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Farnesol and Cyclic AMP Signaling Effects on the Hypha-to-Yeast
Transition in Candida albicans

Allia K. Lindsay,a Aurélie Deveau,b Amy E. Piispanen,a and Deborah A. Hogana

Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA,a and INRA, UMR1136 INRA Nancy Université
Interactions Arbres/Microorganismes, IFR110, Centre de Nancy, Champenoux, Franceb

Candida albicans, a fungal pathogen of humans, regulates its morphology in response to many environmental cues and this
morphological plasticity contributes to virulence. Farnesol, an autoregulatory molecule produced by C. albicans, inhibits the
induction of hyphal growth by inhibiting adenylate cyclase (Cyr1). The role of farnesol and Cyr1 in controlling the maintenance
of hyphal growth has been less clear. Here, we demonstrate that preformed hyphae transition to growth as yeast in response to
farnesol and that strains with increased cyclic AMP (cAMP) signaling exhibit more resistance to farnesol. Exogenous farnesol
did not induce the hypha-to-yeast transition in mutants lacking the Tup1 or Nrg1 transcriptional repressors in embedded condi-
tions. Although body temperature is not required for embedded hyphal growth, we found that the effect of farnesol on the hy-
pha-to-yeast transition varies inversely with temperature. Our model of Cyr1 activity being required for filamentation is also
supported by our liquid assay data, which show increased yeast formation when preformed filaments are treated with farnesol.
Together, these data suggest that farnesol can modulate morphology in preformed hyphal cells and that the repression of hyphal
growth maintenance likely occurs through the inhibition of cAMP signaling.

Candida albicans, when a natural member of the commensal
flora of healthy humans, occupies niches within mucosal

membrane environments. C. albicans can also give rise to super-
ficial mucosal infections such as oral and vaginal thrush, as well as
life-threatening systemic infections in immunocompromised in-
dividuals (25). C. albicans is able to undergo morphological tran-
sitions between growth as yeast and filamentous forms (hyphae
and pseudohyphae), and this morphological plasticity is influ-
enced by numerous environmental signals (5). Morphogenesis is
considered a key virulence trait of the fungus (36, 40), since strains
locked in a given morphology exhibit attenuated virulence (40).
Hyphal growth and the coordinated expression of hypha-specific
genes are also important for virulence, as they promote attach-
ment to biotic and abiotic surfaces (16, 35, 44), tissue invasion
(17), and escape from phagocytic immune cells (28). Growth in
the yeast morphology is thought to be important for dispersion in
vitro (45) and may thus be significant during disseminated disease.

In both hypha-inducing liquid media and upon embedding in
an agar matrix, Ras1-dependent activation of cyclic AMP (cAMP)
production by adenylate cyclase (Cyr1) and subsequent activation
of protein kinase A (PKA) are required for the induction of hyphal
growth (14, 20). This induction likely occurs through activation of
transcription factors by PKA (6) and decreased levels of the tran-
scriptional repressor Nrg1, which acts in concert with Tup1 (8,
29). Ras1 is active in its GTP-bound state, and GTP binding is
controlled by the guanine nucleotide exchange factor, Cdc25,
which exchanges GDP for GTP; Ras1 GTPase activity is controlled
by the GTPase activating protein, Ira2. As predicted, the cdc25-
null mutant is afilamentous (13), whereas strains expressing a
Ras1 variant (Ras1G13V) that is locked in the GTP-bound confor-
mation (15, 37) are hyperfilamentous. In addition, increases in
cAMP signaling due to loss of the cAMP phosphodiesterase, Pde2,
or increased Cyr1 activity result in hyperfilamentation (1, 3). In
contrast, a mutant lacking the Cyr1-associated protein, Srv2 (for-
merly Cap1), with low intracellular cAMP levels is defective in
embedded growth (2). During the first few minutes after transfer

to hypha-inducing medium, a transient spike in intracellular
cAMP is observed. Hyperfilamentation is also observed upon the
loss of either Nrg1 or Tup1 (8), and recent data have shown that
Nrg1 levels are negatively regulated by cAMP for several hours
during early hyphal growth, but that they return to higher levels
over time (29). Less is known about the roles of Ras1, cAMP sig-
naling, and PKA activity in maintaining prolonged hyphal growth.

Farnesol, an extracellular quorum sensing molecule produced
by C. albicans (22), represses the induction of hyphal growth by
yeast cells in many different environments (11, 12, 23). This au-
toregulatory molecule prevents yeast cells from germinating
through inhibition of the Ras1-cAMP pathway (11, 12) via direct
inhibition of Cyr1 activity (19). While farnesol has been proposed
to be a morphological regulatory signal, the effects of farnesol on
the hypha-to-yeast transition are less clear. Ramage et al. (38)
found that surface-associated C. albicans cells that had already
begun to germinate or form hypha-containing biofilms were
largely unaffected by the presence of high concentrations (300
�M) of farnesol, although farnesol inhibited biofilm formation
when added along with yeast cells at the time of biofilm inocula-
tion. Mosel et al. (32) likewise observed “farnesol resistance” when
farnesol was added to germ tubes. Thus, a role for farnesol in
affecting morphology in hyphae cells has not been demonstrated.

Here, our studies examined the effects of farnesol on C. albi-
cans hyphae, and we used this molecule to determine whether the
repression of cAMP signaling is sufficient to repress continued
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hyphal growth. We found that farnesol promoted the hypha-to-
yeast transition in both agar-embedded conditions and in liquid
medium. However, mutants with increased signaling through the
Ras1-Cyr1-PKA pathway or mutants defective for downstream
repressors of hyphal growth were resistant to farnesol-enhanced
hypha-to-yeast transition. In embedded conditions, the ability of
farnesol to repress the maintenance of hyphal growth was en-
hanced at lower temperatures and decreased at higher tempera-
tures. Although farnesol-mediated induction of the hypha-to-
yeast transition appeared to be slower than farnesol-mediated
inhibition of germination, these studies provide strong evidence
that farnesol, through its effects on cAMP signaling, can promote
the transition from hyphal growth to growth as yeast.

MATERIALS AND METHODS
Strains and growth conditions. The C. albicans strains used in the present
study are listed in Table 1. Strains were streaked from freezer stocks stored
at �80°C onto YPD (2% peptone, 1% yeast extract, 2% glucose) plates
every 8 days. Overnight cultures were grown in 5 ml of YPD at 30°C in a
roller drum for 16 to 18 h. Dimethyl sulfoxide (DMSO) was used to make
50 mM fresh stock solutions of trans,trans-farnesol or dodecanol (Sigma-
Aldrich) before each experiment. The farnesol used to make the stock
solutions was stored at 4°C in aliquots under nitrogen prior to use.

Strain construction. Strain CR216 (cyr1�/�) (39) was plated on
5-fluoroorotic acid to excise the URA3 marker. The derivative of CR216
that was auxotrophic for uridine was complemented by electroporation-
based transformation with HpaI-linearized pTEF2, a plasmid containing
a full-length wild-type copy of the CYR1 gene (18). For use as our empty
vector control, pSM2 (18) was linearized with HpaI and then transformed
by electroporation into the Uri� derivative of CR216.

Embedded filamentation assay. Cells from overnight cultures were
inoculated into fresh YPD to reach an optical density at 600 nm (OD600)
of 0.1 and then grown for 3 h at 30°C on a roller drum until the cultures
reached an OD600 of �0.3. The cells were then back diluted into YP. When
farnesol was added at the time of inoculation, 25 ml of molten YPS agar
(2% peptone, 1% yeast extract, 2% sucrose, 2% agar) was added to a 50-ml
Falcon tube. A volume of YP containing 60 to 80 cells was then added to
the tube, followed by 75 �M farnesol, 75 or 200 �M dodecanol, or an
equal volume of DMSO (vehicle control) (11). The tube was then gently
inverted to mix its contents and was then decanted into a 100-by-15-mm
petri dish. The agar was allowed to solidify at room temperature, and the
plates were incubated at 30°C.

When farnesol was added to 48-h-old hyphal colonies, the 15 ml of
molten YPS agar containing C. albicans was poured into a petri dish, left to
solidify at room temperature, and then incubated at 30°C for 48 h. Next,
10 ml of molten 2% agar (overlay) containing vehicle alone, 75 �M farne-
sol, or 200 �M farnesol was then added to the petri dish (see Fig. 3A), and
then the plates were incubated at 23, 30, or 37°C for an additional 24 h.

Liquid assay. Stationary-phase cells from YPD overnight cultures
were washed once with distilled water and then inoculated into 5 ml of
YNBNP (0.67% yeast nitrogen base, 5 mM N-acetylglucosamine, 25 mM
potassium phosphate buffer, 0.2% glucose); the cultures were then incu-
bated at 37°C in a roller drum for 24 h. DMSO alone or DMSO with 75
�M farnesol was added to culture tubes within 3 h of germination.

Microscopy. Embedded colony morphologies were imaged after
growth in agar for 24 to 72 h at �10, �20, �60, or �112.5 magnification
with a Nikon SMZ1500 stereoscope. Representative colonies were imaged
during the course of the experiment, and at least three biological replicates
were completed for all experiments, obtaining reproducible results in
each case. Higher-magnification images were also collected by excising a
thin section from the colony periphery (still embedded in agar), which
was then mounted onto a glass slide and subjected to DIC III imaging
using a Zeiss Axiovert inverted microscope equipped with �63 and �100
objective lenses and Axiovision software. Similar sections were excised
and boiled for 10 to 20 s in order to disperse cells for high-magnification
imaging in order to ascertain the hypha-to-yeast/pseudohypha (PH) ratio
at the colony periphery. For all experiments using sections excised from
colonies, two sections were excised from three separate colonies, and 300
cells were counted per section. Analysis of the hypha-to-yeast/PH ratio
was ultimately based on counts performed for three biological replicates.
In these counts, each hypha (unicellular or multicellular) was counted as
one unit. For liquid assays, 500 �l was transferred from the culture tube to
a 1.5-ml tube, which was then vortexed in order to remove a representa-
tive sample for microscopic analysis using the inverted microscope.

RESULTS
CYR1 is required for filamentation in embedded conditions,
and farnesol, a Cyr1 inhibitor, blocks embedded hyphal growth.
Prior to using the embedded hyphal growth model to examine the
effects of farnesol-mediated inhibition of Cyr1 in hyphae, we fur-
ther characterized the embedded hyphal growth model with re-
spect to the importance of Cyr1 signaling since there have been
some differences among the cyr1�/� strain-embedded growth
phenotypes reported (10, 14, 30). Cells within colonies formed by

TABLE 1 Strains used in this study

Strain or plasmid Genotype Source or reference Lab no.

Strains
CAF2 Ura� derivative of CAI4 17 DH331
CDH107 (ras1�/�) ura3�::�imm434/ura3�::�imm434 ras1::hisG/ras1::hisG::URA3 17 DH483
ras1�/�-RAS1 ura3�::�imm434/ura3�::�imm434 ras1::hisG/ras1::hisG::RAS1-URA3 37 DH1385
ras1�/�-ras1G13V ura3�::�imm434/ura3�::�imm434 ras1::hisG/ras1::hisG::RAS1G13V-URA3 37 DH1658
BPS4 (pde2�/�) ura3�::�imm434/ura3�::�imm434 pde2�::hisG/pde2�::hisG eno1::URA3/ENO1 2 DH128
BPS9 (pde2�/�-PDE2) ura3�::�imm434/ura3�::�imm434 PDE2/pde2�::hisG/pde2�::hisG eno1::URA3/ENO1 2 DH1739
CR216 (cyr1�/�) ura3�::�imm434/ura3�::�imm434 cyr1�::hisG-URA3-hisG/cyr1::hisG 39 DH346
cyr1�/� ura3�::�imm434/ura3�::�imm434 cyr1�::hisG::cyr1�::hisG This study DH1666
cyr1�/�-pTEF2 ura3�::�imm434/ura3�::�imm434 cyr1�::hisG/cyr1�::hisG-ura3::pSM2/URA3 This study DH1914
cyr1�/�-pTEF2-CYR1 ura3�::�imm434/ura3�::�imm434 cyr1�::hisG/cyr1�::hisG-ura3::pSMTC/URA3 This study DH1916
BCa2-10 (tup1�/�) tup1�::hisG/tup1�::p405-URA3 ura3�/ura3� 7 DH36
MMC3 (nrg1�/�) ura3�::�imm434/ura3�::�imm434 nrg1::hisG-URA3-hisG/nrg1::hisG 33 DH49

Plasmids
pSM2 URA3 integrating plasmid 27
pSMTC pTEF2, full-length CYR1 in pSM2 27
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the cyr1�/� mutant remained exclusively in the yeast morphology
over the course of 3 days (Fig. 1a and b), and restoration of the
CYR1 gene complemented the filamentation defect (Fig. 1c), al-
lowing filamentation at levels comparable to the wild type (Fig. 2).
Similarly, colonies formed by a strain lacking RAS1 showed only
very limited hypha formation after 3 days and this defect was
complemented (see Fig. S1 in the supplemental material) (12, 15).

As previously shown, C. albicans wild-type cells that had been
embedded in agar initially formed colonies comprised largely of
yeast cells with sparse peripheral hyphae (Fig. 2a) (9). Over time,
hyphae increasingly radiated from various regions of the colony
(Fig. 2b and c). Consistent with the finding that Cyr1 was required
for hyphal growth, the addition of farnesol, a Cyr1 inhibitor, to the
agar at the time of inoculation prevented the appearance of hy-
phae at 24 h (Fig. 2d) and led to a marked reduction in the number
and length of hyphae observed at 48 and 72 h (Fig. 2e and f). Hall
et al. (19) have shown that farnesol blocks germination on solid

media and in liquid cultures by inhibiting Cyr1 activity, while
dodecanol exerts its effect on filamentation through induction of
Sfl1, which is a negative regulator of hyphal growth. Our data
suggest that dodecanol, which does not inhibit Cyr1 activity but
potently inhibits hyphal growth in liquid through a Sfl1-depen-
dent pathway (11, 21), had no significant effect on filamentation
in embedded conditions when added at either 75 or 200 �M (see
Fig. S2 in the supplemental material).

Farnesol enhances the hypha-to-yeast transition in pre-
formed embedded colonies. Although farnesol clearly represses
the induction of hyphal growth by yeast cells (11, 12, 19, 23, 37), its
effects on hyphae had only been examined in detail over short time
courses, and no effects were observed (32, 38). To determine the
effect of farnesol on preexisting hyphae, we developed an assay in
which an overlay containing either vehicle alone or farnesol was
added to plates containing 48-h-old filamentous colonies (Fig.
3A). At 24 h after application of the overlay, hyphae at the periph-
ery of farnesol-treated colonies were surrounded by abundant
yeast, whereas hyphae predominated at the periphery of control
colonies (Fig. 3B). The colonies in agar plates that received the
overlay with vehicle were similar to those that did not receive
additional top agar (Fig. 2c). Quantification of the cells in differ-
ent morphologies in slices excised from the periphery revealed

FIG 1 CYR1 is required for the induction of filamentation in embedded
growth conditions. The cyr1�/� mutant (a), the empty vector control (b), and
the complemented strain (c) were grown in YPS agar at 30°C for 72 h and then
imaged with a stereoscope at �10 magnification. Scale bar, 1 mm. Y, yeast; H,
hyphae.

FIG 2 Farnesol inhibits hyphae emergence from embedded colonies. Wild-
type colonies formed in YPS agar at 30°C with vehicle alone (a to c) or 75 �M
farnesol (d to f) added at the time of inoculation. Colonies were imaged at �60,
�20, and �10 magnifications at 24, 48, and 72 h, respectively. Scale bars, 0.5
mm.

FIG 3 Farnesol enhances the hypha-to-yeast transition in embedded condi-
tions. (A) Diagram depicting the overlay assay protocol used to treat pre-
formed embedded colonies. (B) Wild-type colonies grown in YPS agar at 30°C
for 48 h were imaged at �20 magnification (i and iii). Immediately after im-
aging, an agar overlay was administered to deliver either vehicle alone (left
panels) or vehicle with farnesol (right panels) to the preexisting colonies. At
the 72 h time point (24 h after the overlay was applied), the colonies were
imaged at �10 magnification (ii and iv). The colony peripheries at 48 and 72 h
were also imaged at �112.5 magnification using a stereoscope (v to viii). For
more detailed analysis of the periphery of 72-h-old colonies, images were also
acquired using an inverted microscope equipped with a �63 DIC III objective
lens (ix and x). Scale bars, 0.5 mm. H, hyphae; Y, yeast. (C) For both treatment
groups, two separate thin sections were isolated and, for each, 300 yeast and
filaments in total were counted to determine the percent yeast and hyphae
present. Hyphae (as opposed to hyphal cells) and yeast were counted for three
colonies for each treatment group, and the average percentages of yeast and
filaments are shown, with the standard deviations, for three biological repli-
cates.

Farnesol Stimulation of the Hypha-to-Yeast Transition
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that colonies treated for 24 h with vehicle alone had 20% � 8%
yeast/PH ratios at the periphery, while those that received farnesol
had 80% � 12% yeast/PH ratios (Fig. 3C). These data indicate
both that farnesol prevented robust increases in colony diameter
and that this was in part due to enhanced lateral yeast growth from
hyphae.

Artificial increases in Ras1-cAMP signaling enhances resis-
tance to the effects of farnesol on the hypha-to-yeast transition
in embedded conditions. To determine whether farnesol was in-
creasing the hypha-to-yeast transition through the effects on
cAMP signaling, the effects of farnesol on two strains with artifi-
cially increased levels of cAMP signaling were assessed. The first
strain with increased cAMP signaling is the pde2�/� mutant,
which has previously been described as being hyperfilamentous in
embedded conditions (1). The pde2�/� mutant continued to fil-
ament even after application of the agar overlay with farnesol,
whereas the pde2�/�-PDE2 strain formed colonies with many
yeast at the periphery (Fig. 4A). In colonies that received the ve-
hicle alone, both the pde2�/� strain and the pde2�/�-PDE2
strains had abundant hyphae (Fig. 4A). Quantification of the per-
centage of yeast versus PH and hyphae at the colony periphery in
each strain revealed that the farnesol-treated pde2�/� mutant col-
onies contained 20% � 7% yeast/PH, while the pde2�/�-PDE2
strain contained 64% � 10% yeast/PH, a difference confirmed to
be statistically significant based on a Student t test (P 	 0.0001). In
the vehicle control cultures, the percentages of cells in different
morphologies within colonies of the pde2�/� and pde2�/�-PDE2
strains were not significantly different (2% � 4 and 11% � 6%
yeast/PH, respectively). In addition to the 3-fold-greater abun-

dance of lateral yeast/PH, the pde2�/�-PDE2 colonies showed less
expansion in the presence of farnesol compared to the pde2�/�
strain (Fig. 4A, insets).

The second strain with increased cAMP signaling bore the
ras1G13V allele that encodes a Ras1 variant that is stabilized in the
active Ras1 GTP-bound conformation (37) which hyperactivates
the cAMP-PKA pathway. The ras1�/� mutant complemented
with RAS1 formed filamentous colonies (Fig. 4B) similar to those
formed by the wild type (Fig. 3B), and colonies contained 62% �
9% yeast/PH in the presence of farnesol (Fig. 4B). In contrast, the
hyperfilamentous ras1�/�-ras1G13V strain continued to form fil-
aments in the presence of farnesol (Fig. 4B) with 29% � 6% yeast/
PH, and this difference was significant (P 	 0.0009). Because
higher concentrations of farnesol (200 �M) have been used pre-
viously, we also tested this concentration for its effects on yeast
formation from hyphae in the pde2�/� and ras1�/�-ras1G13V

strains. In neither case did incubation in this high concentration
of farnesol promote further production of lateral yeast at the pe-
riphery of colonies (data not shown).

Studies conducted in liquid growth conditions have shown
that the cAMP pathway transiently represses levels of Nrg1 (29), a
DNA-binding protein that interacts with the transcriptional fac-
tor Tup1 to repress transcription of hypha-specific genes (8). Both
tup1�/� and nrg1�/� mutants are resistant to farnesol treatment
when grown on top of agar at 30°C, and they secrete high levels of
farnesol at 37°C (24). Our studies revealed that neither the
tup1�/� strain nor the nrg1�/� strain formed lateral yeast in a
manner similar to the wild type under embedded conditions in the
presence of exogenous farnesol (see Fig. S3 in the supplemental
material). However, microscopic analysis of cells at the colony
periphery found an increased percentage of cells in the pseudohy-
phal morphology (see Fig. S3 in the supplemental material).

Low temperatures enhance the hypha-to-yeast transition in
embedded conditions. It has been well established that hyphal
growth in liquid conditions is strongly influenced by temperature,
with the formation of true hyphae being highly stimulated at 37°C.
Through Hsp90, temperature has been shown to impact hyphal
growth controlled by the Ras1-Cyr1-PKA cascade (41). Although
body temperature is not a requirement for hyphal growth in em-
bedded conditions, we found a positive correlation between tem-
perature and the maintenance of filamentation in embedded col-
onies in the presence of farnesol. Here, we allowed colonies to
grow for 48 h at 30°C, applied an agar overlay containing vehicle
alone or farnesol, and then incubated the colonies for an addi-
tional 24 h at 23, 30, or 37°C. Temperature alone had a modest
effect on morphology, with more yeast cells at 23°C compared to
30 or 37°C (Fig. 5i to iii). Farnesol, when added to filamentous
colonies, greatly exaggerated the effects of temperature. At 23°C,
farnesol induced the formation of huge bunches of lateral yeasts
(Fig. 5iv), whereas farnesol had a minor effect on cellular mor-
phology at 37°C. Quantitation of cells at the colony peripheries
indicated that farnesol treatment in combination with incubation
at 23, 30, or 37°C resulted in 83% � 6%, 67% � 18.8%, or 50% �
3.9% of cells in the yeast/PH morphology, respectively. This indi-
cated that the formation of lateral yeast decreased as temperature
increased (Fig. 5vi). In addition, we found that farnesol impacted
colony expansion more drastically in colonies incubated at lower
temperatures (Fig. 5, insets). These findings suggest that specific
cues, such as temperature, modulate cAMP signaling and perhaps
the response to farnesol.

FIG 4 Artificially increased Ras1-cAMP signaling enhances resistance to
farnesol in embedded conditions. (A and B) pde2�/�-PDE2 and pde2�/�
strains (A) and ras1�/�-RAS1 and ras1�/�-ras1G13V strains (B) grown in YPS
agar at 30°C. Vehicle alone (i and ii) or farnesol (iii and iv) was added after 48
h of growth, and the colonies were imaged 24 h later. Whole colonies were
imaged at �10 magnification (insets). To evaluate the morphology at the
colony periphery, images were also acquired using an inverted microscope
equipped with a �63 DIC III objective lens. Scale bar, 1 mm.
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Farnesol induces the hypha-to-yeast transition in wild-type
C. albicans in liquid medium. The studies described above using
the embedded assay showed that farnesol induces the formation of
yeast from hyphae and that factors that perturb Ras1-Cyr1 signal-
ing modulate the strength of the farnesol response. To determine
whether farnesol induces the hypha-to-yeast transition in liquid
medium, the SC5314 wild-type strain was grown in hypha-induc-
ing medium for 3 h and then challenged with either farnesol or
vehicle alone. For cultures that received vehicle treatment only,
large hyphal aggregates dominated the cultures (Fig. 6). In con-
trast, farnesol led to the formation of shorter hyphae, some pseu-
dohyphae, and a significant population of yeast within 6 h of treat-
ment (Fig. 6d), with yeast predominating 21 h posttreatment (Fig.
6f). Macroscopic analysis of these cultures showed that, while con-
trol cultures contained large aggregates that quickly settled to the
bottom of the tubes leaving a relatively clear supernatant, the
farnesol treated cultures maintained a semiturbid milky appear-
ance (data not shown). These data suggest that farnesol induces
the hypha-to-yeast transition in liquid over time. As in embedded
conditions, the pde2�/� and ras1�/�-ras1G13V strains, which
have increased cAMP signaling, were more resistant to the effects
of farnesol in liquid growth conditions compared to their refer-
ence strains (Fig. 7).

DISCUSSION

Because the ability of C. albicans to switch between growth in yeast
and filamentous forms is crucial to virulence (28, 36, 40), the
pathways that control the yeast-to-hypha transition have been in-
tensely examined. Previous work has shown that the Ras1-Cyr1-
PKA pathway is important in stimulating the yeast-to-hypha tran-
sition in response to various environmental cues (15, 27, 39, 43),
and that the autoregulatory molecule farnesol represses the induc-
tion of hyphal growth by inhibiting Cyr1 (19). Cyr1 activity is
required for the generation of a spike in cAMP levels (14, 30) that
activates Tpk1 and Tpk2, which are required for hyphal growth (6,
32, 43). Activation of the cAMP pathway also results in a transient
decrease in Nrg1, a negative transcriptional regulator of hyphal

growth (29). Neither high cAMP levels nor low Nrg1 levels are
maintained throughout hyphal growth.

The role of cAMP signaling or farnesol in the maintenance of
hyphal growth or the hypha-to-yeast transition is much less clear.
Here, we present several pieces of evidence that suggest the Ras1-
Cyr1-PKA pathway is also involved in maintaining hyphal growth

FIG 5 The effect of farnesol on the hypha-to-yeast transition varies inversely
with temperature. Wild-type colonies were grown in YPS-agar at 30°C for 48 h,
and then an agar overlay was administered to deliver either vehicle alone (i to
iii) or farnesol (iv to vi) to the preexisting colonies. The plates were then
incubated for an additional 24 h at 23°C (i and iv), 30°C (ii and v), or 37°C (iii
and vi). At the 72-h time point (24 h after the overlay was applied), a stereo-
scope was used to image colonies at �10 magnification (insets), and the pe-
riphery was then examined for the hypha-to-yeast transition using an inverted
microscope equipped with a �63 DIC III objective lens.

FIG 6 Effect of farnesol on hypha elongation in liquid-inducing conditions.
Wild-type (SC5314) germination was induced by growth for 3 h in YNBNP in
a roller drum at 37°C. (a and b) Once germ tubes had formed, designated “0 h,”
the cultures were imaged. Germ tubes were then treated with 75 �M farnesol
or vehicle alone and returned to the 37°C roller drum. Images were subse-
quently collected at 9 h (c and d) and 21 h (e and f) using either at �100 (a to
e) and �63 (f and g) objective magnifications. *, The magnification was de-
creased to �63 in order to increase the field of view to allow the visualization
of more cells.

FIG 7 Artificially increased Ras1-cAMP signaling enhances resistance to the
hypha-to-yeast transition in liquid conditions. Germination of the pde2�/�-
PDE2 (a and b), pde2�/� (c and d), ras1�/�-RAS1 (e and f), and ras1�/�-
ras1G13V (g and h) mutants was induced by growth for 3 h in YNBNP in a roller
drum at 37°C. After germ tube formation (0 h), the cultures were treated with
vehicle alone or 75 �M farnesol and returned to the 37°C in a roller drum.
Images were subsequently collected at 21 h using an inverted microscope
equipped with a �63 DIC III objective lens.

Farnesol Stimulation of the Hypha-to-Yeast Transition

October 2012 Volume 11 Number 10 ec.asm.org 1223

http://ec.asm.org


and that farnesol induces the hypha-to-yeast transition by inhib-
iting this pathway. First, the addition of farnesol to preexisting
filamentous colonies embedded in agar resulted in a striking in-
crease in lateral yeast formation and decreased colony expansion
(Fig. 3). Second, while previous studies revealed no effect of farne-
sol on germ tube extension formation during a 3.5-h experiment
in liquid medium (32), we detected yeast cells forming from hy-
phae 6 h posttreatment (Fig. 6 and 7). Third, mutants with in-
creased cAMP signaling, due to deletion of the PDE2 genes or the
presence of constitutively active Ras1G13V, were more resistant to
farnesol-mediated induction of hypha-to-yeast transitions in both
solid (Fig. 4) and liquid (Fig. 7) media, and this is consistent with
previously published observations that these strains are hyperfila-
mentous (1, 15, 37). Lastly, tup1 and nrg1 mutants lacking nega-
tive regulators of hyphal growth that are controlled, at least in
part, by elements downstream of the Ras1-cAMP signaling (29)
continued to filament in the presence of farnesol (see Fig. S3 in the
supplemental material). These results are summarized in the
model proposed in Fig. 8. Together, these data suggest that Cyr1
activity is required to maintain filamentation in liquid and em-
bedded conditions and that its activity in hyphae can be inhibited
by farnesol, although more time is required for farnesol to exert an
effect on morphology once filamentation has begun.

Our finding that temperature changes the sensitivity of C. al-
bicans to farnesol (Fig. 5) is in agreement with previous reports
that temperature influences Hsp90, a molecular chaperone that
inhibits the function of the Ras1-Cyr1-PKA pathway (41). Inter-
estingly, farnesol was able to enhance the hypha-to-yeast transi-
tion by filaments formed in liquid medium at 37°C (Fig. 6 and 7),
although this effect was less striking at the same temperature in
embedded conditions (Fig. 5). These observations parallel previ-
ous work by Langford et al. (26), who demonstrated that culture
conditions and growth stage influence farnesol-mediated inhibi-
tion of growth. The temperature-dependent responses of cells to
farnesol may be due to differences in the activity levels of the
Ras1-cAMP-PKA pathway and whether inhibition is sufficient to
cause phenotypic changes.

Repression of the hyphal growth program appears to be a two-
part process that involves (i) inhibition of filament elongation and
(ii) the production of lateral yeast cells from preexisting hyphae.
Although farnesol treatment did not appear to enhance the hy-

pha-to-yeast transition in the pde2-, tup1-, and nrg1-defective
strains, it did result in a significant decrease in colony expansion.
This may be indicative of farnesol effects on hyphal cell elonga-
tion. Because strains expressing Ras1G13V still formed large col-
onies in the presence of farnesol (Fig. 4B), Ras1-controlled path-
ways may promote hyphal extension. Future studies will
determine how farnesol-mediated inhibition of cAMP signaling
may promote the hypha-to-yeast transition and inhibit hyphal cell
elongation through other regulators such as Eed1, the epithelial
escape and dissemination gene, and Ume6, which are required to
maintain hyphal growth (4, 31, 46), or the C. albicans pescadillo
homolog Pes1 shown by Shen et al. (42) to be required for the
formation of lateral yeast growth from hyphae.

Farnesol production by C. albicans correlates with increased
virulence in a systemic mouse model of candidiasis (34). Future
work will determine how the physical and chemical environments
in host fluids and tissues influence cAMP signaling, C. albicans
farnesol production, and the ability to respond to farnesol and
whether these responses are relevant to invasion and dispersal (45)
in the context of disease.

ACKNOWLEDGMENTS

Research reported in this publication was supported by NIH K22
DE016542 (D.A.H.), NIH 5T32GM008704 (A.E.P.), and the Hitchcock
Foundation.

The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

We are grateful to Ann Lavanway for assistance with microscopy.

REFERENCES
1. Bahn YS, Staab J, Sundstrom P. 2003. Increased high-affinity phos-

phodiesterase PDE2 gene expression in germ tubes counteracts CAP1-
dependent synthesis of cyclic AMP, limits hypha production and pro-
motes virulence of Candida albicans. Mol. Microbiol. 50:391– 409.

2. Bahn YS, Sundstrom P. 2001. CAP1, an adenylate cyclase-associated
protein gene, regulates bud-hypha transitions, filamentous growth, and
cyclic AMP levels and is required for virulence of Candida albicans. J.
Bacteriol. 183:3211–3223.

3. Bai C, et al. 2011. Characterization of a hyperactive Cyr1 mutant reveals
new regulatory mechanisms for cellular cAMP levels in Candida albicans.
Mol. Microbiol. 82:879 – 893.

4. Banerjee M, et al. 2008. UME6, a novel filament-specific regulator of
Candida albicans hyphal extension and virulence. Mol. Biol. Cell 19:1354 –
1365.

5. Biswas S, Van Dijck P, Datta A. 2007. Environmental sensing and signal
transduction pathways regulating morphopathogenic determinants of
Candida albicans. Microbiol. Mol. Biol. Rev. 71:348 –376.

6. Bockmuhl DP, Krishnamurthy S, Gerads M, Sonneborn A, Ernst JF.
2001. Distinct and redundant roles of the two protein kinase A isoforms
Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans.
Mol. Microbiol. 42:1243–1257.

7. Braun BR, Johnson AD. 1997. Control of filament formation in Candida
albicans by the transcriptional repressor TUP1. Science 277:105–109.

8. Braun BR, Kadosh D, Johnson AD. 2001. NRG1, a repressor of filamen-
tous growth in C. albicans, is down-regulated during filament induction.
EMBO J. 20:4753– 4761.

9. Brown DH, Jr, Giusani AD, Chen X, Kumamoto CA. 1999. Filamentous
growth of Candida albicans in response to physical environmental cues
and its regulation by the unique CZF1 gene. Mol. Microbiol. 34:651– 662.

10. Cao F, et al. 2006. The Flo8 transcription factor is essential for hyphal
development and virulence in Candida albicans. Mol. Biol. Cell 17:295–
307.

11. Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA. 2008. Farnesol
and dodecanol effects on the Candida albicans Ras1-cAMP signaling path-
way and the regulation of morphogenesis. Mol. Microbiol. 67:47– 62.

12. Deveau A, Piispanen AE, Jackson AA, Hogan DA. 2010. Farnesol in-

FIG 8 Cyr1 activity inhibits the hypha-to-yeast transition in both embedded
and liquid growth conditions. The proposed model indicates Cyr1 activity is
required to maintain hyphal growth. The hypha-to-yeast transition results
from downregulation of cAMP signaling due to inhibition of Cyr1 activity by
(i) Hsp90 activity at low temperatures and (ii) exogenously added farnesol.

Lindsay et al.

1224 ec.asm.org Eukaryotic Cell

http://ec.asm.org


duces hydrogen peroxide resistance in Candida albicans yeast by inhibit-
ing the Ras-cyclic AMP signaling pathway. Eukaryot. Cell 9:569 –577.

13. Enloe B, Diamond A, Mitchell AP. 2000. A single-transformation gene
function test in diploid Candida albicans. J. Bacteriol. 182:5730 –5736.

14. Fang HM, Wang Y. 2006. RA domain-mediated interaction of Cdc35
with Ras1 is essential for increasing cellular cAMP level for Candida albi-
cans hyphal development. Mol. Microbiol. 61:484 – 496.

15. Feng Q, Summers E, Guo B, Fink G. 1999. Ras signaling is required for
serum-induced hyphal differentiation in Candida albicans. J. Bacteriol.
181:6339 – 6346.

16. Fu Y, et al. 2002. Candida albicans Als1p: an adhesin that is a downstream
effector of the EFG1 filamentation pathway. Mol. Microbiol. 44:61–72.

17. Gow NA, Brown AJ, Odds FC. 2002. Fungal morphogenesis and host
invasion. Curr. Opin. Microbiol. 5:366 –371.

18. Hall RA, et al. 2010. CO2 acts as a signaling molecule in populations of the
fungal pathogen Candida albicans. PLoS Pathog. 6:e1001193. doi:10.1371/
journal.ppat.1001193.

19. Hall RA, et al. 2011. The quorum-sensing molecules farnesol/homoserine
lactone and dodecanol operate via distinct modes of action in Candida
albicans. Eukaryot. Cell 10:1034 –1042.

20. Harcus D, Nantel A, Marcil A, Rigby T, Whiteway M. 2004. Transcrip-
tion profiling of cyclic AMP signaling in Candida albicans. Mol. Biol. Cell
15:4490 – 4499.

21. Hogan DA, Vik A, Kolter R. 2004. A Pseudomonas aeruginosa quorum-
sensing molecule influences Candida albicans morphology. Mol. Micro-
biol. 54:1212–1223.

22. Hornby JM, et al. 2001. Quorum sensing in the dimorphic fungus Can-
dida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67:2982–
2992.

23. Jensen EC, et al. 2006. Farnesol restores wild-type colony morphology to
96% of Candida albicans colony morphology variants recovered following
treatment with mutagens. Genome 49:346 –353.

24. Kebaara BW, et al. 2008. Candida albicans Tup1 is involved in farnesol-
mediated inhibition of filamentous-growth induction. Eukaryot. Cell
7:980 –987.

25. Kim J, Sudbery P. 2011. Candida albicans, a major human fungal patho-
gen. J. Microbiol. 49:171–177.

26. Langford ML, Hasim S, Nickerson KW, Atkin AL. 2010. Activity and
toxicity of farnesol toward Candida albicans are dependent on growth
conditions. Antimicrob. Agents Chemother. 54:940 –942.

27. Leberer E, et al. 2001. Ras links cellular morphogenesis to virulence by
regulation of the MAP kinase and cAMP signaling pathways in the patho-
genic fungus Candida albicans. Mol. Microbiol. 42:673– 687.

28. Lorenz MC, Bender JA, Fink GR. 2004. Transcriptional response of
Candida albicans upon internalization by macrophages. Eukaryot. Cell
3:1076 –1087.

29. Lu Y, Su C, Wang A, Liu H. 2011. Hyphal development in Candida
albicans requires two temporally linked changes in promoter chromatin
for initiation and maintenance. PLoS Biol. 9:e1001105. doi:10.1371/
journal.pbio.1001105.

30. Maidan MM, et al. 2005. The G protein-coupled receptor Gpr1 and the

G
 protein Gpa2 act through the cAMP-protein kinase A pathway to
induce morphogenesis in Candida albicans. Mol. Biol. Cell 16:1971–1986.

31. Martin R, et al. 2011. The Candida albicans-specific gene EED1 encodes a
key regulator of hyphal extension. PLoS One 6:e18394. doi:10.1371/
journal.pone.0018394.

32. Mosel DD, Dumitru R, Hornby JM, Atkin AL, Nickerson KW. 2005.
Farnesol concentrations required to block germ tube formation in Can-
dida albicans in the presence and absence of serum. Appl. Environ. Micro-
biol. 71:4938 – 4940.

33. Murad AM, et al. 2001. NRG1 represses yeast-hypha morphogenesis and
hypha-specific gene expression in Candida albicans. EMBO J. 20:4742–
4752.

34. Navarathna DH, et al. 2007. Effect of farnesol on a mouse model of
systemic candidiasis, determined by use of a DPP3 knockout mutant of
Candida albicans. Infect. Immun. 75:1609 –1618.

35. Nobile CJ, et al. 2008. Complementary adhesin function in C. albicans
biofilm formation. Curr. Biol. 18:1017–1024.

36. Noble SM, French S, Kohn LA, Chen V, Johnson AD. 2010. Systematic
screens of a Candida albicans homozygous deletion library decouple mor-
phogenetic switching and pathogenicity. Nat. Genet. 42:590 –598.

37. Piispanen AE, et al. 2011. Roles of Ras1 membrane localization during
Candida albicans hyphal growth and farnesol response. Eukaryot. Cell
10:1473–1484.

38. Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL. 2002. Inhibition of
Candida albicans biofilm formation by farnesol, a quorum-sensing mole-
cule. Appl. Environ. Microbiol. 68:5459 –5463.

39. Rocha CR, et al. 2001. Signaling through adenylyl cyclase is essential for
hyphal growth and virulence in the pathogenic fungus Candida albicans.
Mol. Biol. Cell 12:3631–3643.

40. Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. 2003. Engineered
control of cell morphology in vivo reveals distinct roles for yeast and
filamentous forms of Candida albicans during infection. Eukaryot. Cell
2:1053–1060.

41. Shapiro RS, et al. 2009. Hsp90 orchestrates temperature-dependent Can-
dida albicans morphogenesis via Ras1-PKA signaling. Curr. Biol. 19:621–
629.

42. Shen J, Cowen LE, Griffin AM, Chan L, Kohler JR. 2008. The Candida
albicans pescadillo homolog is required for normal hypha-to-yeast mor-
phogenesis and yeast proliferation. Proc. Natl. Acad. Sci. U. S. A. 105:
20918 –20923.

43. Sonneborn A, et al. 2000. Protein kinase A encoded by TPK2 regulates
dimorphism of Candida albicans. Mol. Microbiol. 35:386 –396.

44. Sundstrom P, Balish E, Allen CM. 2002. Essential role of the Candida
albicans transglutaminase substrate, hyphal wall protein 1, in lethal
oroesophageal candidiasis in immunodeficient mice. J. Infect. Dis. 185:
521–530.

45. Uppuluri P, et al. 2010. Dispersion as an important step in the Candida
albicans biofilm developmental cycle. PLoS Pathog. 6:e1000828.

46. Zeidler U, et al. 2009. UME6 is a crucial downstream target of other
transcriptional regulators of true hyphal development in Candida albi-
cans. FEMS Yeast Res. 9:126 –142.

Farnesol Stimulation of the Hypha-to-Yeast Transition

October 2012 Volume 11 Number 10 ec.asm.org 1225

http://ec.asm.org

	Dartmouth College
	Dartmouth Digital Commons
	8-10-2012

	Farnesol and Cyclic AMP Signaling Effects on the Hypha-to-Yeast Transition in Candida Albicans
	Allia K. Lindsay
	Aurélie Deveau
	Amy E. Piispanen
	Deborah A. Hogan
	Recommended Citation


	Farnesol and Cyclic AMP Signaling Effects on the Hypha-to-Yeast Transition in Candida albicans
	MATERIALS AND METHODS
	Strains and growth conditions.
	Strain construction.
	Embedded filamentation assay.
	Liquid assay.
	Microscopy.

	RESULTS
	CYR1 is required for filamentation in embedded conditions, and farnesol, a Cyr1 inhibitor, blocks embedded hyphal growth.
	Farnesol enhances the hypha-to-yeast transition in preformed embedded colonies.
	Artificial increases in Ras1-cAMP signaling enhances resistance to the effects of farnesol on the hypha-to-yeast transition in embedded conditions.
	Low temperatures enhance the hypha-to-yeast transition in embedded conditions.
	Farnesol induces the hypha-to-yeast transition in wild-type C. albicans in liquid medium.

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES


