaked from frozen glycerol
stocks at �80°C onto YPD (1% yeast extract, 2% peptone, 2% glucose) or YNB
(0.67% yeast nitrogen base, 1% glucose) plates every 10 to 14 days and main-
tained at room temperature. The medium was supplemented with 80 �g/ml
uridine (Sigma) or 20 �g/ml histidine (Sigma) as needed. Stock solutions of trans,
trans farnesol (50 mM; Sigma) in acidified ethyl acetate or dimethylsulfoxide
(DMSO) were prepared daily (10). Escherichia coli strain DH5�, used for rou-
tine cloning, and E. coli strain BL21, used for the heterologous expression of
RAS1, were grown on LB. Isopropyl �-D-1-thiogalactopyranoside (IPTG) was
added at 40 �M to induce protein expression.

Plasmid and strain construction. Strains overexpressing N-terminally tagged
green fluorescent protein (GFP) fusion proteins from the ADH1 promoter were
constructed by transforming BWP17 with the indicated plasmids. Plasmids pEA-
GFP-RAS1, pEA-GFP-Ras1-C287S, and pEA-GFP-Ras1-C288S were con-
structed by first amplifying the RAS1 open reading frame (ORF) from pDH240
(pYPB1-ADHpL-CaRAS1) (58) with primers CaRas1pup7, CaRas1 MluIm,
CaRas1C287S MluIm, or CaRas1C288S MluIm. The fragments were digested
with RsrII and MluI and ligated into similarly digested pExp-PADH R GFPRAC1
(36). pEA-GFP-Ras-G13V was similarly constructed with primers CaRas1pup7
and CaRas1 MluIm, with the exception that amplification was from pLJ57
(pYPB1-ADHpL-CaRAS1G13V) (58). The plasmids were targeted to the RP10
locus by digestion with StuI, and integration was verified by PCR.

For the generation of strains expressing RAS1 variants in single copies from
the endogenous promoter, AH81 (ras1�/ras1� ura3�/ura3�) (13) was trans-
formed with PacI-digested plasmids encoding the RAS1 promoter, variant allele,
and terminator sequences followed by the URA3 coding region. The vector-only
(ras1V), ras1/RAS1, and ras1/ras1-G13V strains were generated by the transfor-
mation of AH81 with pAP13 (13), pAP14, and pAP15, respectively. pAP14 and
pAP15 were constructed by amplifying the RAS1 and ras1-G13V open reading
frames from pDH240 (pYPB1-ADHpL-CaRAS1) and pLJ57 (pYPB1-ADHpL-
CaRAS1G13V) (58), respectively, with primers XhoIRAS1F and BamHIRAS1R.
Strains expressing the C-terminal variant RAS1 alleles in single copy at the
endogenous promoter were generated by transforming AH81 with pAP22,
pAP23, pAP24, and pAP25. pAP22 (ras1-C287S) and pAP23(ras1-C288S) were
constructed by the PCR amplification of an 876-bp fragment from pDH240
(pYPB-ADHpL-CaRAS1) (58) with primers RAS1XhoIF with BamHIC287SR
and BamHIC288SR, respectively. pAP24 (ras1-G13VC287S) and pAP25 (ras1-
G13VC288S) were similarly constructed by the PCR amplification of an 876-bp
fragment from plasmid pLJ57 (pYPB1-ADHpL-CaRAS1G13V) (58). All PCR
products were digested with XhoI and BamHI and ligated into similarly digested
pAP13 (13).

To construct a ras1�/ras1� strain expressing GFP-RAS1 from the endogenous
RAS1 promoter, plasmid pAP30 was linearized with PacI and transformed into
AH81 (13). GFP-RAS1 was amplified with primers XhoIGFPF and
BamHIRAS1R from pEA-GFP-Ras1, digested with XhoI and BamHI, and li-
gated into similarly digested pAP13 to create pAP30.

For all C. albicans clones, integration at the endogenous RAS1 locus was
confirmed by PCR with primers RAS15up and RAS1intdel5� followed by the
restriction digestion of the product with XhoI, and at least two independent
clones were assessed for each strain. Plasmid sequences are listed in Table 2.
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Assessment of C. albicans morphology. Cells for inoculation were cultured in
either YNB or YPD with the appropriate supplement for 16 to 18 h at 30°C and
washed once with distilled H2O prior to transfer to hypha-inducing medium.
Liquid induction was carried out by inoculating cells from overnight cultures into
0.2% YNBNP (0.67% yeast nitrogen base, 25 mM potassium phosphate buffer,
5 mM N-acetyl-D-glucosamine, 0.2% glucose) (10) or YNBP, pH 7 (0.67% yeast
nitrogen base, 25 mM potassium phosphate buffer, 0.2% glucose), at 37°C.
Serum-inducing experiments were carried out on exponentially growing cells in
the presence of 50% fetal calf serum (FCS). Trans, trans farnesol (Sigma),
DMSO, or ethyl acetate was added to media prior to cell addition at the indi-
cated concentrations. Cell morphology in liquid hypha-inducing conditions was
assessed in triplicate on multiple days by following published methods (48, 73)
using a Zeiss Axiovert inverted microscope equipped with a 63� long-working-

distance objective and Axiovision software. For each replicate, more than 600
cells were counted, and the percentages of cells growing as yeast, pseudohyphae,
and hyphae were determined from an average of three replicates. Embedded
filamentation assays were carried out in YPS (1% yeast extract, 2% peptone, 2%
sucrose, 2% agar) as previously published (8) in triplicate on different days. Fifty
�M trans, trans farnesol (Sigma) or ethyl acetate was added to agar prior to cell
addition. Colonies were imaged with a Nikon SMZ1500 stereomicroscope and
MetaVue imaging software, version 5.0r1 (Universal Imaging Corp.). Images
were adjusted with Adobe PhotoshopCS, version 8.0.

Fluorescence microscopy and FRAP analysis. Confocal imaging was con-
ducted on a Quorum Wave FX-X1 spinning disk confocal system (Quorum
Technologies Inc., Guelph, Canada) with a Plan-Apo 60� objective/1.4 numer-
ical aperture. Z-stacks of images were deconvolved and processed by the classical

TABLE 1. Yeast strains and plasmids used in these studies

Strain or plasmid Genotype Reference

Strains
SC5314 Prototrophic clinical isolate 25
AH81 ura3::�imm434/ura3::�imm434 ras1::hisG/ras1::hisG 14
CaAP13 Same as AH81 but with ras1::hisG/ras1::hisG::URA3 14
CaAP14 Same as AH81 but with ras1::hisG/ras1::hisG::RAS1-URA3 This study
CaAP15 Same as AH81 but with ras1::hisG/ras1::hisG::ras1-G13V-URA3 This study
CaAP22 Same as AH81 but with ras1::hisG/ras1::hisG::ras1-C287S-URA3 This study
CaAP24 Same as AH81 but with ras1::hisG/ras1::hisG::ras1-G13VC287S-URA3 This study
CaAP23 Same as AH81 but with ras1::hisG/ras1::hisG::ras1-C288S-URA3 This study
CaAP25 Same as AH81 but with ras1::hisG/ras1::hisG::ras1-G13VC288S-URA3 This study
CaAP30 Same as AH81 but with ras1::hisG/ras1::hisG::GFP-RAS1-URA3 This study
BWP17 ura3::�imm434/ura3::�imm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG 76
PY1306 ura3::�imm434/ura3::�imm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG RP10::ARG4 This study
PY1314 Same as PY1306 but with RP10::ARG4-GFP-RAS1 This study
PY1728 Same as PY1306 but with RP10::ARG4-GFP-ras1-G13V This study
PY1720 Same as PY1306 but with RP10::ARG4-GFP-ras1-C287S This study
PY1723 Same as PY1306 but with RP10::ARG4-GFP-ras1-C288S This study
PY205 rac1�::URA3/rac1�::HIS1 arg4�::hisG/arg4�::hisG RP10::ARG4-GFP-RAC1 4

Plasmids
pDH240 pYPB1-ADHpL-CaRAS1 59
pLJ57 pYPB1-ADHpL-CaRAS1G13V 59
pAP13 pRAS1-pL-URA3 14
pAP14 pAP13pRAS1-RAS1-URA3 This study
pAP15 pAP13pRAS1-ras1-G13V-URA3 This study
pAP22 pAP13pRAS1-ras1-C287S-URA3 This study
pAP23 pAP13pRAS1-ras1-C288S-URA3 This study
pAP24 pAP13pRAS1-ras1-G13VC287S-URA3 This study
pAP25 pAP13pRAS1-ras1-G13VC288S-URA3 This study
pAP30 pAP13pRAS1-GFP-RAS1-URA3 This study
pEA pExpArg 5
pEA-GFP-Ras1 pExpArg-pADHGFP-RAS1 This study
pEA-GFP-Ras1-G13V pExpArg-pADHGFP-ras1-G13V This study
pEA-GFP-Ras1-C287S pExpArg-pADHGFP-ras1-C287S This study
pEA-GFP-Ras1-C288S pExpArg-pADHGFP-ras1-C288S This study
pEA-GFP-Ras1-G13VC288S pExpArg-pADHGFP-ras1-G13VC288S This study

TABLE 2. Primers used in these studies

Primer Sequence

CaRas1pup7..........................................................................................ATCGGACCGTGATGTTGAGAGAATATAAATTAGTTGTTG
CaRas1 MluIm .....................................................................................ATACGCGTCTCAAACAATAACACAACATCCATTCTTTG
CaRas1C287S MluIm ..........................................................................ATACGCGTCTCAAACAATAACACAACTTCCATTCTTTGATTTAGAGC
CaRas1C288S MluIm ..........................................................................ATACGCGTCTCAAACAATAACACTACATCCATTCTTTGATTTAGAGC
RAS1XhoI F.........................................................................................CTCGAGATGTTGAGAGAATATAAATTAGTTGTTGTTGTTGG
BamHIRAS1R......................................................................................CTCGGATCCTCAAACAATAACACAACATCCATT
BamHIC287S R....................................................................................CTCGGATCCTCAAACAATAACAGAACATCCATT
BamHIC288S R....................................................................................CTCGGATCCTCAAACAATAACACAAGATCCATT
RAS1 5up..............................................................................................TTGGCTTTGTAACAGCAACA
RAS1 intdel5� .......................................................................................ATATTGGTCTTGACCTTGTT
XhoIGFPF ............................................................................................CCCTCGAGGCGTTTATTAAAATGTCTAAAG
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maximum likelihood estimation (CMLE) algorithm using a calculated point
spread function with Huygens Essentials software (Scientific Volume Imaging
B.V.). Fluorescent images shown represent central slices from deconvolved Z-
stacks unless otherwise indicated. Analysis of cell membranes by fluorescence
recovery after photobleaching (FRAP) was carried out essentially as described
previously (4) on a Zeiss LSM510 Meta confocal microscope with a Plan-Apo
63� objective (numerical aperture, 1.4) with bleaching performed at 100% laser
intensity on a 1.1-�m2 circular area of the cell membrane. Data analysis was
conducted as previously described (4).

Western blot analysis and cell fractionation. Lysate preparation and fraction-
ation were conducted as previously published, with several modifications (66).
Whole-cell lysates were prepared by resuspending cells in HB buffer (10 mM
Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 10% sucrose) with protease
inhibitors (Roche) and disrupting cells with glass beads in a Bio-Spec bead beater
with six rounds of 50-s disruptions at 4°C and 1-min rests on ice. Protein con-
centrations were determined by the Bradford assay. A total of 15 �g protein
diluted in SDS loading buffer was separated by SDS-PAGE, transferred to
polyvinylidene difluoride (PVDF) with the iBlot system (Invitrogen), and de-
tected with monoclonal anti-Ras clone 10 (1.5 �g/ml; Millipore) or anti-GFP
(Roche), followed by secondary detection with goat anti-mouse (Pierce) and
enhanced chemiluminescent visualization (Pierce).

For membrane fractionation, lysates were subjected to ultracentrifugation in a
Beckman Coulter TLA100 Ultracentrifuge with a TLA100.3 rotor at 100,000 �
g for 1 h at 4°C. The cytosolic fraction (S100) was transferred to a fresh tube, and
the membrane fraction (P100) was washed three times with HB plus protease
inhibitors (Roche), resuspended in membrane detergent lysis buffer (MDLB; 10
mM Tris-HCl, pH 7.4, 1% Triton-X, 0.1% SDS, 1.5 mM NaCl) and protease
inhibitors (Roche), and incubated with rocking for 1 h at 4°C to solubilize. To
assess the effects of farnesol on Ras1 stability in the membrane fraction, mem-
branes were incubated in the presence of ethyl acetate, 3.75 mM trans, trans
farnesol (Sigma), or 1% Triton X-100 (Fisher) for 1 h on ice, centrifuged at
100,000 � g for 1 h at 4°C, and then solubilized as described above.

Growth rate analysis. Cells were grown overnight in YPD, diluted to an optical
density at 600 nm (OD600) of 0.05 in YPD in 96-well plates, and incubated at
30°C with shaking prior to each read at OD600 in a SpectraMax M5e (Molecular
Diagnostics). Data were examined and plotted in Excel 2007 (Microsoft).

Iodine detection of farnesol. One ml of 100 mM phosphate buffer was sup-
plemented with trans, trans farnesol (Sigma) and incubated in borosilicate glass
or polystyrene. Samples were extracted twice with a 1:1 dilution of ethyl acetate
and reduced under nitrogen. Dried samples were resuspended in 20 �l ethyl
acetate, spotted on Silica Gel 60 F-254 TLC plates (Selecto Scientific), and
detected by exposure to iodine vapor. Images were adjusted with Adobe Photo-
shopCS, version 8.0, and densitometry analysis was performed with ImageJ (1).

RESULTS

GFP-Ras1 is localized to the plasma membrane during hy-
phal growth. Because some proteins involved in polarized
growth, such as Cdc42, Cdc24, and Spa2, show distinct local-
ization patterns in yeast and hyphae (5, 32, 76), we sought to
determine if Ras1 localization differed in yeast and hyphal
cells. Consistent with results published by Zhu et al. (77), an
N-terminal GFP-Ras1 fusion expressed from the ADH1 pro-
moter in the wild-type background (PY1314) localized to the
plasma membranes of yeast cells (Fig. 1A). In hyphal cells
grown in YNBNP at 37°C, we observed that GFP-Ras1 was
uniformly distributed throughout the plasma membrane of the
mother cell, the filament periphery, and at septa with no ob-
vious enrichment at discrete sites, such as the growing tip (Fig.
1A). Similar localization patterns were observed when GFP-
RAS1 was expressed under the endogenous RAS1 promoter in
a RAS1 deletion background (see Fig. S1 in the supplemental
material), demonstrating that homogeneous plasma mem-
brane localization was not an artifact of overexpression. The
GFP-Ras1 was functional, as it fully complemented hyphal
growth defects of the ras1�/ras1� strain at levels similar to that
of the wild-type control, SC5314 (Fig. 1B).

Ras1 plasma membrane localization is determined by C-ter-
minal cysteines. The plasma membrane localization of other
fungal Ras proteins is mediated by farnesyl and palmitoyl mod-
ifications at the C terminus (11, 14, 51, 54). The alignment of
C. albicans Ras1 with Saccharomyces cerevisiae Ras2 and
Schizosaccharomyces pombe Ras1 indicated the conservation
of both the cysteine within the CAAX farnesylation motif
(C288) and a single adjacent cysteine residue (C287), which is
the site of palmitoylation in these fungi. There are no other
cysteine residues in the 143 amino acids preceding cysteine
287, indicating the presence of a single predicted palmitoyl-
ation site on Ras1.

FIG. 1. GFP-Ras1 localizes to the plasma membranes of yeast and hyphae. (A) Cells with two endogenous RAS1 alleles overexpressing
GFP-RAS1 from the ADH1 promoter (PY1314) as yeast in YPD overnight cultures (top) and hyphae after 3 h hyphal induction in YNBNP at 37°C
(bottom) were visualized by confocal microscopy. Scale bar, 10 �M. (B) ras1�/ras1� cells expressing the empty vector or GFP-RAS1 from the
endogenous RAS1 promoter were induced to form hyphae in YNPNP at 37° for 3 h, at which time the percent hyphae was quantified and compared
to the amount of the wild-type strain, SC5314. Data are expressed as the means (	SD) of triplicate experiments conducted on different days. DIC,
differential interference contrast.

1476 PIISPANEN ET AL. EUKARYOT. CELL



To assess the contributions of the C-terminal cysteines in
Ras1 localization, GFP-RAS1 alleles encoding C288S and
C287S variants were constructed and expressed under the con-
trol of the ADH1 promoter in the wild-type strain (Fig. 2). The
levels of GFP-Ras1 were greater than those of endogenous
Ras1 in these cells (see Fig. S2A in the supplemental material).
Cells bearing either allele formed hyphae with kinetics similar
to those of the parental strain carrying an empty vector, indi-
cating that the variant proteins did not hinder the activity of
endogenous Ras1 (data not shown). GFP-Ras1-C287S mislo-
calized primarily to endomembrane structures (Fig. 2A) with dra-
matically lower levels at the plasma membrane in both yeast and
hyphae compared to GFP-Ras1 plasma membrane levels (Fig. 1A
and 2A). GFP-Ras1-C288S remained restricted to the cytosol,
excluded from vacuoles, in both yeast and hyphae (Fig. 2B).

Mutation of C-terminal cysteines affects Ras1 electropho-
retic mobility and abundance. Lipid modifications can alter the

mobility of Ras proteins (18, 33). Western blot analysis was
used to examine the migration patterns of the untagged variant
proteins in the ras1�/ras1� background. In cells expressing
native Ras1 (Fig. 2C, lane 2), the anti-Ras antibody detected a
single band with an apparent molecular mass that was 14 kDa
larger than the predicted mass of Ras1 (32 kDa). We con-
firmed that the 46-kDa band was full-length Ras1 by compar-
ing its migration to that of Ras1 in lysates of E. coli heterolo-
gously expressing RAS1 (Fig. 2C, lane 3), verifying that Ras1 is
not detected in lysates of the ras1V strain (Fig. 2C, lane 1).
Furthermore, Ras1 levels were similar in CAF2 cells with two
endogenous copies of RAS1 and ras1�/RAS1 cells (see Fig.
S2B in the supplemental material). The analysis of lysates from
cells expressing the variant proteins demonstrated that Ras1
and Ras1-C287S display similar electrophoretic mobilities,
while Ras1-C288S migrated slightly more rapidly (Fig. 2D).
The migration of the GFP-Ras1 variants also was slower than

FIG. 2. Ras1-C287S and Ras1-C288S are mislocalized in yeast and hyphae. Wild-type cells overexpressing GFP-ras1-C287S (PY1720) (A) or
GFP-ras1-C288S (PY1723) (B) were isolated as yeast from YPD overnight cultures or hyphae following 3 h of hyphal induction in YNBNP at 37°C
and visualized by confocal microscopy. Scale bar, 10 �m. Insets in panels A and B show mislocalization of Ras1. (C) Lysates from C. albicans
ras1�/ras1� cells expressing the empty vector (lane 1), RAS1 (lane 2), or E. coli BL21 expressing C. albicans RAS1 (lane 3) were analyzed by
immunoblotting with an antibody directed to Ras. (D) Lysates from ras1�/ras1� cells expressing (from left to right) RAS1, ras1-G13V, ras1-C287S,
ras1-G13VC287S, ras1-C288S, or ras1-G13VC288S in single copies from the endogenous promoter were analyzed as described for panel C. A
Coomassie-stained gel serves as the loading control. Cells were cultured in YNBNP for 3 h. (E) Lysates from wild-type cells overexpressing
GFP-RAS1, GFP-ras1-C287S, or GFP-ras1-C288S under the ADH1 promoter in the BWP17 background were analyzed by immunoblotting with
an antibody directed to GFP.
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predicted by the calculated molecular mass, and again GFP-
Ras1-C288S migrated slightly more rapidly than the Ras1 or
Ras1-C287S derivatives (Fig. 2E).

The Ras1 variant protein levels were reproducibly different
from those in comparable strains bearing nonmutated Ras1
regardless of whether the allele was expressed from the endog-
enous promoter in the ras1�/ras1� background (Fig. 2D) or
expressed from the ADH1 promoter in the wild-type back-
ground (Fig. 2E). Both untagged and GFP-Ras1-C287S pro-
teins were less abundant than the equivalent Ras1 proteins
(Fig. 2D and E), while Ras1-C288S and GFP-Ras1-C288S
were present at comparable or higher levels than Ras1 (Fig. 2D
and E), revealing that C-terminal modifications to Ras1 affect
protein abundance and/or stability.

Both Ras1 C-terminal cysteines contribute to Ras1 function
in hyphal growth. To determine if mislocalized C. albicans
Ras1-C287S and Ras1-C288S were capable of supporting fila-
mentation in the absence of wild-type Ras1, quantitative mor-
phological studies were performed on cells expressing the
RAS1 variant alleles in single copies from the endogenous
RAS1 locus in the ras1�/ras1� background. The growth defects
of the RAS1 deletion strain have been noted previously by our
laboratory and others (10, 44, 77), and the reintegration of a
single copy of the RAS1 allele rescued the growth rate defects.
The complemented strain doubled every 1.8 	 0.04 h, while the
ras1V strain doubled every 2.6 	 0.08 h. Cells expressing ras1-
C287S also doubled every 1.9 	 0.03 h, which is comparable to
cells expressing the wild-type allele. However, the growth rate
of ras1-C288S-expressing cells (2.23 	 0.05 h) was more similar
to that of the ras1V reference strain. As previously observed
(10, 19, 44), the ras1 reference strain expressing the empty
vector remained as yeast in hypha-inducing medium, and this
filamentation defect was complemented by RAS1 (Fig. 3A);
98% 	 1.1% of cells expressing RAS1 formed hyphae in
YNBNP (Fig. 3B). The ras1-C287S-expressing strain formed
hyphae at levels similar to those of cells expressing RAS1 (Fig.
3A and B). It was noted, however, that cultures of cells ex-
pressing RAS1 contained hyphae of relatively equal length,
while Ras1-C287S hyphae ranged from newly emerging germ

tubes to hyphae equal in length to those in cells expressing
RAS1 (data not shown). A stronger defect in filamentation was
observed in cells expressing ras1-C287S when hyphal growth
was assessed in medium lacking GlcNAc (YNBP, pH 7, at
37°C) (Fig. 3C). Under these conditions, hypha development
likely is mediated through a combination of temperature, re-
lease from quorum sensing (15), and transfer to a neutral-pH
medium (46). Ras1 also is required for the filamentation of
cells embedded in a matrix (17, 47), which occurs at lower
temperatures (25°C) in the absence of chemical inducers and
has been shown to involve both cAMP-dependent and MAP
kinase-dependent pathways (17, 47, 61). Colonies formed by
cells expressing ras1-C287S developed fewer and shorter radial
hyphae at the periphery compared to colonies formed by
RAS1-expressing cells, while ras1V control colonies lacked any
radial hyphae (Fig. 4). Cells expressing the ras1-C288S allele
remained largely in the yeast morphology, forming only 2% 	
0.4% hyphae in YNBNP (Fig. 5A). When embedded in agar,
these cells formed colonies composed of yeast (Fig. 4).

Constitutive activation of Ras1 can partially suppress de-
fects due to C-terminal mutations. To determine if Ras1 vari-
ants defective in lipid modifications were altered in their ability
to support hyphal growth because of defects in activation,
defects in effector interactions, or both, we constructed alleles
that combined the G13V mutation with either the C287S or
C288S mutation and expressed these under the endogenous
promoter in the ras1�/ras1� background. In both YNBNP,
which contains GlcNAc, and YNBP at 37°C, strains expressing
RAS1 or ras1-G13V underwent robust filamentation (Fig. 3).
The Ras1-G13V strain exhibited phenotypes indicative of in-
creased Ras1-cAMP signaling, including sensitivity to heat
shock and reduced glycogen accumulation (data not shown)
(10, 19, 68). While Ras1-C287S developed hyphae of hetero-
geneous lengths, Ras1-G13VC287S cells formed hyphae at
levels similar to those of the Ras1 strain in YNBNP (data not
shown and Fig. 3A and B). Furthermore, in contrast to cells
bearing Ras1-C287S, of which only 13.0% 	 5.7% of the cell
population developed hyphae in YNBP, Ras1-G13VC287S
cells underwent robust hyphal growth, with 98.7% 	 1.2% of

FIG. 3. Ras1-C287S variants are capable of hyphal growth. ras1�/ras1� cells expressing the empty vector, RAS1, ras1-G13V, ras1-C287S, or
ras1-G13VC287S from the endogenous RAS1 promoter were incubated overnight in YPD (A) and then cultured in YNBNP for 3 h at 37°C, at
which time DIC images were captured (scale bar, 20 �M), and (B) the percent hyphae were determined. (C) Cells incubated in YPD overnight
from panel A were cultured in YNBP for 3 h at 37°C, at which time the percentages of hyphae were determined. Data were expressed as the means
(	SD) from triplicate experiments conducted on different days.
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cells forming hyphae (Fig. 3C). In addition, strains expressing
either the ras1-G13V or ras1-G13VC287S allele formed hyper-
filamentous colonies in embedded conditions compared to col-
onies formed by the Ras1 strain (Fig. 4). Immunoblot analysis
of cells cultured in hypha-inducing conditions revealed that
Ras1-G13VC287S is only slightly more abundant than Ras1-
C287S (Fig. 2D) but still is less abundant than Ras1.

When cells expressing ras1-G13VC288S under the endoge-
nous promoter as the sole copy of RAS were compared to the
ras1-C288S strain, a significant increase in filamentation was
observed (P 
 0.004) (13.6% 	 1.4% of cells formed true
hyphae) (Fig. 5B). In contrast to cells expressing ras1-C288S,
which grew at rates similar to those of the ras1V control, the
ras1-G13VC288S allele restored growth rates (1.89 	 0.07 h) to
nearly the levels of RAS1-expressing cells. Under embedded
conditions, the colonies formed by Ras1-C288S cells lacked
hyphae at the periphery, whereas all of the colonies formed by
Ras1-G13VC288S cells formed radial filaments (Fig. 4). Im-
munoblot analysis of cell lysates from cells grown in YNBNP
for 3 h at 37°C revealed little to no increase in Ras1-
G13VC288S compared to the level of Ras1-C288S (Fig. 2D).

Differences in Ras1 mobility at the plasma membrane of
yeast and hyphae are independent of Ras1 activation. The
G13V substitution in Ras1-C287S and Ras1-C288S restored
function to different degrees and enabled some cells to grow as
hyphae (Fig. 3A, 4, and 5), indicating that the proper localiza-
tion of Ras1 is essential for Ras1 activation but not absolutely
required for subsequent effector interactions. While GFP-
Ras1-G13V localized to the periphery of the cell, GFP-Ras1-
G13VC288S was localized in the cytoplasm in a manner similar

to that of GFP-Ras1-C288S (data not shown), revealing that
the G13V substitution in the C288S allele was not sufficient to
rescue the localization defects. Repeated attempts to generate
a strain overexpressing GFP-Ras1-G13VC287S were unsuc-
cessful, suggesting the toxicity of this protein when it is over-
expressed. Thus, we could not compare its localization pattern
to that of GFP-Ras1-C287S.

As an alternative approach to assess the consequences of the
G13V substitution on Ras1 membrane interactions, we ex-
plored the effects of the constitutive activation on Ras1 dy-
namics in the membrane environment using FRAP in yeast
and hyphae. First, the percent recoveries and FRAP t1/2 values
were determined for GFP-Ras1 and GFP-Ras1-G13V at the
bud sites in yeast (Fig. 6A). No significant differences were
observed for either metric (Fig. 6C) despite the fact that cells
expressing GFP-ras1-G13V displayed phenotypes consistent
with increased cAMP signaling, as discussed above. These re-
sults suggest that Ras1 interactions at the plasma membrane
were not radically altered upon Ras1 activation.

Although GFP-Ras1 did not localize discretely to the hyphal
tip (Fig. 1A), we speculated that interactions at the filament tip
during hyphal growth alter its mobility and thus the reliance on
lipid modifications for localization. A comparison of the FRAP
t1/2 of GFP-Ras1 at the sites of growth at the hyphal apex (Fig.
6B) and at the yeast bud tip (Fig. 6A) showed that the percent
recoveries were similar, yet there was a significant decrease in
mobility at the hyphal tip relative to that of mobility in yeast
cells (P � 0.0001) (Fig. 6C). The observed reduction in FRAP
t1/2 at the filament tip was similar whether induction was car-
ried out in YNBNP or in serum (Fig. 6C). The decrease in
mobility was not regionally specific, as GFP-Ras1 mobility at
the hyphal tip (3.8 	 1.2 s) was the same as that observed at
sites on the mother blastospore (3.8 	 0.6 s), suggesting that
factors at the site of polarized growth were not profoundly
altering Ras1 dynamics in hyphae. The decreased mobility of

FIG. 5. Farnesylation is required for Ras1 function. (A) ras1�/
ras1� cells expressing ras1-C288S or ras1-G13VC288S in single copies
from the endogenous RAS1 promoter were grown overnight in YPD
and then cultured in YNBNP at 37°C for 4 h, at which time DIC
images of representative populations of ras1-C288S (left) and ras1-
G13VC288S (middle) cells were captured. The inset in middle shows a
pseudohypha formed by ras1-G13VC288S. The right panel shows a
hypha formed by ras1-G13VC288S. (B) ras1�/ras1� cells expressing
RAS1, ras1-C288S, or ras1-G13VC288S in single copies from the en-
dogenous RAS1 promoter were grown overnight in YPD and then
cultured in YNBNP at 37°C for 3 h, at which time the percent hyphae
was determined. Data are expressed as the means (	SD) from tripli-
cate experiments conducted on different days.FIG. 4. Ras1 variants are altered in embedded filamentation.

ras1�/ras1� cells expressing the empty vector, RAS1, ras1-G13V, ras1-
C287S, ras1-G13VC287S, ras1-C288S, or ras1-G13VC288S in single
copies from the endogenous RAS1 promoter were embedded in
YP-2% sucrose (YPS) for 5 days at 25°C. Images of colonies were
acquired at 10� magnification and are representative of �300 colonies
from three biological replicates. Scale bar, 1.0 mm.
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GFP-Ras1 in hyphae likely was not due to an increase in Ras1
activation, as the average FRAP t1/2 for GFP-Ras1-G13V also
was significantly slower in hyphae than in yeast (P � 0.0001)
(Fig. 6C). Taken together, the GFP localization and the FRAP
analyses indicated that C. albicans Ras1 associates with the
plasma membrane via lipid anchors, similarly to Ras2 in S.
cerevisiae (53, 71).

Farnesol blocks filamentation without altering Ras1 plasma
membrane distribution. Farnesol, an autoregulatory molecule
with structural similarity to the farnesyl molecule that modifies
Ras proteins, inhibits Ras1-dependent cAMP signaling in both
yeast and hyphae (10, 13), and recent work by Shareck et al.
(64) showed that conjugated linoleic acid inhibited the yeast-
to-hypha transition and concomitantly led to a decrease in
plasma membrane-associated GFP-Ras1 in treated cells.
Therefore, we sought to determine if farnesol alters the plasma
membrane association of Ras1. Hypha formation in YNBNP
was repressed by 75 �M farnesol in cells expressing GFP-RAS1
from the endogenous promoter as the sole copy of RAS1 (Fig.
7A). Like the hyphae in control cultures with vehicle alone
(DMSO or ethyl acetate), the yeast cells in farnesol-containing
medium still exhibited the uniform distribution of GFP-Ras1
throughout the plasma membrane (Fig. 7A and data not
shown). At higher concentrations of farnesol (300 �M), GFP-
Ras1 was no longer located exclusively at the plasma mem-
brane and was found in punctate patches within a subset of
cells (Fig. 7A). Similar observations were made of GFP-Rac1,
which localizes to the plasma membrane by lipid anchors (see
Fig. S3 in the supplemental material). We observed that the
concentration of farnesol necessary to affect Ras1 signaling
and to inhibit hypha induction depended on the composition of
the culture vessel. For example, farnesol shows the dose-de-
pendent inhibition of filamentation at 25 to 200 �M in poly-
styrene plates (35), although concentrations of farnesol (200 to
300 �M) can be toxic to cells (43, 65). The examination of
farnesol availability in liquid medium incubated in either boro-
silicate glass or polystyrene chambers revealed, on average,
2.4-fold (	 0.6) less farnesol in the aqueous phase in polysty-
rene vessels (Fig. 7B).

The in vivo relocalization of GFP-Ras1 (and GFP-Rac1) by
high concentrations of farnesol (Fig. 7A) may be the result of
farnesol insertion into the lipid bilayer, causing the displace-

ment of the Ras1 or Rac1 C-terminal lipids from the plasma
membrane. However, farnesol did not change the amount of
Ras1 associated with the membrane fraction in vitro even when
total membrane fractions were incubated with very high con-
centrations (3.75 mM) of farnesol. In contrast, the treatment of
membranes with the detergent Triton X-100 led to the repar-
titioning of Ras1 from the pellet to the soluble pool (Fig. 7C).
To further support our data indicating that farnesol does not
alter Ras1 signaling by changing its localization, we assessed
the farnesol sensitivity of the cells expressing the Ras1 variant
proteins in both embedded and liquid conditions. The limited
filamentation seen in the strain expressing ras1-G13VC288S
(Fig. 4 and 5) was repressed by farnesol in both embedded
(Fig. 7D) and liquid growth conditions (Fig. 7E). Furthermore,
the filamentation of cells expressing ras1-C287S and ras1-
G13VC287S was inhibited by farnesol, and these cells were as
sensitive to farnesol as the appropriate reference strains ex-
pressing RAS1 or ras1-G13V (Fig. 7C and data not shown).
Taken together, these data suggest that Ras1 is lipid modified
at C-terminal cysteine residues, and that farnesol does not act
by inhibiting Ras1 posttranslational lipid modifications, nor
does it act solely by affecting the interactions between Ras1
lipid modifications and the plasma membrane.

DISCUSSION

Evidence reported here suggests that C. albicans Ras1 is
modified by palmitoylation and farnesylation at C287 and
C288, respectively. Ras1 was detected only at the plasma mem-
branes of both yeast and hyphae, and FRAP analysis revealed
that Ras1 dynamics were comparable to those for S. cerevisiae
Ras2 (t1/2 
 3.6 s) (71), which is anchored to the membrane by
farnesyl and palmitoyl moieties (14) and thus is highly mobile.
For comparison, the S. cerevisiae integral membrane protein,
Pma1, is much less dynamic (t1/2 
 576 s) (71). In other species,
the mutation of the cysteine corresponding to Cys-288 abol-
ishes sequential farnesylation and palmitoylation and, conse-
quently, any membrane association. C. albicans Ras1 likely is
similarly modified, as Ras1-C288S is cytoplasmic. Ras1-C287S
was localized mainly to internal membranes, suggesting that
this protein is farnesylated but lacks the subsequent palmitoyl

FIG. 6. GFP-Ras1 dynamics at the plasma membrane of yeast and hyphae. Wild-type cells overexpressing GFP-RAS1 (PY1314) or GFP-ras1-
G13V (PY1728) were used for FRAP analyses. Images of budding yeast cells (A) or hyphae (B) were taken by confocal microscopy prior to, during,
and following photobleaching to assess fluorescence recovery. Arrows indicate bleached areas. (C) Quantification of fluorescence recoveries in
wild-type cells expressing GFP-RAS1 or GFP-ras1-G13V in yeast and hyphae, as indicated.
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modification that is necessary for the plasma membrane local-
ization of Ras in other fungi (14, 51, 54).

Compared to S. cerevisiae Ras2 and C. neoformans Ras1,
which require palmitoylation for some activities unless the
protein is overexpressed or contains a hyperactivating amino
acid substitution (11, 51), C. albicans Ras1 palmitoylation is
not absolutely required for its role in growth rate or morpho-

genesis. Microscopic analysis of Ras1-C287S shows fluores-
cence associated with the cell periphery (Fig. 2A), which indi-
cates that there is a pool of plasma membrane-associated Ras1
that is sufficient to support filamentation. Alternatively, Ras1-
C287S may be associated with the membrane compartments
just below the plasma membrane, such as the endoplasmic
reticulum, as was observed in S. pombe (54), and signaling may

FIG. 7. Effects of farnesol on Ras1 localization and filamentation of cells expressing Ras1 C-terminal variants. (A) ras1�/ras1� cells expressing
GFP-RAS1 in single copies from the endogenous promoter were incubated for 3 h in YNBNP at 37°C in the presence of the vehicle (DMSO) and
75 or 300 �M farnesol (FOH). The mislocalization of GFP-Ras1 was assessed by confocal microscopy. Scale bar, 10 �m. (B) The indicated
concentrations of farnesol were incubated in phosphate buffer in borosilicate glass (top) or polystyrene (bottom), and farnesol was detected by
iodine vapor. (C) Membranes from wild-type cells were treated with the vehicle, high concentrations of farnesol, or the nonionic detergent Triton
X-100, and the repartitioning of the protein was assessed by immunoblot with anti-Ras. L, whole-cell lysate; P, pellet fraction; S, soluble fraction.
(D) ras1�/ras1� cells expressing the variant RAS1 alleles in single copies at the native RAS1 promoter were embedded in YP-2% sucrose (YPS)
with vehicle or 50 �M farnesol for 5 days at 25°C. Images of colonies were acquired at 10� magnification and are representative of �300 colonies
from three biological replicates. EA, ethyl acetate vehicle; FOH, farnesol (scale bar, 2.0 mm). (E) ras1�/ras1� cells expressing RAS1 or
ras1-G13VC288S alleles in single copies at the native promoter were cultured in YNBNP at 37°C in vehicle (EA) or farnesol (FOH) for 3 h and
visualized with DIC microscopy. Scale bar, 20 �M.

VOL. 10, 2011 C. ALBICANS Ras1 POSTTRANSLATIONAL MODIFICATIONS 1481



occur from this compartment. Distinguishing between the two
compartments will require resolution at the level of electron
microscopy or the colocalization of Ras1-C287S with plasma
membrane- and ER-specific markers.

Our data suggest that the lipidation of Ras1 is more impor-
tant for facilitating Ras1 activation, and thus interactions with
its GEF, Cdc25, than for promoting interactions with down-
stream effectors. First, combining the G13V substitution with
C287S created a variant that fully complemented the filamen-
tation defects of the ras1�/ras1� strain, whereas cells express-
ing the ras1-C287S allele exhibited delayed or defective hyphal
induction (Fig. 3C). Second, cells bearing Ras1-G13VC288S,
but not Ras1-C288S, grew at rates equal to those of cells
expressing the wild-type allele, and a subset of these cells was
capable of hyphal induction in response to chemical and phys-
ical stimuli (Fig. 4 and 5). Ghaemmaghami and colleagues (23)
detected, on average, 319 Cdc25 molecules per S. cerevisiae cell
and nearly 2 � 104 Ras2 proteins per cell, indicating that
factors that affect Ras1 interactions with Cdc25 are key in the
control of Ras1 activity. Ras1-C287S also was present at lower
levels than in similarly expressed Ras1, regardless of the pro-
moter driving expression (Fig. 2D and E), suggesting that en-
zymes that control the Ras1 palmitoylation state are responsi-
ble for controlling Ras1 levels or that the Ras1-C287S protein
is less stable than Ras1. Differences in abundance also may
influence the phenotypes of the Ras1-C287S strain, although
Ras1-G13VC287S also was present at lower levels yet had
activity comparable to that of the Ras1-G13V variant (Fig. 2D,
3, and 4). Future studies that further examine the localization
of Cdc25 and Cyr1, the main Ras1 effectors for hyphal growth
under these conditions, will provide insight into whether Ras1
signals from internal membranes in wild-type cells, as has been
shown for other Ras proteins (9, 54).

Our FRAP analyses demonstrated that Ras1 was less dy-
namic at the plasma membrane in hyphae than budding yeast,
and that these differences were not due solely to changes in the
level of activated Ras1, as Ras1-G13V showed similar differ-
ences (Fig. 6). The reduced mobility of Ras1 in hyphae could
be due to a change in membrane fluidity during morphogenesis
or differences in interactions of Ras1 and elements within the
plasma membrane, such as lipid rafts or protein assemblages,
which are distinct between these two morphologies. We favor
the latter hypothesis, since lipid-anchored Rac1, which also is
uniformly distributed within the plasma membranes of yeast
and hyphae, exhibits no differences in mobility within the mem-
branes of yeast and hyphae (4). During the yeast-to-hypha
transition, C. albicans cells undergo massive rearrangement of
the cytoskeleton, with the formation of cortical actin clusters at
hyphal tips and longitudinally oriented actin filaments through-
out the growing hypha (67). The S. cerevisiae adenylate cyclase-
associated protein, Srv2, links changes in the actin cytoskeleton
to Ras-cAMP signaling (25). In C. albicans, hyphal growth in
response to serum requires both complex formation between
Cyr1-Srv2-G-actin (78) and physical interactions between Ras1
and Cyr1 (17). Therefore, our findings that Ras1 localized
homogenously throughout the plasma membranes of hyphae
(Fig. 1A) and was equally dynamic at the hyphal tip and at sites
opposite to the hyphal apex within the mother cell indicate that
the Ras1-effector interactions at the plasma membrane are
transient. This model is consistent with the finding that Ras1

cannot be copurified with the Cyr1-Srv2-G-actin complex in C.
albicans (78).

Farnesol inhibits Ras1-cAMP signaling in both yeast and
hyphae (10, 13). Our data demonstrate that farnesol, at bio-
logically active concentrations, does not impair Ras1-farnesyl-
cysteine association with the plasma membrane, since both
Ras1 and Rac1 remain homogenously distributed within the
plasma membranes of cells amended with lower biologically
active farnesol concentrations. Under some conditions, C. al-
bicans growth is not affected by the concentrations of farnesol
tested (42); however, there is evidence that 300 �M farnesol
triggers apoptosis in a subset of cells (65). These differences
likely are due to a variety of factors, including carbon source
availability, culture growth phase (42), and the composition of
the culture vessels. The effects of high concentrations of farne-
sol on GFP-Ras1 localization were not specific to Ras1, as
GFP-Rac1, which is associated with the plasma membrane by
lipid anchors (4), also was mislocalized. We speculate that the
cells exhibiting the mislocalization of the GFP-tagged proteins
are experiencing a global response, perhaps apoptosis, in re-
sponse to toxic levels of farnesol. In further support of recently
published work that shows that farnesol inhibits Cyr1 activity
(27), cells bearing cytosolic Ras1-G13VC288S still are sensitive
to the farnesol-mediated inhibition of filamentation. Farnesol,
however, may have other effects on cells that relate to its ability
to inhibit growth and trigger apoptosis and to influence other
signaling pathways (10, 13, 27, 38, 41, 43, 60, 65, 70, 74).

Candida species are the most common causes of mycosis in
individuals with underlying disease, and candidiasis and can-
didemia are associated with mortality and morbidity rates
ranging from 10 to 50% (56). The evolution of antifungal-
resistant strains (62) and the growing incidence of C. albicans
antifungal-resistant biofilms on implanted medical devices (40)
that provide a mode of entry for other pathogens (31) under-
score the need for novel strategies to combat this pathogen.
Because Ras1 is a key modulator of hyphal growth and viru-
lence (19, 44, 45), a better understanding of its regulation in
response to host-associated stimuli and its interaction with
effectors will surely provide insight and improved understand-
ing of elements of C. albicans biology that can be exploited as
drug targets.
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