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Abstract
Increasing demand for crop-based biofuels, in addition to other human drivers of land use,
induces direct and indirect land use changes (LUC). Our system dynamics tool is intended to
complement existing LUC modeling approaches and to improve the understanding of global
LUC drivers and dynamics by allowing examination of global LUC under diverse scenarios
and varying model assumptions. We report on a small subset of such analyses. This model
provides insights into the drivers and dynamic interactions of LUC (e.g., dietary choices and
biofuel policy) and is not intended to assert improvement in numerical results relative to other
works.

Demand for food commodities are mostly met in high food and high crop-based biofuel
demand scenarios, but cropland must expand substantially. Meeting roughly 25% of global
transportation fuel demand by 2050 with biofuels requires >2 times the land used to meet
food demands under a presumed 40% increase in per capita food demand. In comparison, the
high food demand scenario requires greater pastureland for meat production, leading to larger
overall expansion into forest and grassland. Our results indicate that, in all scenarios, there is a
potential for supply shortfalls, and associated upward pressure on prices, of food commodities
requiring higher land use intensity (e.g., beef) which biofuels could exacerbate.

Keywords: system dynamics, biofuel, land use, agriculture, diet, sustainability

S Online supplementary data available from stacks.iop.org/ERL/8/015003/mmedia

1. Introduction

Biofuel production has been pursued because of opportunities
to contribute to climate change mitigation, among other
potential benefits such as securing and diversifying energy
supply and providing, economic development opportuni-

Content from this work may be used under the terms
of the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 licence. Any further distribution of this work must maintain
attribution to the author(s) and the title of the work, journal citation and DOI.

ties especially in rural areas. Initial biofuel assessments
(e.g., Farrell et al 2006) suggested that biofuels, such as
corn ethanol, could help the United States (US) reduce
greenhouse gas (GHG) emissions. However, Searchinger
et al (2008) and Fargione et al (2008) highlighted that
previous biofuel studies failed to include the effects of
global land use change (LUC). These two watershed studies
modeled the potential impact of carbon released from soils
and above-ground biomass during land clearing activities
triggered by increased demand for biofuel. Results from these
studies, as well as many other biofuel-induced LUC studies
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(e.g., see Berndes et al 2010), hinge on assumptions regarding
direct and indirect causal relationships (see section 1 of the
supplemental information (SI), available at stacks.iop.org/
ERL/8/015003/mmedia, for more detail) between drivers of
LUC, land availability, biomass yields, population dynamics,
dietary choices, relative affluence, and biofuel demand,
to name a few. However, the causal relationships that
underpin such results are not completely understood and
there remains significant disagreement on many fundamental
aspects of LUC dynamics. LUC, as well as those changes
attributable to biofuels, has far-reaching implications for
many aspects of sustainability i.e., biodiversity and societal
impacts (e.g., food security). For example, diversion of
land to biofuel crops displaces production that may lead
to compensating production of substitute crops elsewhere,
affecting regional food crop prices (Chum et al 2011, Dale
et al 2011). Therefore, a better understanding of the drivers of
LUC and high-level influences on system behavior is critical
to the responsible and sustainable development of biofuels.

Inclusion of LUC impacts in renewable fuels policy is
contentious, because it is neither directly measurable nor
easily isolated from the myriad of other LUC drivers (Plevin
et al 2010), such as agricultural policies, agricultural product
demand changes, and social norms. Biofuel policy analyses
typically rely on computer simulations or on extrapolations
of historic data to evaluate total LUC. The LUC modeling
science lacks consensus with regard to modeling frameworks,
boundary conditions, and other fundamental assumptions,
which has resulted in highly variable modeling results across a
wide range of studies. For example, results of CO2 emissions
from biofuel-induced LUC span an order of magnitude,
and subsequent calculations of GHG emissions can even
vary in sign (Berndes et al 2010). Currently, US and
European governmental organizations are integrating—or are
considering integrating—LUC impacts into their renewable
fuel policies (e.g., the US Renewable Fuel Standard (RFS)
US EPA 2010), EU Renewable Energy and Fuel Quality
Directive (European Commission 2009), United Kingdom
(UK) Renewable Transport Fuel Obligation (Gallagher 2008,
UK Department for Transport 2012), and California’s Low
Carbon Fuel Standard (CARB 2009). At present, analysts
often use agricultural economic models. For example,
variations of the Global Trade Analysis Project (GTAP)
database and the US EPA’s methodologies are commonly
being used to estimate GHGLUC for renewable fuel policy
purposes (US EPA 2010, Tyner et al 2010, Al-Riffai et al
2010).

The modeling approach presented in this study is
intended to complement existing approaches and to improve
the understanding of global LUC drivers and dynamics. Every
effort has been made to ensure the model is parsimonious
and transparent, both in terms of the underlying data and the
feedback effects among drivers. By using a model with high
transparency, ease of use, and dynamic capabilities, our study
improves policy-relevant analyses by allowing examination
of global LUC under diverse scenarios and varying model
assumptions. In this paper, we report on a small subset of such
analyses. These are intended as an initial illustration of model

functionality, not to assert improvement in numerical results
relative to other work.

2. LUC models and approaches

Based on our review of the literature, we categorize most
biofuel-related LUC modeling approaches into three broad
categories: (1) general and partial economic equilibrium
modeling, (2) simple deterministic methods, and (3) causal
descriptive methods. Each method has strengths and weakness
in modeling LUC and its causes (see table 1), because
purposes of models vary. Modeling classifications listed
in table 1 suggest a spectrum of complexity, with higher
complexity on the left side.

The new model, called BioLUC, is a system dynamics
(SD) simulation model (NREL 2012, Bush et al 2011) that
represents key economic and social drivers of global LUC and
their interactions over time, enabling exploration of different
scenarios with implications for LUC5. In particular, BioLUC
can explore implications of and assumptions about LUC
by analyzing the limits of sustainable biofuels production
under varied future conditions regarding inputs, specifically
population growth, crop yields, and plant and animal
product supply and demand. BioLUC was created using the
STELLA Version 9.1.4 software package (ISEE Systems,
Lebanon, NH) using a stock-and-flow structure; it focuses on
information feedback processes that underwrite the dynamic
movement of key quantities over time.

BioLUC generally would fit the causal descriptive cate-
gory. However, to-date, causal descriptive modeling systems
have been spreadsheet-based models that lack dynamic
stock-and-flow frameworks. To explain the distinctions we
describe SD models in a separate column in table 1.
See section 2 of the SI (available at stacks.iop.org/ERL/8/
015003/mmedia) for additional details about SD modeling, its
historical context, and its use in projecting the consequences
of today’s and potential future policies.

The BioLUC model recognizes the accomplishments
of past LUC modeling efforts and provides a modeling
option that may address some of the limitations of current
methods evaluating LUC and complement and existing suite
of models to improve research insights. Transparency and
ease of use are challenging to achieve when examining
issues of biofuel-induced LUC, especially for the many
interested stakeholders who are not economic modeling
specialists. Enabling this community to access a transparent
analytic method can help them work together to understand
and analyze underlying LUC drivers; test assumptions
about LUC systems against historic data; investigate future
conditions; and assess implications of new LUC research
results (Sheehan 2009, 2012). As tools for this kind of shared
exploration, existing models are either too complex, with
light model structure documentation, difficult data access, or,
alternatively, grossly simplistic (i.e., deterministic method).

5 The authors are willing to provide a copy of the model, model internal
equations or related milestone reports on the model, as requested. Official
public release of the model will not be complete until 2013.
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Figure 1. Illustrative influence diagram for each geographic
regions modeled i.e. US and the rest of the world (ROW). Primary
land stocks are represented by boxes, interactions are represented by
connecting arrows, and inputs variables are represented by unboxed
text.

A SD modeling approach building on the causal descriptive
method attempts to fill this analysis space.

3. BioLUC modeling approach

The generalized influence diagram for a generic region of
the world in the BioLUC model is presented in figure 1.
The movement of land between usage categories over time
is represented in the model using stocks for four different
land bases, which flows into or out of those stocks. Within the
‘crops’ land base, land is allocated among multiple competing
uses (e.g., food, feed, fuel, and fiber). Note the ‘abandoned’
category among the land bases: this land category, assumed
nonproductive, enables us to explore land abandonment
and rehabilitation scenarios. ‘Available’ land is forest and
grassland that is potentially available for productive use as
pasture or cropland.

Figure 1 also shows how externally defined scenarios for
key parameters impact the system: biomass yield and crop
land allocation determine production of various crops; and
population, per capita demand, and biofuel demand drives
‘direct’ demands for various crops.

BioLUC represents key feedback processes that drive the
allocation of land over time. Examples of these processes
include:

• Imbalances between production and consumption of
various agricultural products motivate changes in the
allocation of land among different uses at a regional level.
∗ Demand for animal products creates additional demand

for crops grown as feed.

∗ Crop and animal product imbalances between produc-
tion and consumption stimulate adaptive responses in
the system to move toward equilibrium.

∗ Reallocation of existing crop land among different uses
balances the mix of crops produced against the mix of
crops required.

• Re-distribution of the land bases, for example by
converting available land into pastureland or by turning

pastureland into crop land, adjusts production to more
closely meet demand.
• Crop or animal product imbalances are further reduced

through imports/exports from other regions.

An imbalance between demand and supply stimulates
multiple feedback mechanisms. For example, holding other
things equal, if the combination of population, per capita
demand, and biofuel scenarios cause consumption of a
particular crop to exceed its production within a region several
processes will begin to unfold:

• Regional inventories of the crop will begin to decline.
• The resulting supply shortfall will constrain consumption

to levels lower than those implied by population, per capita
demand and biofuel scenarios.
• The supply shortfall will cause the region to call for

imports from outside the region, in the immediate term.
• Additionally, the supply shortfall will lead to a reallocation

of crop land in favor of the crop in question in the longer
term.
• Reallocation of cropland will increase the rate at which

land moves from pasture into crops, which in turn will
increase pressure to convert land from forest or grassland
into pasture.

As these processes play out over time, the system will
seek to balance itself so that equilibrium between supply and
demand for crops within a region is restored.

We initially developed a two-region model that can be
used to represent any two regions. See section 2 of the SI
(available at stacks.iop.org/ERL/8/015003/mmedia) for more
detail on two-region model structure and intra-regional trade.
For additional details about model input assumptions includ-
ing agricultural commodity yields, changes in population,
and initial land cover at the start of the model across all
scenarios, see data and model calculations in section 3 of the
SI (available at stacks.iop.org/ERL/8/015003/mmedia).

4. BioLUC model scenarios

We explore four scenarios to broadly examine the effects of
demand for crop-based biofuels and food on LUC as outlined
below and in table 2. We constructed scenarios to represent
an extreme high-intensity agricultural future to adequately
highlight model dynamics and test model integrity under
high pressures. The details of these scenarios are included in
section 4 of the SI (available at stacks.iop.org/ERL/8/015003/
mmedia), which describes biofuel yields, conversion yields,
food and feed demand, and biofuel demand assumptions for
several time steps of each scenario.

The two crop-based biofuel demand levels are presumed
to be policy driven rather than economically driven. The basis
for setting the demand levels is as follows:

(1) Lower biofuels demand is mostly based on levels and
assumptions from Alexandratos and Bruinsma (2012),
in which current (as of 2012) biofuels policies are met
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Table 2. BioLUC demand scenarios. The scenarios are modeled from 1990–2050. Input data is annual, but the model runs on a time step of
1/32nd of a year.

Conditions in 2000 • 9 million ha harvested for biofuels
• 0.6 EJ biofuels
• 110–280 kg meat and dairy/capita-yr
• 260–300 kg other food/capita-yr

Lower biofuels demand Higher biofuels demand

Lower food demand Business-as-usual (BAU) scenario Higher biofuel (HB) scenario
By 2050: By 2050:
• 80 million ha harvested for biofuels • 700 million ha harvested for biofuels
• 7 EJ biofuels • 46 EJ biofuels
• 140–310 kg meat and dairy/capita-yr • 140–310 kg meat and dairy/capita-yr
• 280–290 kg other food/capita-yr • 280–290 kg other food/capita-yr

Higher food demand Higher food (HF) scenario Higher food and biofuel (HFB) scenario
By 2050: By 2050:
• 80 million ha harvested for biofuels • 700 million ha harvested for biofuels
• 7 EJ biofuels • 46 EJ biofuels
• 200–360 kg meat and dairy/capita-yr • 200–360 kg meat and dairy/capita-yr
• 330–340 kg other food/capita-yr • 330–340 kg other food/capita-yr

through increased use of food-based crops to 2020,
with no subsequent growth. One adjustment made to
Alexandratos and Bruinsma (2012) was the use of
cellulosic ethanol starting in 2016 to meet ethanol
requirements. Corn ethanol was effectively capped at
the policy mandated level of 57 billion dm3 (15 billion
gallons) (US EPA 2010).

(2) Higher biofuels demand based on linear growth to reach
a 25% global displacement of gasoline and diesel by
2050 using advanced (cellulosic and renewable diesel)
biofuel systems, in addition to the biofuels in the lower
biofuel demand scenario. Displacement of fossil fuels is
calculated on an energy basis, with no petroleum market
rebound effect.

The two food and feed demand levels are:
(3) Lower demand growth based on levels of per capita

demand for food from Alexandratos and Bruinsma (2012).
(4) Higher demand growth based on high-end demand

projections (∼40% increases in per capita food demand by
2050 from 2005) were taken from Tilman et al (2011) and
modified to be applied to the aforementioned projections
from Alexandratos and Bruinsma (2012). Tilman et al
(2011) does not specify how the demand increase is
distributed across individual food categories. We closely
approximate the ∼40% increase by equally applying
changes across all commodities through a 45% increase
in annual growth of each commodity demanded starting
in 2010 relative to the low food demand scenario.

The four scenarios, presented in table 2, are limited in at
least two key respects.

First, our examination of yield is constrained. FAO
(2010) resolution is limited to national-level averages. In
our high demand scenarios, we do not assume higher levels
of agricultural intensification (i.e., higher than BAU yields
increases) in response to economic forces, nor do we examine
reductions in crop yields, as could result from climate change
and increases in extreme weather events. Our yield data (from

FAOSTAT) are aggregate national averages that can have large
internal spatial and temporal variability. A limited scenario
analysis examining the impact of higher and lower cellulosic
biofuel yield trend assumptions was examined in section 6
of the SI (available at stacks.iop.org/ERL/8/015003/mmedia)
and is discussed briefly in the results section, below.

Second, we model the high biofuels case essentially
as higher land requirements to grow the biofuel feedstock
on agricultural land (i.e., not wastes or residues or grown
on marginal lands). We selected these limitations to test
extreme land use conditions and to simplify the analyzed
scenarios. The suite of feedstocks grown and technologies
used is essentially generic: a shift in technology, feedstock,
or yield assumption would only alter the aggregate land
requirements (i.e.,∼700 million ha) examined in this analysis.
The implications of these limitations will be discussed further
in our results.

5. Results and discussion

BioLUC results are not predictions; the model only provides
insights into the drivers and dynamic interactions of LUC.
Quantities and changes are only provided to facilitate
comparisons between our scenarios.

Business-as-usual (BAU) projections of LUC for the US
and ROW are presented in figure 3. These results reflect
changes in land use in response to global population growth
and an overall increase in per capita gross domestic product,
which causes diets to shift toward more calories per capita as
well as a greater percentage of those calories coming from
meat and animal products (e.g., dairy) (Alexandratos and
Bruinsma 2012). Results suggest that the rate of conversion
of available land (i.e., forest and grasslands) to cropland
increases globally, relative to historic data in the US and
the ROW, in order to meet rising food needs. In the ROW
the rate of cropland increase remains similar to historic rates
of change, but pastureland grows significantly. Pastureland
trends in the ROW reflect the larger relative shift in per
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capita gross domestic product in developing countries. Land
conversion begins to slow circa 2030 because the rate of
population growth and per capita food demand growth begins
to stabilize.

Globally, the most noticeable trend in the ROW is the
increase in pastureland area to meet meat and animal product
demands as the world’s population grows and becomes more
affluent. This is consistent with well-documented historic
trends that show that increased wealth prompts a shift from
diets rich in whole vegetables toward diets that have greater
amounts of processed grains and more meat and animal
products (Southgate et al 2007). The type of meat consumed
matters: in general, the larger the animal, the greater the
ratio of biomass to animal mass. Transitioning to eating
more beef (and other larger animals’ meat) would require
even larger amounts of land than is predicted in the BAU
scenario. Alexandratos and Bruinsma (2012) assume that
protein consumption will increase in the developing world,
but consumption levels will be lower and the commodity mix
will be different than has been seen in the developed world
(e.g., the US).

Our BAU scenario assumes 2050 biofuel energy
requirements will be the same as in 2020, and results in
an estimate of 80 million ha of land globally needed to be
used for energy crops to meet those requirements in 2050.
None of the four scenarios considered in our analysis uses
residues and wastes, which would have negligible land use
effects (US EPA 2010). For example, biofuel production
from forestry residues, agricultural residues, and wastes could
supply about another 5% (9 EJ yr−1) of global transportation
fuel if these resources were allocated to cellulosic ethanol
production, based on even the most pessimistic technical
potential assumptions from Chum et al (2011). Another
biofuel-related limitation is that our available land stock (and
pastureland and cropland stocks) contains land of a wide
variety of qualities. If cellulosic crops use abandoned or less
productive lands, the impact on prime agriculture lands may
be lessened (US EPA 2010).

Land moves to cropland from pastureland first, and then
from available land (i.e., forest and grassland) as shown in the
HF scenario in figure 3. Table 3 lists the per cent change in
land use between the HF and other alternative scenarios and
the BAU scenario. In the HF scenario, cropland increases by
about 15% globally by the end of the simulation in order to
meet growing demand for food products compared to BAU.
US cropland expansion to meet rising food requirements
occurs mostly at the expense of available forest and grassland
but also involves some pastureland. In the ROW, cropland
expansion occurs almost exclusively on forest and grassland
land. Pastureland in the ROW increases to help supply higher
meat requirements. A similar dynamic is not observed in
the US because high-land-use intensity meat consumption
relative to other meat commodities is projected to decline
(Alexandratos and Bruinsma 2012). These trends are offset
in the HF scenario, but the results are a static rather than a
growing consumption of high-land-use intensity meat as seen
in ROW. Alexandratos and Bruinsma (2012) modeled diet
trends based on historical data and dietary trajectories of other
meat-consuming developed countries.

Cropland expands more significantly in the HB scenario
than in the HF scenario to meet the high demand for biofuels
and there are different land use tradeoffs. Globally, about
700 million ha of land are required to meet the high biofuel
requirements. In the HB scenario (table 3), US cropland area
increases by about 40% and the ROW cropland area by about
25% by the end of the simulation, compared to BAU. In
the HB scenario, US cropland expands onto pastureland, and
also available land to pastureland to compensate. The ROW
cropland expansion follows this same trend, so compared to
the HF scenario, much less available land is actually used.

The HFB scenario requires expansion into available land
and pastureland to accommodate the combined food and
biofuel demand, as shown in figure 2. The basic trends and
dynamics demonstrated in the high biofuel and high food
demand scenario are extended in the combined high food and
biofuel demand scenario:

• Higher food or fuel demand recruits available land for
agricultural production.
• Relative changes in pastureland versus crop land reflect

changes in the relative demand for meat versus crops, as
well as changes in the type of meat demanded.
• Relative changes in pastureland versus available land

reflect food (i.e., meat) versus fuel demand, as well as
competition over the use of pastureland.
• Pastureland in the ROW remains much higher than in the

US because of a more dramatic shift and continued growth
in requirements for meat in the ROW.

Land use change across all scenarios examined in this
study is presented in figure 3. Even though pastureland
increased slightly in the high food demand scenario, it
decreased in the HF and HFB scenarios. These results
highlight an underlying dynamic occurring, to some extent
across all scenarios of the model. In some years, meat
production could fall short, in particular for land-intensive
commodities (e.g., beef). Demands for other commodities,
such as cereals, are being met at most points in time in
non-HFB scenarios. The exception is in the ROW HFB
scenario between about 2010 and 2030, when the most rapid
shifts are occurring in land use and commodities demanded.
The rate of land conversion needed to meet increases in food
and biofuel demands between 2010 and 2030 is the highest
during this time period. During this time period there are
unmet commodity demands (1%–3% of total) occurring every
few years as the model seeks to achieve equilibrium under
highly stressful conditions. After this time period, non-meat
demands were accommodated.

As described in the methods, the model is equilibrium
seeking, responding to demands for commodities. Consump-
tion is constrained not to exceed physically and logistically
feasible supply. Within a given region and time period,
supply shortfalls of commodity crops lead to constraints in
animal product consumption before constraining direct human
consumption, so that if humans demanded both more grain
and more meat, land would first be used to produce more
grain. Shortfalls in practice imply that people eat less of a
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Figure 2. LUC for two regions across four commodity demand scenarios. In the BAU and high food demand scenarios, biofuel policies
that are in place in as of 2012 are assumed to be met in 2019 by food-based crops. Division in historic and modeled data indicated by
dashed vertical line.

Figure 3. Global change from 1990 to 2050 in cropland, pastureland, and available land (i.e. forest and grassland), in response changes in
demand. Division in historic and modeled data indicated by dashed vertical line.

commodity or that if possible they shift consumption to a
substitute. However, the model does not explicitly capture this
potential substitution effects between animal and non-animal
products with regard caloric intake. It is assumed that as
prices for meat products go up people do not shift their
diets toward alternative food commodities in addition to any
demand reductions.

Supply shortfalls are more common in biofuel scenarios
because biofuels’ use of land was given priority as their use is
policy driven rather than economically driven. Despite higher
food demands in the HFB scenario, pastureland growth is
much lower than that in the HF scenario, because land is
first allocated to biofuel feedstocks. In practical terms, such
shortfalls could be avoided through various means, such as by
removing biofuel production requirements, structuring biofuel
policies to respond to market conditions, switching diets to
lower-land-use intensity meat use, or improving biofuel and
food commodity. Section 5 of the SI (available at stacks.iop.

org/ERL/8/015003/mmedia) gives an example future in which
cellulosic biofuel yields improve or exacerbate shortfalls. An
increase or decrease of 0.5% of annual average cellulosic
feedstock yield growth from 2020–2050 had enough of an
impact to free up or occupy substantial amounts of land.
Specifically, in comparison to baseline assumptions and using
Alexandratos and Bruinsma (2012), 0.4–0.5 billion people per
year would or would not, have wheat demands met, depending
on this range of yield growth. A negative trend in annual yield
improvement due to climate change (e.g., extreme weather
events) would lead to similar if more extreme results (Lobell
and Christopher 2007). While yield levels may not change
underlying dynamics, they do have an important role to play
in the magnitude of land used by biofuels and other human
uses of land.

BioLUC results are not predictions, but they may indicate
when and why stresses arise in the global agricultural system.
BioLUC is a simple model that focuses on bookkeeping for
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Table 3. Per cent change in land use from BAU scenario.

Scenario Region Land type 2020 (%) 2030 (%) 2040 (%) 2050 (%)

HF USA Cropland 7 12 16 18
HF ROW Cropland 5 9 13 16
HF World Cropland 5 10 14 16
HF USA Pastureland −1 −5 −8 −10
HF ROW Pastureland 5 5 3 2
HF World Pastureland 4 4 2 1
HF USA Forest and grassland −8 −15 −21 −27
HF ROW Forest and grassland −14 −24 −32 −40
HF World Forest and grassland −13 −23 −31 −39
HB USA Cropland 1 17 31 40
HB ROW Cropland 0 8 17 24
HB World Cropland 0 9 19 26
HB USA Pastureland 0 −13 −24 −32
HB ROW Pastureland 0 −3 −6 −8
HB World Pastureland 0 −3 −7 −9
HB USA Forest and grassland 0 −6 −14 −22
HB ROW Forest and grassland 0 −1 −4 −7
HB World Forest and grassland 0 −2 −5 −8
HFB USA Cropland 8 29 46 57
HFB ROW Cropland 5 18 30 39
HFB World Cropland 6 19 32 41
HFB USA Pastureland −2 −18 −32 −44
HFB ROW Pastureland 4 2 −3 −6
HFB World Pastureland 4 1 −5 −9
HFB USA Forest and grassland −8 −20 −30 −39
HFB ROW Forest and grassland −14 −25 −34 −42
HFB World Forest and grassland −13 −24 −33 −42

land stocks, food inventory, and international trade. It tends
toward equilibrium conditions that allocate resources to meet
demand. The model’s main use is to develop insights into
the interplay among the myriad of factors impinging on the
global land system. Therefore, we examined the dynamics of
scenarios, rather than conducting detailed uncertainty analysis
around any given scenario.

We have already outlined several limitations of our
analysis, but one significant limitation is the resolution
of global regions. To address this, the flexible design of
the BioLUC modeling framework allows for expansion
and contraction of the number of regions as well as
the use of alternative data sets (e.g., land cover) (see
SI section 6 available at stacks.iop.org/ERL/8/015003/
mmedia for potential future work with BioLUC). Expanding
to additional regions would allow us to improve model
resolution and precision of the results, to better evaluate
regional land use dynamics, and to compare BioLUC with
other LUC modeling frameworks. For example, improving the
model resolution should allow for correction of unrealistic
land use-related traded disparities between the US and the
ROW region that appear in our results. The two-region model
does not capture complex inter-regional dynamics. That is,
food and biofuel demands cannot forcibly be met through
imports at the expense of the internal demands of the export
region, as might be expected in reality, due to different levels
of purchasing power across regions. The implications of the
two-region simplification are a tendency for the model to
internalize land demands regionally. Modeling more regions
would allow us to capture more trade complexity between
developing and developed countries. For example, the general

equilibrium modeling framework, GTAP, recently aggregated
its data sets to 19 regions for modeling of LUC (Tyner et al
2010).

We selected four scenarios to represent extreme biofuel
and food consumption conditions, and evaluated them to
examine a high-intensity agricultural future. Many other
important scenarios are possible, including:

• Additional agricultural intensification that might occur
in high demand situations. That is, higher prices could
lead to investment in higher yielding crops and other
intensification technologies, instead of the land expansion
that we found herein.

• Alternative scenarios that explore the effects of cellulosic-
based biofuel production on land that is less likely to
compete with food crops, such as on the abandoned land
category.

• Alternative meat consumption scenarios that free up
pastureland. For example, can protein and biofuel demands
be met at the same time through changes in dietary
preferences?

6. Conclusions

BioLUC results are not predictions; the model only provides
insights into the dynamic interactions of LUC drivers.
Quantities and changes are provided to facilitate comparisons
between various scenarios.

The HF and HB scenarios lead to differing levels
of cropland expansion and unequal conversion levels of
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pastureland and available forest and grassland requirements.
In our HB scenario by 2050 cropland has expanded by
25% relative to BAU. Cropland expansion occurs mostly
at the expanse of pastureland (∼500 million ha), but also
some available forest and grassland to compensate for used
pastureland or to be used as new cropland. In our HF
scenario, a 15% overall increase in cropland relative to BAU
occurred, but cropland expansion onto pastureland is low
relative to the HB scenario (i.e., 100 million ha) in part due
to meat demand and its higher land requirements relative
to other commodities. Pastureland required directly for meat
production and indirectly for conversion to cropland leads to
greater expansion onto available forest and grassland in the
HF scenario.

The differences in land converted in the HF and HB
scenarios point to alternative approximate reasons for forest
and grassland conversion in the HFB scenario. In the HFB
scenario the 40% increase in cropland relative to BAU is
linked to biofuel and food demand in the BioLUC model.
However, based on trends in the HB scenario, most of the
HFB’s cropland expansion is needed for biofuels. Based on
our model’s dynamics and relative to the HB scenario there
is a stronger link between food commodities, such as meat,
and the conversion of forest and grassland. Based on the
comparison of HF and HB scenarios, our results suggest, all
else being equal and compared to BAU, that for the HFB
scenario by 2050:

• About 70% of cropland expansion is linked to higher
biofuel demand.

• 30% of cropland expansion is linked to higher food
demand.

The HFB scenario’s high pastureland requirements led
to a greater expansion into available land that is likely
more directly attributed to food than to fuel so roughly
25%–35% of expansion into forest and grassland seen in the
HFB scenario is attributable to biofuels. These results have
potential implications for GHG emissions because forests are
relatively larger carbon sinks (Hoefnagels et al 2010).

Our scenario analysis shows that, even under the limiting
assumptions we assumed about the future, fairly aggressive
future biofuel and food demands could mostly be met
using a combination of agricultural and other available
land. However, across all scenarios demands for the highest
land-using meat commodity (e.g., beef) were difficult to meet
given diet, population and other assumptions, particularly
the assumption that non-meat demands (including biofuels)
would be met first. Under the most extreme conditions in
the HFB scenario there were some supply shortfalls relative
to projected food commodity demand in the 2020–2030
timeframe. These supply shortfalls occurred when the rate
of increase in food and biofuel demand was at its peak.
Broad conclusions about the drivers and dynamic interactions
of LUC using BioLUC allows for an understand and
test assumptions about complex systems to more informed
decision making and more detailed LUC modeling analysis
by other modeling systems.

Our analysis is limited in several keys respects. We
did not examine additional land intensifications or advanced
biofuel systems using wastes and residues that would reduce
land expansion requirements. These systems could mitigate
the increases in cropland area, but are not expected to alter
the underlying dynamics in the current version of the model
because these factors, e.g., land intensifications and using
wastes and residues, could change the amount of land required
but not the underlying dynamics of how land is used. One
exception, which could change the underlying dynamics, is
to allow cellulosic fuel feedstocks to grow on the abandoned
land category, which is not currently allowed in BioLUC.

BioLUC and SD both often include general simplifica-
tions outlined in table 1 primarily related to data and economic
relationships, operating at relatively low-resolution level. Of
particular importance is the lack of inter-regional dynamics in
a two-region system and that price is not explicitly modeled.
Model simplifications prevent the study of key dynamics
emerging from or the direct result of greater model detail.
With the inclusion of additional regions, trade dynamics in
which greater LUC occurred in some areas over others could
be explored, beyond the more proportional distribution seen
in this analysis.
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