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TROPHIC CASCADES, NUTRIENTS, AND LAKE PRODUCTIVITY:
WHOLE-LAKE EXPERIMENTS
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Abstract. Responses of zooplankton, pelagic primary producers, planktonic bacteria,
and CO2 exchange with the atmosphere were measured in four lakes with contrasting food
webs under a range of nutrient enrichments during a seven-year period. Prior to enrichment,
food webs were manipulated to create contrasts between piscivore dominance and plank-
tivore dominance. Nutrient enrichments of inorganic nitrogen and phosphorus exhibited
ratios of N:P . 17:1, by atoms, to maintain P limitation. An unmanipulated reference lake,
Paul Lake, revealed baseline variability but showed no trends that could confound the
interpretation of changes in the nearby manipulated lakes. Herbivorous zooplankton of West
Long Lake (piscivorous fishes) were large-bodied Daphnia spp., in contrast to the small-
bodied grazers that predominated in Peter Lake (planktivorous fishes). At comparable levels
of nutrient enrichment, Peter Lake’s areal chlorophyll and areal primary production rates
exceeded those of West Long Lake by factors of approximately three and six, respectively.
Grazers suppressed pelagic primary producers in West Long Lake, relative to Peter Lake,
even when nutrient input rates were so high that soluble reactive phosphorus accumulated
in the epilimnions of both lakes during summer. Peter Lake also had higher bacterial
production (but not biomass) than West Long Lake. Hydrologic changes that accompanied
manipulation of East Long Lake caused concentrations of colored dissolved organic carbon
to increase, leading to considerable variability in fish and zooplankton populations. Both
trophic cascades and water color appeared to inhibit the response of primary producers to
nutrients in East Long Lake. Carbon dioxide was discharged to the atmosphere by Paul
Lake in all years and by the other lakes prior to nutrient addition. During nutrient addition,
only Peter Lake consistently absorbed CO2 from the atmosphere, due to high rates of carbon
fixation by primary producers. In contrast, CO2 concentrations of West Long Lake shifted
to near-atmospheric levels, and net fluxes were near zero, while East Long Lake continued
to discharge CO2 to the atmosphere.

Key words: bacteria; carbon dioxide flux; chlorophyll; lake ecosystem; fish; food web; nutrient
effects; Paul Lake, Peter Lake, East and West Long Lakes; phosphorus input; trophic cascades;
zooplankton.

INTRODUCTION

In the 20 years since Paine (1980) coined the term,
trophic cascades have been the topic of a great diversity
of research in community and ecosystem ecology. Tro-
phic cascades have been defined in several ways (Pers-
son 1999). We define them as reciprocal effects of pred-
ators on prey that alter the abundance, biomass, or pro-
ductivity of a population, community, or trophic level
across more than one link in the food web (Pace et al.
1999).

Cascades are but one of many factors that control
plant biomass and production (Polis 1999). After

Manuscript received 15 March 1999; revised 22 May 2000;
accepted 4 July 2000; final version received 29 September 2000.

6 Corresponding author.
E-mail: srcarpen@facstaff.wisc.edu

Strong (1992) asked whether trophic cascades were
‘‘all wet,’’ reviewers have attempted to compare the
prevalence of cascades in terrestrial and aquatic sys-
tems (Pace et al. 1999, Persson 1999). The question of
the relative importance of trophic cascades across eco-
system types is still unresolved. It is apparent, however,
that examples are known from many types of ecosys-
tems, and that the importance of cascades (as compared
to other processes that control biomass and production)
is quite variable among ecosystem types and over time
within a given ecosystem (Pace et al. 1999, Persson
1999, Polis 1999).

Lake ecosystems provide many well-documented ex-
amples of trophic cascades, stemming from the seminal
work of Hrbácek et al. (1961), Brooks and Dodson
(1965), and Hurlbert et al. (1972). Concepts of trophic
cascades (Carpenter et al. 1985) and biomanipulation
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FIG. 1. Hypothesized relationship of primary producers
(biomass or primary production rate) vs. nutrient input rate
in lakes with three and four trophic levels.

(Shapiro et al. 1975) have linked community structure
to biogeochemical processes in pelagic ecosystems and
prompted a diversity of comparative and experimental
studies. In lakes, it is now accepted that cascades are
reasonably common, and in some situations can be ma-
nipulated to manage plant biomass of lakes (Hansson
et al. 1998, Jeppesen et al. 1998, Meijer et al. 1999,
Persson 1999). The research frontier has shifted to
work that attempts to define the conditions under which
cascades are important, and the contexts in which bio-
manipulation is likely to succeed.

Several important ideas now motivate research on
the conditions conducive to cascades in lakes. Benn-
dorf (1987, 1995) proposes that cascades are most like-
ly to control phytoplankton biomass when nutrient in-
puts are low to moderate. Above a certain threshold of
P inputs, Benndorf (1987, 1995) argues that bioman-
ipulation will be ineffective in controlling chlorophyll.
Reynolds (1994) argues that cascades are most likely
to control phytoplankton in small, shallow, unstratified
lakes capable of supporting extensive macrophytes.
Other physicochemical variables that may affect the
potential for trophic cascades include flushing rate
(Reynolds 1994) and quality of food for zooplankton
(Gulati and DeMott 1997), for example the carbon:
phosphorus ratio (Elser et al. 1998). A number of bi-
ological factors influence the capacity of the food web
to regulate phytoplankton, including refuges for the
keystone grazer Daphnia spp. (Shapiro 1990) and the
capacity of piscivorous fishes to regulate the plankti-
vores (Hambright 1994).

At present, it is difficult to predict the conditions
under which food web structure will control pelagic
primary producers. Many proposed generalizations
have counterexamples. While small lakes may be most
conducive to trophic cascades (Reynolds 1994), for ex-
ample, cascades have altered phytoplankton biomass
in large, deep lakes (Hansson et al. 1998) and the north
central Pacific Ocean (Shiomoto et al. 1997). Factors
such as nutrient input, flushing, basin morphometry,
and fish species composition may interact, and are not
well separated by the limited number of case studies
in the literature. Thus, there is need for experimental
tests of the impact of trophic cascades under a range
of conditions. Our experiments were conducted on en-
tire lakes to challenge directly the capacity of food web
structure to regulate lower trophic levels under en-
riched conditions. Experiments spanned the summer
stratified season, during which most of the productivity
and crucial biotic interactions occur in these lakes. This
time scale allowed for predator–prey interactions with-
in the entire food web to encompass both functional
and numerical responses, while avoiding the disruption
of food web linkages that can occur in enclosure ex-
periments (Lodge et al. 1998, Schindler 1998, Carpen-
ter 1999, Pace 2001). The whole-lake spatial scale en-
compassed cross-habitat interactions (e.g., littoral–pe-
lagic) that are critical for movements of organisms, life

cycles of some species, and population responses that
can inhibit as well as stabilize trophic cascades (Kitch-
ell et al. 1994, Reynolds 1994, Scheffer 1997, Jeppesen
et al. 1998). Another benefit of the whole-lake exper-
imental scale is that nominal physical conditions (i.e.,
mixing, thermal structure, light fields) were main-
tained. These conditions affect growth, nutrient cycling
and succession within the plankton over the seasonal
cycle, and are difficult to mimic in smaller scale ex-
periments (Schindler 1998).

This paper is an integrated summary of whole-eco-
system experiments designed to measure the responses
to nutrient enrichment of four lakes with contrasting
food webs for seven years. We summarize year-to-year
changes, providing a test of nutrient and food web ef-
fects on annual ecosystem responses, including inte-
grative measures of pelagic ecosystem response such
as production and biomass of producers, consumers,
and decomposers. By focusing on annual responses of
ecosystem processes, this paper complements earlier
papers that addressed weekly temporal dynamics or
community changes in these lakes (Pace and Cole 1996,
Carpenter et al. 1998a, b, Cottingham and Carpenter
1998, Cottingham et al. 1998, Pace et al. 1998, Cot-
tingham 1999).

We hypothesize that primary producers will respond
more strongly to nutrient enrichment in lakes with three
trophic levels (planktivorous fishes, small zooplank-
tonic herbivores, and phytoplankton) than in lakes with
a fourth trophic level, piscivorous fishes (Fig. 1). Nu-
trient enrichment should increase pelagic chlorophyll
and primary production, as well as increase the lake’s
uptake of CO2 from the atmosphere. In lakes with pi-
scivorous fishes, large-bodied zooplankton are pre-
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TABLE 1. Characteristics of the experimental lakes prior to
initial nutrient enrichment in 1993.

Characteristic

East
Long
Lake

Paul
Lake

Peter
Lake

West
Long
Lake

Area (ha)
Mean depth (m)
Max. depth (m)
Color†
Thermocline depth (m)
Photic depth (m)
Depth to anoxia (m)

2.31
4.9

14.4
9.5
2.8
2.6
4.5

1.74
3.9

12.8
1.6
4.1
5.7
6.5

2.67
6.0

19.9
1.5
4.2
6.3
7.9

3.39
4.4

17.7
3.9
4.2
5.1
5.1

Notes: Photic depth is depth of 1% surface irradiance. East
and West Long Lakes are separate basins of the same lake.

† Absorbance at 440 nm; units are per meter.

dicted to dominate and to suppress the response of
phytoplankton to nutrients. At equivalent levels of nu-
trient enrichment, lakes with piscivorous fishes and
large-bodied zooplankton should have lower pelagic
chlorophyll and primary production, accompanied by
lower uptake of CO2 from the atmosphere, than would
be expected in lakes with planktivorous fishes and
small-bodied zooplankton. This experiment directly
addresses the hypothesis that consumers can impede
the effects of nutrient enrichment on primary produc-
ers. Because we conducted our experiments in stratified
lakes, our findings are also relevant to the hypothesis
that cascades are more likely in shallow lakes (Reyn-
olds 1994). Unexpectedly, we found that we needed to
consider the effects of changes in colored dissolved
organic carbon (DOC) on trophic cascades. Consid-
eration of the role of DOC expanded our focus from
primary production to include microbial production, as
well as CO2 exchange between the lake and the at-
mosphere as an integrative measure of ecosystem re-
sponse.

METHODS

Study sites and experimental plan

Paul Lake, Peter Lake, and Long Lakes lie within a
1-km radius at the University of Notre Dame Environ-
mental Research Center near Land O’ Lakes, Wiscon-
sin, USA (898329 W, 468139 N). The lakes and water-
sheds are privately owned and are not accessible to the
public. Fish populations are not exploited. Prior to ma-
nipulation, all lakes supported similar food webs dom-
inated by largemouth bass (Micropterus salmoides)
and, in Long Lake only, smallmouth bass (Micropterus
dolomieu) and yellow perch (Perca flavescens). In May
1991, Long Lake was divided into three basins with a
plastic curtain (Christensen et al. 1996). The western-
most curtain was removed in September 1996 to assess
whether the barrier affected overwinter fish survival.
We assume this change did not affect comparison of
observations in 1997 to earlier years. Morphometric
characteristics of the four lakes were similar (Table 1).
East Long Lake’s thermocline lies at a shallower depth

than those of the other lakes because of high concen-
trations of colored DOC that stain the water (Chris-
tensen et al. 1996).

The experimental design involved reconfiguration of
the fish communities in 1991, followed by nutrient en-
richment in 1993–1997 (Fig. 2). Throughout the ex-
periment, Paul Lake was left unmanipulated as a ref-
erence ecosystem.

Peter Lake was manipulated to enhance planktivory,
culminating in removal of remaining piscivores by
electroshocking, angling, and finally rotenone in May
1991. The lake was restocked with planktivorous gold-
en shiners (Notemigonus chrysoleucas) and other
planktivorous fishes (fathead minnow, Pimephalus pro-
melas; redbelly dace, Phoxinus eos). Planktivores were
the dominant trophic level in the fish biomass through-
out the study. On 15 July 1996, 80 largemouth bass
(mean mass 211 g) were introduced into Peter Lake in
an attempt to change the food web configuration. How-
ever, these bass did not survive the next winter, and
Peter Lake remained a planktivore-dominated system.

West Long Lake’s fish community remained domi-
nated by piscivorous bass throughout the experiment.
During 1992 and 1993, perch populations died out in
West Long Lake for reasons we do not understand, but
which may have been related to overwinter survival.
In any case, this change enhanced piscivore dominance
and effectively diminished planktivory in West Long
Lake.

We had originally planned to convert East Long
Lake’s fish assemblage to one dominated by plankti-
vores. Unexpected hydrologic changes following cur-
tain installation thwarted this plan as the lake water
became dark and acidic, while the depth of the oxy-
genated layer diminished (Christensen et al. 1996).
Throughout the experiment, fish populations of East
Long Lake were low, variable, and difficult to quantify
due to low catch per effort and negligible recapture
rates. Frequently encountered fish species were large-
mouth bass, yellow perch, bluegill (Lepomis macro-
chirus), and brook stickleback (Culaea inconstans).

Starting in May 1993, Peter Lake and Long Lakes
were enriched with commercial liquid fertilizer
(NH4NO3 plus urea), to which we added concentrated
H3PO4 to achieve a N:P ratio .16:1, by atoms. Inor-
ganic N:P ratios (by atoms) of added nutrients in each
year of enrichment were 17.0 (1993), 30.4 (1994), 29.8
(1995), 34.4 (1996), and 31.5 (1997). In 1993, our goal
was to match the natural N:P ratios of the lakes. In
later years, our goal was to maintain P limitation of
primary producers. Phosphorus enrichment levels were
selected to span a range from natural loading rates to
rates high enough to cause inorganic P accumulation
in the epilimnion. Maximum P input rates used in this
experiment are ;20 times the natural rates for these
lakes, yet below the highest rates known from the
world’s lakes (Carpenter et al. 1996).

Enrichment occurred during the summer stratified
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FIG. 2. Experimental plan, showing fish and nutrient treatments with outlines of the lakes. Fishes: redbelly dace and
golden shiners in Peter Lake; largemouth bass in Paul Lake; largemouth and smallmouth bass in West Long Lake; largemouth
bass and yellow perch in East Long Lake.

season, approximately June, July, and August each
year. Nutrients were added from a central station daily
in 1993–1994 and weekly in 1995–1997. Dye and
chemical tracer (LiBr) studies showed that nutrients
mixed throughout each lake’s epilimnion within 24 h.
LiBr additions, changes in concentration over time, and
potential effects on aquatic organisms are presented by
Cole and Pace (1998).

The natural P input rates for all four lakes were cal-
culated using Vollenweider’s (1976) P loading equa-
tion:

0.5L 5 [P]q (1 1 (q /z) )P s s

where LP, the quantity to be estimated, is the P input
to the lake (measured in no. milligrams P per square
meter per year), [P] is the volume-weighted mean lake
P concentration (no. milligrams P per cubic meter), qs

is the hydraulic load (no. meters per year), and z is the
mean depth (no. meters). Phosphorus concentration
was measured weekly. Hydraulic loads to the lakes
were measured using a tracer, LiBr (Cole and Pace
1998). This approach produced estimates of baseline P
input that agree well with estimates based on sediment
cores taken from Peter Lake, West Long Lake, and Paul
Lake (Houser et al. 2000). Estimates of natural P input
from Vollenweider’s equation were adopted for the
years in which fertilizer was not added. In years in
which we enriched the lakes, total P input rate was

equal to the natural rate (mean of estimates for the
unenriched years) plus the rate of enrichment.

Field and laboratory methods

Piscivore populations were measured by Schnabel
mark–recapture methods using electroshocking in May
and August of each year (Hodgson et al. 1997). Plank-
tivore populations were measured every other week
using purse seines and beach seines (Schindler et al.
1993). In spring and fall, Schnabel mark–recapture
methods were used to estimate population sizes of the
dominant planktivores.

Limnological samples were taken weekly during
summer stratification (approximately mid-May to mid-
September) in each lake at a central station (Bade et
al. 1998). Profiles of temperature, oxygen, and light
were measured. Samples at six depths (1, 5, 10, 25, 50
and 100% of surface irradiance) were collected for
measurement of chemical, phytoplankton, and bacterial
variates. Two vertical hauls of the entire water column
(80-mm mesh net) were taken for zooplankton. Effi-
ciencies of net capture were determined for each spe-
cies at least once each year by comparing net hauls to
vertical profiles measured with Schindler–Patalas traps.
Surface irradiance was measured continuously with a
pyroheliometer.

Soluble reactive phosphorus, NO2 1 NO3, and NH4

were determined using an autoanalyzer on glass fiber
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filtered (GF/F) samples (Bade et al. 1998). Total P was
determined after persulfate digestion. Kjeldahl N was
measured so that total N could be calculated. Dissolved
inorganic carbon was measured by gas chromatography
(Stainton 1973). Dissolved organic carbon (DOC) was
measured using either an Astro 2001 total organic car-
bon (TOC) analyzer with persulfate and UV oxidation
(1991–1993) or a Shimadzu model 5050 high-temper-
ature TOC analyzer (1994–1997). Samples for partic-
ulate organic carbon (POC) were concentrated by fil-
tration through precombusted GF/F and analyzed by
catalyst-assisted oxidation to CO2 on a Carlo–Erba
Model NA 1500 carbon–nitrogen analyzer.

Chlorophyll a was determined by fluorometry, and
corrected for pheopigments (Marker et al. 1980). Total
chlorophyll was measured on GF/F filters. Chlorophyll
in particles .35 mm was calculated by difference, after
measuring chlorophyll concentration in samples passed
through a 35-mm mesh screen (Carpenter et al. 1996).
We report areal chlorophyll densities and chlorophyll
concentrations integrated from depths of 5–100% of
surface irradiance. Below the 5% layer, chlorophyll
concentrations were highly variable due to thin layers
of algae, photosynthetic bacteria, and detrital chloro-
phyll that characterize the interface of the aerobic and
anaerobic layers in these lakes. This zone accounts for
a low percentage of total productivity and was therefore
excluded from this analysis.

Primary production was measured on a one-to-four-
week basis by in situ incubations using NaH14CO3. Two
light bottles and a dichlorophenol dimethylurea
(DCMU) control were incubated at each of the six sam-
pling depths for six hours. After incubation, samples
were collected on GF/F filters, rinsed with 0.1 mol/L
HCl, and dried prior to liquid scintillation counting.
Rates of primary production at each depth were cal-
culated, accounting for activity in the labeled algae,
total activity and volume of the bottle, dissolved in-
organic carbon concentration, efficiency of scintillation
counting, duration of the incubation, and carbon fixa-
tion in the DCMU control (Bade et al. 1998). Daily
rates of primary production were calculated by the
method of Carpenter and Kitchell (1993), which uses
lake-specific regressions to interpolate primary pro-
duction from continuous measurements of surface ir-
radiance, as well as weekly measurements of water
temperature, transparency, dissolved inorganic carbon,
and chlorophyll. Here, we report areal and volumetric
rates of primary production, integrated from the surface
to the depth of 5% of surface irradiance.

Zooplankton samples were chilled, preserved with
cold sugared formalin or Lugol’s solution, and enu-
merated and measured by species. Dry masses were
calculated from lengths using species-specific regres-
sions (Downing and Rigler 1984). Here we report total
crustacean biomass, mean crustacean length, and bio-
mass of all Daphnia species. Crustacean values were

calculated over all copepod and cladoceran individuals,
including juveniles.

Bacterial abundance and production were deter-
mined in a pooled sample from the epilimnion. Bac-
terial concentration was determined by epifluorescence
microscopy using the acridine-orange direct-count
method (Hobbie et al. 1977). Duplicate filters were
prepared within one to two hours of sampling and
stored in a freezer until counting.

Bacterial production was measured as the uptake of
3H-leucine into protein as described by Pace and Cole
(1996). 3H-leucine incorporation was measured every
other week in 1991–1992, and weekly in 1993–1994
and 1996–1997, in six replicate samples at each depth.
Previous studies showed that 17 nmol/L leucine was
sufficient to maximize uptake rates in these lakes (Pace
and Cole 1994). Extraction and isolation of labeled
protein followed standard procedures (Pace and Cole
1994, Bade et al. 1998). Radioactivity was measured
by liquid scintillation counting. Conversions of counts
per minute to incorporation rates accounted for radio-
activity and concentration of the added isotope, volume
of the sample, duration of the incubation, and scintil-
lation counting efficiency.

Carbon dioxide flux between the lakes and the at-
mosphere was calculated as aK(Cw 2 Cs) where a is
the chemical enhancement factor, K is the gas exchange
coefficient expressed as a piston velocity, Cw is the CO2

concentration in the water, and Cs is the CO2 concen-
tration the water would have were it in equilibrium
with the atmosphere (Schindler et al. 1997a). Data to
calculate CO2 flux were measured in 1992–1997. Ac-
cording to the formulation of Hoover and Berkshire
(1969), a was significantly different from 1.0 only in
Peter Lake (undersaturated, high pH), where its mean
value was 3.0. In these small sheltered lakes, we as-
sumed a constant value for K of 2 cm/h based on SF6

additions to other low-wind lakes (Cole and Caraco
1998). The partial pressure of CO2 was measured in
surface water by a headspace-equilibration technique
(Cole et al. 1994). At the same time, samples were
taken for CO2 in the overlying atmosphere. Gas chro-
matography was used to measure the CO2 concentra-
tions. Cw was then calculated from the partial pressure
of CO2 using water temperature and temperature-cor-
rected values of Henry’s constant (Weiss 1974).

Statistical calculations

Means of chemical, microbial, phytoplankton, and
zooplankton variates were calculated for each lake dur-
ing each year over the time interval 15 June–31 August.
This interval was selected because it occurs within the
summer stratified season each year, does not include
transient changes at the beginning or end of fertiliza-
tion, and embraces consistent time series for all re-
sponse variates in each year. Chlorophyll and primary
production were log10-transformed to reduce hetero-
scedasticity and normalize residuals. Other response
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variates (chemical concentrations, zooplankton bio-
masses and body sizes, proportion of chlorophyll in
large particles, bacterial biomass and production, and
gas flux) were analyzed in the natural units.

Standard errors of annual means were calculated so
that variability among years could be compared with
variability among samples within each year. Standard
errors were corrected for the serial correlation among
samples (Box et al. 1978). For these variates in these
lakes, lag-1 autoregressive processes with positive au-
toregressive coefficients fit the time series (Pace and
Cole 1996, Carpenter et al. 1998a, b, Pace et al. 1998).
This type of serial correlation causes the usual esti-
mator of the variance to underestimate the true variance
of the annual means (Box et al. 1978). We corrected
for this bias by adjusting variances upwards using the
method of Box et al. (1978).

To evaluate the effects of our manipulations on eco-
system responses, we calculated regressions predicting
the annual mean of each ecosystem response variate in
each lake from annual measures of nutrient input, food
web structure, and DOC. Although DOC was not a part
of our experimental design, variability in DOC had
important effects on the results and must be accounted
for to determine the effects of nutrients and food web
structure. These regressions assume that there is no
significant autocorrelation in the response (dependent)
variates from year to year in each lake. Autocorrela-
tions of all zooplankton, primary producer, and micro-
bial variates presented here were nonsignificant at lags
longer than two weeks, and terms for autocorrelations
among annual cycles were not significant. In several
previous papers, we have shown that ecosystem re-
sponses of these lakes usually fit lag-1 week autore-
gressive models with no indication of autocorrelation
among annual cycles (Carpenter and Kitchell 1993,
Carpenter et al. 1996, 1998, Pace and Cole 1996, Pace
et al. 1998). In addition, we found that carryover of P
in the epilimnion from year to year was not detectable.
Low carryover of added P is known from other whole-
lake eutrophication experiments, at least during the first
several years of enrichment (Schindler et al. 1978). In
the enrichment years, chlorophyll concentrations in late
May and early June (prior to addition of nutrients) were
similar to those of pre-enrichment years. Thus, each
year’s manipulation began from a similar baseline state.

Regressions were calculated to examine the rela-
tionship of zooplankton variates (crustacean biomass,
Daphnia biomass, crustacean mean length) to P input
rate, planktivore biomass, and their interaction (P input
rate 3 planktivore biomass). To test for interactions,
data were centered prior to analysis (Aiken and West
1991). East Long Lake was omitted from these re-
gressions, because reliable estimates of planktivore
biomass were not available for East Long Lake.

Regressions were calculated to predict annual means
of chlorophyll (concentrations and areally integrated),
primary production (per unit area and per unit volume),

bacterial biomass, leucine incorporation, and POC from
annual means of P input rate, grazer variates, and DOC
using all four lakes. Two sets of regressions were cal-
culated, each using a fixed model structure: (1) P input
rate, crustacean mean length, and DOC as predictors;
and (2) P input rate and crustacean mean length as
predictors. As an alternative approach to coping with
collinearity of predictors in these regressions, stepwise
multiple regressions were calculated. Candidate pre-
dictors were P input rate, crustacean mean length, crus-
tacean biomass, Daphnia biomass, the ratio of Daphnia
to crustacean biomass, and DOC. Stepwise regressions
were fit using P values of 0.15 to enter or remove
predictors.

To assess the relationship between fishes and eco-
system responses, regressions were calculated to pre-
dict annual means of chlorophyll (concentrations and
areally integrated), primary production (per unit area
and per unit volume), bacterial biomass, leucine in-
corporation, and POC from annual means of P input
rate, grazer variates, and planktivore or piscivore bio-
mass using data from Paul Lake, Peter Lake, and West
Long Lake. Two sets of regressions were calculated,
each using a fixed model structure: (1) P input rate,
DOC, and planktivore biomass as predictors and (2) P
input rate, DOC, and piscivore biomass as predictors.

For all regressions, we examined normal probability
plots of residuals, plots of residuals against predictors,
and plots of residuals against interaction terms of pre-
dictors. Plots of residuals against P input rate showed
curvature that could be removed by fitting either a qua-
dratic model in P input rate or a linear model in log(P
input rate). The latter approach was chosen, because it
required fitting of fewer parameters. When necessary,
response variates were transformed to normalize resid-
uals.

RESULTS

In this experiment, the independent variates are nu-
trient input rate and fish community structure. Dis-
solved organic carbon (DOC) concentration was not
intentionally manipulated, but changes in DOC must
be considered to interpret the responses of East Long
Lake. Thus we consider first the nutrient manipulations
and DOC changes, then the fish communities, before
turning to the dependent variates: zooplankton, primary
producers, bacteria, and gas exchange between lakes
and the atmosphere.

Nutrients

During the summer stratified seasons of 1993–1997,
nutrients were added to East Long, West Long, and
Peter lakes (Table 2). Phosphorus input rates reported
here are means for each summer’s period of enrichment.
These input rates include natural inputs calculated us-
ing sediment cores and the Vollenweider model (Hous-
er et al. 2000).

Dilution rates were measured using LiBr as a tracer
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TABLE 2. Annual input rates of phosphorus (mg·m22·d21) to
the basins during the summer enrichment periods of 1991–
1997.

Year

P input rate

East Long
Lake

Paul
Lake

Peter
Lake

West Long
Lake

1991
1992
1993
1994
1995
1996
1997

0.33
0.44
2.9
2.2
3.8
6.2
3.4

0.27
0.29
0.31
0.41
0.40
0.35
0.28

0.25
0.30
3.1
2.1
1.2
6.1
3.2

0.2
0.62
4.1
2.7
1.4
6.3
3.4

Notes: Natural P loads were estimated by Houser et al.
(2000). Natural P inputs are presented for 1991 and 1992,
and natural plus artificial P inputs are presented for 1993–
1997.

TABLE 3. Residence time estimated as volume/outflow for
the experimentally enriched lakes, with standard deviation
among years for each lake.

Lake Years
Residence
time (d) 1 SD

East Long Lake
Peter Lake
West Long Lake

1992–1996
1993–1996
1992–1996

1914
1285
1611

1319
813

1293

Note: Data are taken from the detailed water budgets by
Cole and Pace (1998).

FIG. 3. (A) Total P concentration (mg/m3) and (B) total
N concentration (mg/m3) vs. P input rate (mg·m22·d21) in the
epilimnia of four experimental lakes, 1991–1997. Symbols:
Paul Lake, 3; East Long Lake, 1; Peter Lake, V; West Long
Lake, v. Error bars show 61 SE.

(Cole and Pace 1998). Because dilution rates could not
be measured in every lake every year, we did not at-
tempt to correct P input rates for dilution. Peter Lake
flushes slightly more rapidly than West Long Lake (Ta-
ble 3). This difference would diminish Peter Lake’s
chlorophyll response relative to West Long Lake for
an equivalent P input rate (Vollenweider 1976). Such
an effect would cause an underestimation of any graz-
ing impact in West Long Lake.

Total P concentrations in the epilimnion were closely
related to P input rates (Fig. 3A). There are two outliers,
East Long Lake in 1996 and 1997. East Long Lake has
a shallow epilimnion and anoxic hypolimnion (Chris-
tensen et al. 1996). The hypolimnion became more P-
rich over the course of the experiment (Houser et al.
2000). Entrainment as the mixed layer deepens over
the summer may explain the high P concentrations in
East Long Lake in 1996–1997. Alternatively, the stain-
ing of East Long Lake may cause its producers to be-
come limited by light at lower P loads, leading to ac-
cumulation of inorganic P in the epilimnion. Total P
concentrations in the reference lake, Paul Lake, ranged
8.8–11.6 mg/m3.

Total N concentrations in the epilimnion tended to
increase with enrichment rates (Fig. 3B). The total N
concentration of East Long Lake was comparable to
that of the other lakes, for a given level of enrichment.
Total N concentrations in the reference lake, Paul Lake,
ranged 273–424 mg/m3.

Soluble reactive P concentrations were generally
near or below the detection limit (;2 mg/m3), as ex-
pected for P-limited lakes (Fig. 4A). Notable excep-
tions were all the enriched lakes at the highest enrich-
ment rate (in 1996) and East Long Lake in 1997. Sol-
uble reactive P concentrations in the reference lake,
Paul Lake, ranged from less than the detection limit to
5 mg/m3.

Dissolved inorganic N (NH4 1 NO3 1 NO2) con-
centrations were generally above detection limits (;1
mg/m3) in all lakes, all years. Concentrations reached
high levels under enrichment in East and West Long

lakes (Fig. 4B). In Peter Lake, dissolved inorganic N
concentrations were highest at the highest enrichment
rate. Dissolved inorganic N concentrations in Paul Lake
ranged 11–18 mg/m3.

Organic carbon

Following the isolation of East Long Lake by the
curtain in 1991, DOC concentrations increased ;4 mg/
L, color (absorbance at 440 nm) increased ;0.8 m21,
the thermocline rose ;0.6 m, and the thickness of the
surface layer of oxygenated water decreased ;1.7 m
(Christensen et al. 1996). Shifts in DOC were corre-
lated with changes in chlorophyll and primary produc-
tion in East Long Lake (Carpenter et al. 1998a, b). In
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FIG. 4. (A) Soluble reactive P concentration (mg/m3) and
(B) dissolved inorganic N concentration (mg/m3) vs. P input
rate (mg·m22·d21) in the epilimnia of four experimental lakes,
1991–1997. Symbols: Paul Lake, 3; East Long Lake, 1; Peter
Lake, V; West Long Lake, v. Error bars show 61 SE.

FIG. 5. (A) Dissolved organic carbon (DOC) concentra-
tion (mg/L) and (B) particulate organic carbon (POC) con-
centration (mg/L) vs. P input rate (mg·m22·d21) in the epilim-
nia of four experimental lakes, 1991–1997. Symbols: Paul
Lake, 3; East Long Lake, 1; Peter Lake, V; West Long Lake,
v. Error bars show 61 SE.

these lakes, DOC and water color correlate strongly (r
5 0.91; Carpenter et al. 1998b). Thus, DOC levels are
inversely related to light penetration and primary pro-
duction per unit lake area (Carpenter et al. 1998b).

Seasonal mean concentrations of DOC show consis-
tent differences among lakes, but little trend with P
input rate (Fig. 5A). Paul Lake and Peter Lake had
DOC concentrations of 4–6 mg/L with generally low
intra-annual variation. West Long Lake had DOC con-
centrations of 7–9 mg/L with generally low variation
within each year. East Long Lake had the highest DOC
concentrations (11–16 mg/L) and the highest variabil-
ity both within and among years. Because the increase
in DOC concentrations occurred between the times of
curtain installation and the initial fertilization (Chris-
tensen et al. 1996), DOC and P input rate are correlated
over time in East Long Lake (Carpenter et al. 1998b).

Particulate organic carbon (POC) concentration in-
creased with nutrient enrichment in East Long Lake
and Peter Lake (Fig. 5B). Summer mean POC concen-
trations were consistently higher in Peter Lake than in
West Long Lake.

Piscivorous and planktivorous fishes

Paul Lake was dominated by piscivorous largemouth
bass throughout the experiment (Fig. 6). Largemouth

bass consumed smaller individuals of their own species
as well as benthic invertebrates, littoral zooplankton,
and a diversity of minor prey (Hodgson and Hodgson
2001). During 1993 and 1994, recruitment events
caused planktivory to increase as abundant year classes
of bass fed on zooplankton (Post et al. 1997). These
intervals of planktivory were relatively brief and re-
sembled a similar episode of planktivory by a large
year class of largemouth bass in Peter Lake in 1985
(Carpenter et al. 1987).

West Long Lake, like Paul Lake, was dominated by
piscivores (Fig. 6). Both largemouth and smallmouth
bass were piscivorous in West Long Lake (He et al.
1994). Unlike Paul Lake, planktivory by fishes in West
Long Lake was significant in most years of the exper-
iment (Hodgson et al. 1997). In 1991 and 1992, yellow
perch accounted for most of the planktivore biomass.
In 1996, the planktivore biomass consisted of young-
of-the-year (YOY) largemouth bass. In 1997, the plank-
tivore biomass consisted primarily of YOY largemouth
bass (72%) and YOY yellow perch (28%).

Peter Lake was dominated by planktivorous min-
nows throughout the experiment (Fig. 6). Minnow pop-
ulations were highly variable over time, in both abun-
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FIG. 6. Relative biomass of planktivores (shaded bars)
and piscivores (open bars) in Paul Lake, West Long Lake,
and Peter Lake, during 1991–1997. In each year, results of
May and August population surveys are shown.

FIG. 7. Planktivore biomass (kg/ha) vs. pis-
civore biomass (kg/ha) in Paul Lake (3), Peter
Lake (V), and West Long Lake (v).

dance and community structure (Schindler et al. 1993,
1997a). For example, a midsummer die-off of minnows
in 1994 caused a short-lived trophic cascade (Carpenter
et al. 1996). Some piscivorous largemouth bass were
present early in 1991, prior to bass removal. During
summer 1996, piscivorous bass were introduced to Pe-

ter Lake, but this introduction failed to produce a per-
sistent population or notable reductions in planktivory.
In 1997, no bass were captured during two nights of
intensive electroshocking.

Planktivore biomass was inversely related to pisci-
vore biomass (Fig. 7). In Peter Lake, where piscivory
was consistently low, planktivore biomass was highly
variable. In Paul Lake and West Long Lake, piscivore
biomass was variable. However, piscivore biomass was
apparently sufficient to maintain consistently low bio-
mass of planktivores.

We interpret East Long Lake’s fish treatment as one
of variable, but generally low, planktivory (Carpenter
et al. 1998b, Pace et al. 1998). Fish communities were
impacted by declining pH, increasing DOC, and oxy-
gen depletion following installation of the curtain
(Christensen et al. 1996). Fish abundance was low and
could not be measured reliably. During 1991–1992, the
fish community of East Long Lake was dominated by
bluegills, yellow perch, sticklebacks, and minnow spe-
cies. In later years, yellow perch disappeared, while
bluegills persisted at low densities. Sticklebacks were
abundant in nearshore areas. Largemouth bass often
entered East Long Lake by moving over or around the
curtain during periods of high water. However, large-
mouth bass populations were too small to measure. It
is unlikely that bass established a persistent, overwin-
tering population in East Long Lake. Abundance of
large Daphnia corroborate the low fish abundances,
suggesting that planktivory was low throughout the
experiment.

Zooplankton

Zooplankton species composition showed some var-
iability over time in each lake. In Paul Lake, the dom-
inant zooplankton were large cladoceran grazers
(Daphnia pulex, D. rosea, and Holopedium gibberum)
and copepods (Cyclops varicans rubellus, Orthocy-
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FIG. 8. (A) Crustacean mean length (mm), (B) crustacean
biomass (g/m2), and (C) Daphnia biomass (g/m2) vs. P input
rate (mg·m22·d21) in the four experimental lakes, 1991–1997.
Symbols: Paul Lake, 3; East Long Lake, 1; Peter Lake, V;
West Long Lake, v. Error bars show 61 SE.

clops modestus, Skistodiaptomus species) (Post et al.
1997). Bosmina longirostris was abundant during brief
periods of high planktivory by YOY bass (Post et al.
1997).

In Peter Lake, large-bodied zooplankters were ex-
cluded by planktivory most of the time, leaving roti-
fers, Cyclops varicans rubellus and Bosmina longiros-
tris, to dominate the zooplankton. During episodes of
low planktivory in 1994, 1996 and 1997, Daphnia ro-
sea became abundant in Peter Lake.

The zooplankton of West Long Lake were consis-
tently dominated by large-bodied grazers, Daphnia pu-
lex and D. rosea, throughout this study. Mesocyclops
edax, Bosmina longirostris, and Asplanchna spp. were
common subdominant zooplankton.

In East Long Lake, rotifers and small-bodied crus-
taceans predominated in 1991 and 1992, corresponding
with relatively high planktivory (Carpenter et al.
1998a, Pace et al. 1998). By mid-1993, the large graz-
ers Daphnia pulex and D. rosea dominated the zoo-
plankton of East Long Lake, and maintained this dom-
inance through 1996 (Carpenter et al. 1998a, Pace et
al. 1998). During 1994–1996, the most common sub-
dominant zooplankton species were Mesocyclops edax,
Bosmina longirostris, and Asplanchna spp. In 1997,
however, Daphnia species were subdominant to the
predaceous copepod Mesocyclops edax and a smaller
bodied cladoceran herbivore, Bosmina longirostris.

Crustacean mean length provides an index of both
size-selective predation and grazing intensity (Brooks
and Dodson 1965, Pace 1984, Peters and Downing
1984, Carpenter and Kitchell 1993). Crustacean zoo-
plankton of West Long Lake were consistently larger
than those of Peter Lake (Fig. 8A). Crustaceans of East
Long Lake were more variable in length than those of
any other lake. In most years, crustaceans of East Long
Lake were larger than those of Peter Lake. Crustacean
length in Paul Lake ranged 0.33–0.51 mm, representing
the variability of an unmanipulated reference system.
The lower crustacean sizes occurred in 1993 and 1994.
These shifts resulted from the bass recruitment events
discussed by Post et al. (1997).

Biomass of crustacean zooplankton appeared to be
larger under enrichment (Fig. 8B). Weekly fluctuations
in crustacean biomass were directly related to enrich-
ment (Carpenter et al. 1996). No consistent differences
in crustacean biomass were evident among enriched
lakes. In Paul Lake, crustacean biomass varied within
0.63–1.86 g/m2.

The allocation of crustacean biomass among Daph-
nia spp. and smaller grazers was different among lakes.
Biomass of Daphnia spp. was consistently larger in
West Long Lake than in Peter Lake (Fig. 8C). Daphnia
of West Long Lake were dominated by D. pulex and
D. rosea. Interannual variation in Daphnia biomass was
large in East Long Lake, where Daphnia biomass ex-
ceeded that of Peter Lake in some years, but was less
than that of Peter Lake in other years. Despite heavy

fish planktivory, Peter Lake supported some Daphnia
(including the smaller bodied species, D. dubia and D.
rosea) in most years. The Daphnia resurgence follow-
ing a fish die-off in Peter Lake in 1994 was described
by Carpenter et al. (1996). Daphnia biomass in Peter
Lake fluctuated around 2 g/m2 in 1996 and 1997. Bass
introduction in 1996 was followed by increased Daph-
nia biomass late in that summer. In 1997, no bass were
caught in the lake and a large recruitment of minnows
was observed. Daphnia biomass in the reference lake,
Paul Lake, ranged 0.1–0.38 g/m2, with the lowest val-
ues occurring in 1993 and 1994 following bass re-
cruitment events (Post et al. 1997).

Crustacean length was constrained to a narrow range
of small-bodied animals when planktivore biomass was
relatively high (Fig. 9A). At relatively low planktivore
biomasses, crustacean length was variable and poten-
tially large. Both Daphnia biomass (Fig. 9B) and total
crustacean biomass (Fig. 9C) could be large at inter-
mediate levels of planktivore biomass, but were low at
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FIG. 9. (A) Crustacean length (mm), (B) Daphnia biomass
(g/m2), and (C) total crustacean biomass (g/m2) vs. plankti-
vore biomass (kg/ha) in the three experimental lakes where
planktivore biomass could be measured (Paul Lake, Peter
Lake, and West Long Lake). Correlation coefficients are not
significant (n 5 21, P . 0.05).

TABLE 4. Regressions of zooplankton variates (log10-transformed) on P input rate, planktivore
biomass (kg/ha), and their interaction.

Dependent Variate

P input

Coefficient t

Planktivore

Coefficient t

Interaction

Coefficient t R2 1 SE

Crustacean biomass
Daphnia biomass
Crustacean mean length

2.34
1.83
0.155

3.75
5.39
3.14

20.00429
20.0169
20.00251

0.32
2.32
2.37

20.0130
20.0321
20.00419

0.44
2.01
1.80

0.388
0.639
0.427

1.43
0.771
0.112

Notes: For each dependent variate, we present three parameters (coefficients for log10[P input
rate], planktivore biomass, and interaction, log10[P input rate 3 planktivore biomass]) and their
t statistics (estimate/1 SE), coefficient of determination (R2), and standard error of residuals (1
SE). In all cases n 5 21 (planktivore biomasses were not available for East Long Lake).
Significant values of t . 2.08.

the highest level of planktivore biomass. The ratio of
Daphnia biomass to total crustacean biomass was di-
rectly correlated with mean crustacean length (r 5 0.87,
n 5 28).

Regressions show significant positive effects of nu-
trient enrichment on all zooplankton variates (Table 4).
Nutrient enrichment increased Daphnia biomass,
which was an important factor in the positive response
of mean crustacean length to enrichment. Total crus-

tacean biomass was not affected strongly by plankti-
vore biomass, consistent with previously published
time series analyses of these lakes (Carpenter and
Kitchell 1993, Carpenter et al. 1996). Both Daphnia
biomass and mean crustacean length have significant
inverse relationships with planktivore biomass. For
both Daphnia biomass and mean crustacean biomass,
interaction terms improve the model fit. The interaction
terms account for the fact that nutrient effects depend
on the level of planktivory (Fig. 9B, C). When plank-
tivore biomass is high, both Daphnia biomass and crus-
tacean mean length are low, regardless of the level of
nutrient enrichment. When planktivore biomass is low,
the constraint of predation is removed, and both Daph-
nia biomass and crustacean mean length vary with nu-
trient enrichment.

Primary producers

Areal chlorophyll (integrated from the depth of 5%
of surface irradiance) was moderately variable in the
unenriched lakes (Fig. 10A). In the unenriched con-
dition, differences in areal chlorophyll between Peter
Lake and the basins of Long Lake were consistent with
the differences in crustacean mean length: Peter Lake
tended to have higher areal chlorophyll. After enrich-
ment began, the differences among lakes were ampli-
fied. Areal chlorophyll in Peter Lake consistently ex-
ceeded that of West and East Long Lakes. The mean
difference between Peter and West Long lakes was
;0.5 log units during enrichment, indicating that areal
chlorophyll of Peter Lake was about three-fold larger
than that of West Long Lake under comparable P input
rate (100.5 ø 3). East Long Lake tended to have lower
areal chlorophyll than West Long Lake. Analyses of
weekly data indicated that low areal chlorophyll levels
in East Long Lake can be explained statistically by the
joint effects of grazing and colored DOC (Carpenter et
al. 1998a, b). Areal chlorophyll in the reference lake,
Paul, ranged within 1.16–1.26 log10(areal chlorophyll),
where chlorophyll data were in units of milligrams per
square meter.

Chlorophyll concentrations (areal chlorophyll divid-
ed by the depth of 5% of surface irradiance) also dif-
fered between Peter Lake and West Long Lake during
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FIG. 10. The figure plots (A) log10(areal chlorophyll) and
(B) log10(chlorophyll concentration) vs. P input rate
(mg·m22·d21) in the four experimental lakes, 1991–1997.
Symbols: Paul Lake, 3; East Long Lake, 1; Peter Lake, V;
West Long Lake, v. Original data for areal chlorophyll were
in units of milligrams per square meter; original data for
chlorophyll concentration were in units of milligrams per
cubic meter. Error bars show 61 SE.

FIG. 11. Proportion of chlorophyll in large
particles (.35mm) vs. P input rate (mg·m22·d21)
in the four experimental lakes, 1991–1997.
Symbols: Paul Lake, 3; East Long Lake, 1;
Peter Lake, V; West Long Lake, v. In all cases,
standard errors are smaller than the symbols.

enrichment. While the interpretation of areal chloro-
phyll vs. concentrations is debated (Carpenter et al.
1999, Nürnberg 1999), we found consistent results for
these two measures of algal biomass. In Peter Lake,
chlorophyll concentrations were somewhat more var-
iable than areal chlorophyll. Nevertheless, the average
difference between the two lakes was nearly 0.5 log
units during enrichment, approaching a three-fold dif-
ference in chlorophyll concentrations. East Long Lake,
however, had variable chlorophyll concentrations under
enrichment, which could be as high as those of Peter
Lake or as low as those of West Long Lake. Staining
by colored DOC caused the photic zone of East Long
Lake to be thin (Carpenter et al. 1998). Thus, the
amount of chlorophyll per unit area is relatively low,
though concentrations can be high. Effects of colored
DOC on areal chlorophyll vs. chlorophyll concentra-
tions are discussed in more detail by Nürnberg (1999)
and Carpenter et al. (1999). Chlorophyll concentrations
of Paul Lake ranged 0.56–0.63 log10(chlorophyll con-
centration), where chlorophyll data were in units of
milligrams per cubic meter.

The proportion of chlorophyll in large particles (.35
mm) is reported as an index of blooms of large, po-
tentially inedible phytoplankton (Cottingham et al.
1998, Cottingham 1999). In the reference ecosystem
and in the other lakes prior to enrichment, this pro-
portion ranged ;0.17–0.52 (Fig. 11). Throughout the
experiment, the reference lake was dominated by a mix-
ture of chrysophytes and chlorophytes, with a diverse
assemblage of subdominant groups including crypto-
monads, dinoflagellates and cyanobacteria (Cotting-
ham et al. 1998). Prior to enrichment, Peter Lake tended
to be dominated by chrysophytes, dinoflagellates, and
chlorophytes (Cottingham et al. 1998). West Long Lake
was dominated by chlorophytes and dinoflagellates pri-
or to enrichment, while East Long Lake was dominated
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FIG. 12. The figure plots (A) log10(areal primary produc-
tion rate) and (B) log10(volumetric primary production) vs. P
input rate (mg·m22·d21) in the four experimental lakes, 1991–
1997. Symbols: Paul Lake, 3; East Long Lake, 1; Peter Lake,
V; West Long Lake, v. Original data for areal production
were in units of milligrams per square meter per day; original
data for volumetric production were in units of milligrams
per cubic meter per day. In all cases, standard errors are
smaller than the symbols.

by dinoflagellates and chrysophytes (Cottingham et al.
1998).

In Peter Lake and West Long Lake, the proportion
of chlorophyll in large particles showed no strong
trends related to P input rate (Fig. 11). In the years of
enrichment, the proportion of chlorophyll in large par-
ticles tended to be greater in West Long Lake than in
Peter Lake. These differences in size structure are cor-
related with differences in community structure (Cot-
tingham et al. 1998, Cottingham 1999). Peter Lake ex-
hibited high biomass of chlorophytes and cyanobacteria
during enrichment (Cottingham et al. 1998). Biomass
was consistently high, except during brief irruptions of
Daphnia. West Long Lake, in contrast, exhibited
blooms of cyanobacteria in August 1993 and through-
out the summer of 1994 (Carpenter et al. 1995, Cot-
tingham et al. 1998). The atomic N:P ratio of fertilizer
was 17.0 in 1993 and 30.4 in 1994, and then remained
;30 through 1997. There is no evident relationship
between the change in fertilizer N:P and the relative
abundance of cyanobacteria in Peter Lake and West
Long Lake (Cottingham et al. 1998). In later years of
enrichment, blooms of cyanobacteria occurred occa-
sionally each summer, while other groups were gen-
erally suppressed by grazers.

In East Long Lake, the proportion of chlorophyll in
large particles was variable throughout the study. East
Long Lake did not exhibit the cyanobacterial blooms
seen in West Long Lake (Cottingham et al. 1998). Chlo-
rophytes and cryptomonads were prevalent.

Responses of primary production are consistent with
those of chlorophyll. Prior to enrichment, Peter Lake
had higher areal primary production (integrated above
the depth of 5% of surface irradiance) than either basin
of Long Lake, consistent with the food web differences
(Fig. 12A). During enrichment, differences in primary
production among the lakes became larger. During en-
richment, Peter Lake’s areal primary production was
more than six-fold (0.8 log10 units) greater than that of
West Long Lake. Areal primary production of East
Long Lake was lower than that of West Long Lake,
despite comparable P input rates and grazer assem-
blages. This difference is due to the higher colored
DOC concentrations of East Long Lake (Carpenter et
al. 1998a, b). Areal primary production of the reference
lake, Paul Lake, varied between 2.4 and 2.7 log10(areal
primary production), where production data were in
units of milligrams per square meter.

Volumetric primary production (areal production di-
vided by the depth of 5% of surface irradiance) was
consistently greater in Peter Lake than in West Long
Lake, and differences were largest during enrichment
(Fig. 12B). On average, Peter Lake’s volumetric pri-
mary production during enrichment was approximately
three-fold (0.5 log10 units) greater than that of West
Long Lake. Volumetric primary production of East
Long Lake during enrichment ranged from rates similar
to those of West Long Lake to rates almost as high as

those of Peter Lake. Although volumetric primary pro-
duction rates were sometimes high in the thin photic
zone of East Long Lake, vertically integrated primary
production rates tended to be low. Volumetric primary
production of Paul Lake ranged 1.7–2 log10(primary
production), where primary production data were in
units of milligrams per cubic meter.

Bacteria

Concentrations of bacteria varied nearly 10-fold
among lakes and years (Fig. 13A). Bacterial concen-
trations tended to be higher in Peter Lake than in the
other enriched lakes, but this pattern was not consistent.
Bacterial concentrations of Paul Lake were less vari-
able than those of the enriched lakes, ranging within
2–7 3 109 cells/L.

Bacterial production showed consistent differences
among lakes during enrichment (Fig. 13B). Peter Lake
generally had higher bacterial production than either
basin of Long Lake. Bacterial production rates in the
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FIG. 13. (A) Bacterial concentration (no. cells/L) and (B)
bacterial production (pmol leucine·L21·d21) vs. P input rate
(mg·m22·d21) in the four experimental lakes, 1991–1997.
Symbols: Paul Lake, 3; East Long Lake, 1; Peter Lake, V;
West Long Lake, v. Error bars show 61 SE.

FIG. 14. Rate of CO2 flux between the lake
and the atmosphere (mg C·m22·d21) vs. P input
rate (mg·m22·d21) in the four experimental lakes,
1991–1997. Symbols: Paul Lake, 3; East Long
Lake, 1; Peter Lake, V; West Long Lake, v.
Error bars show 61 SE.

reference lake, Paul Lake, ranged 754–6276
pmol·L21·d21. This range is approximately as large as
the range seen in East and West Long Lakes.

CO2 flux

Exchange of CO2 between the lakes and the atmo-
sphere is presented as an integrative index of ecosystem
metabolism (Schindler et al. 1997a). Paul Lake dis-

charged CO2 to the atmosphere (Fig. 14), consistent
with a pattern known from a substantial majority of the
world’s lakes (Cole et al. 1994). East Long Lake, which
had relatively low areal primary production, also dis-
charged CO2 to the atmosphere. Peter Lake, in contrast,
had high primary production and was a net sink for
atmospheric CO2. West Long Lake was an intermediate
case. Under most conditions, it discharged CO2 to the
atmosphere. In the first two years of enrichment, how-
ever (1993 and 1994), West Long Lake absorbed CO2

from the atmosphere at a small net rate.

Primary producer and microbe response to nutrients,
grazers, and DOC

Regressions using a fixed model were used to com-
pare the effects of nutrient input rate, grazers, and dis-
solved organic carbon (DOC) on primary producers and
microbes (Table 5). All three predictors are signifi-
cantly correlated (crustacean mean length 3 P input
rate, r 5 0.380; crustacean mean length 3 DOC, r 5
0.649; P input rate 3 DOC, r 5 0.430; for all corre-
lations n 5 28, P , 0.05). Because of this collinearity,
a predictor having a large impact on a response variable
may have a nonsignificant parameter, because the pre-
dictor is redundant with another predictor in the model.
The ecosystem experiments were designed to create
independent contrasts of food web structure and P input
rate. The correlation of crustacean mean length and P
input rate is relatively low, but significant at the 5%
level. This correlation makes it less likely that effects
of P input rate and crustacean length will both be sig-
nificant in a given regression, i.e., it makes the exper-
iment less likely to detect the effects it was intended
to reveal. The experiment was not designed to inves-
tigate DOC effects, but unforeseen changes in DOC in
the course of the experiment made it necessary to con-
sider DOC effects. DOC is correlated with crustacean
length and P input rate, potentially confounding the
detection of effects by regression.

Despite collinear predictors, regressions indicated
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TABLE 5. Regressions using log10(P input rate), mean crustacean length, and dissolved organic carbon (DOC) as independent
variates.

Dependent variate

Intercept

Coeffi-
cient t

P input

Coeffi-
cient t

Crustacean length

Coeffi-
cient t

DOC

Coeffi-
cient t R2 1 SE

Areal chlorophyll
Volumetric chlorophyll
Areal production
Volumetric production

1.89
1.09
3.47
2.53

19
11
27
22

0.501
0.634
0.534
0.669

7.38
9.19
6.01
8.39

20.448
20.625
20.515
20.704

2.18
2.99
1.91
2.91

20.0443
20.0171
20.0760
20.206

3.91
1.49
5.13
1.55

0.725
0.816
0.724
0.747

0.152
0.154
0.199
0.178

Bacteria
Leucine
POC

4.21
1.53
1.81

2.92
6.61
5.61

0.807
1.05
1.02

0.812
6.83
4.62

2.26
21.09
21.30

0.749
2.26
1.94

20.0392
20.0503
20.0159

0.236
1.79
0.430

0.090
0.704
0.477

2.22
0.339
0.494

Notes: For each dependent variate, parameter estimates and t values (parameter estimate/1 SE) for intercept, P input,
crustacean length, and DOC are presented, as well as the overall coefficient of determination (R2) and standard error of
residuals (n 5 28). Significant values of t . 2.05. Chlorophyll and primary production were log10 transformed, and other
dependent variates were analyzed in the natural units. To simplify presentation, bacterial biomass was divided by 109, and
leucine incorporation was divided by 104.

TABLE 6. Regressions using log10(P input rate) and crustacean mean length as independent
variates.

Dependent variate

Intercept

Coeffi-
cient t

P input

Coeffi-
cient t

Crustacean length

Coeffi-
cient t R2 1 SE

Areal chlorophyll
Volumetric chlorophyll
Areal production
Volumetric production

1.75
1.14
3.23
2.47

15
12
19
22

0.438
0.659
0.425
0.639

5.30
9.60
3.48
8.04

20.879
20.458
21.26
20.904

4.04
2.53
3.89
4.31

0.550
0.799
0.422
0.721

0.190
0.158
0.282
0.183

Bacteria
Leucine
POC

4.099
1.37
1.76

3.08
6.09
5.92

0.750
1.00
0.997

0.79
6.29
4.73

1.87
21.58
21.45

0.75
3.74
2.61

0.088
0.657
0.473

2.18
0.357
0.485

Note: See Table 5 Notes, although DOC data are not presented here.

many significant effects of P input rate and crustacean
mean length. P input rate had a significant positive
effect on every dependent variate except bacterial bio-
mass. Crustacean mean length, an index of food web
structure, had significant negative effects on chloro-
phyll (both areal and volumetric), primary production
per unit volume, and leucine incorporation. Effects of
crustacean mean length were negative and marginal (P
ø 0.06) for areal primary production and POC. In the
case of areal primary production, which may be influ-
enced by either grazing or shading, effects of crusta-
cean length may be confounded by the strong corre-
lation of crustacean length and DOC. DOC had sig-
nificant negative effects on chlorophyll and primary
production per unit area. Our data do not provide a
strong test of DOC effects because of the collinearity
of DOC and the directly manipulated predictors.

We examined regressions that omitted DOC to assess
the relationship of the response variates to P input rate
and crustacean mean length alone (Table 6). Both pre-
dictors had significant and opposite effects on chlo-
rophyll, primary production, leucine incorporation, and
POC. For areal chlorophyll and primary production,
the two-predictor models explained less variance than
the three-predictor models. Dissolved organic carbon
had its greatest effects on areal chlorophyll and primary
production.

Stepwise multiple regressions were calculated to
provide another perspective on the effects of collinear
predictors. In addition, stepwise regressions gave the
opportunity to compare other grazing indices: Daphnia
biomass, crustacean biomass, and the ratio of Daphnia
to crustacean biomass. These food web indicators are
all correlated (Fig. 15).

For all response variates except bacterial concentra-
tion, stepwise regression produced models that ex-
plained most of the variance in the response variates.
For chlorophyll and primary production, these regres-
sions explain .80% of the variance among annual
means. Phospohorus input had significant positive ef-
fects on chlorophyll, primary production, leucine in-
corporation, and POC (Table 7). Dissolved organic car-
bon had significant inverse effects on areal chlorophyll
and primary production, as in the fixed-effect regres-
sions. Dissolved organic carbon also had a significant
inverse effect on leucine incorporation. This may be
an indirect consequence of reduced primary production
at high DOC, leading to reduced algal release of or-
ganic compounds consumed by bacteria.

Zooplankton had significant effects in every regres-
sion (Table 7), but these effects differed among re-
sponse variates. For areal chlorophyll, volumetric pri-
mary production, leucine incorporation and POC, crus-
tacean biomass had a significant positive coefficient.
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FIG. 15. Correlations of zooplankton variates used in re-
gressions. (A) Crustacean biomass (g/m2) vs. crustacean mean
length (mm), (B) Daphnia biomass (g/m2) vs. crustacean
mean length (mm), and (C) Daphnia biomass (g/m2) vs. crus-
tacean biomass (g/m2). All correlations are significant (P ,
0.05).

We interpret this as a bottom-up effect: more primary
producers increase overall herbivore biomass. Time se-
ries analyses of weekly data have demonstrated this
positive effect (Carpenter et al. 1996). In every re-
gression with a positive effect of total crustacean bio-
mass, there is a negative effect of a zooplankton variate
related to Daphnia. For areal chlorophyll, leucine in-
corporation, and POC, there are negative effects of
Daphnia biomass. For volumetric primary production,
there are negative effects of Daphnia biomass and the
ratio of Daphnia to crustacean biomass.

In the other regressions (Table 7), there are signifi-
cant negative effects of the ratio of Daphnia to crus-
tacean biomass (volumetric chlorophyll, areal primary
production) or Daphnia biomass (bacterial concentra-
tion). These inverse effects of Daphnia are interpreted
as grazing effects. Daphnia biomass is strongly cor-
related with crustacean mean length (Fig. 15B). Time

series analyses of weekly data have demonstrated sig-
nificant negative effects of grazing as measured by
Daphnia or zooplankter mean size in these lakes (Car-
penter and Kitchell 1993, Carpenter et al. 1996, 1998a,
b).

We have presented three different regression ap-
proaches (Tables 5, 6, and 7) to determine whether the
general patterns are robust. Several important results
emerge from all three regression approaches. Chloro-
phyll, whether areal or volumetric, had significant re-
lationships with both P input rate and grazer variates
in all regressions, in the expected directions. The same
is true of primary production per unit volume. Areal
primary production was significantly related to P input
in all regressions, and to grazer variates in the two-
predictor regressions (Table 6) and multiple regressions
(Table 7). In the three-predictor regressions (Table 5),
DOC had strong effects on areal production and the
effect of crustacean length was marginal. However, the
multiple regressions (Table 7) show strong effects on
areal production of both DOC and Daphnia biomass/
crustacean biomass. Thus, there is significant evidence
of a grazer effect on areal production, even though the
pattern is complex. Bacterial biomass was unrelated to
P input rate and showed no inverse relationships with
grazer variates. Leucine incorporation, in contrast, was
related significantly to both P input rate and grazer
variates. Thus our manipulations affected microbial
production, but not biomass. Particulate organic car-
bon, a composite of bacteria, phytoplankton, and de-
tritus, was directly related to P input rate and inversely
related to crustacean mean length or Daphnia biomass.

Primary producer and microbe response to nutrients,
fishes, and DOC

Regressions describing fish effects on primary pro-
ducers and microbes can only be calculated using Paul
Lake, Peter Lake, and West Long Lake, because fish
biomass estimates could not be obtained for East Long
Lake. Despite the lower degrees of freedom and loss
of sensitivity caused by omission of East Long Lake,
a number of significant responses occurred.

Planktivore biomass had significant positive coeffi-
cients for areal chlorophyll and on both areal and vol-
umetric primary production (Table 8). All of these ef-
fects are in the direction forecast by the trophic cascade
hypothesis. Planktivore biomass had no significant neg-
ative coefficients. In the planktivore regressions, P in-
put rate had significant positive effects on all dependent
variates except bacterial concentration. Dissolved or-
ganic carbon had significant negative effects on areal
chlorophyll, both areal and volumetric primary pro-
duction, leucine incorporation, and POC.

Piscivore biomass had significant negative coeffi-
cients for areal chlorophyll, and on both areal and vol-
umetric primary production (Table 9). These effects
match the expectations of the trophic cascade hypoth-
esis. Piscivore biomass had no significant positive co-
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TABLE 7. Best models found by stepwise multiple regressions. Candidate independent variates
are log10(P input rate), mean crustacean length, crustacean biomass, Daphnia biomass, ratio
of Daphnia biomass to total crustacean biomass, and dissolved organic carbon (DOC).

Dependent variate Parameter Estimate t R2 1 SE

Areal chlorophyll Intercept
P input
Crustacean biomass
Daphnia biomass
DOC

1.58
0.425
0.0978

20.130
20.0432

19
6.43
3.92
4.17
4.98

0.818 0.126

Volumetric chlorophyll Intercept
P input
Daphnia/crustacean bio-

mass

1.043
0.698

20.341

20
9.88
3.02

0.815 0.151

Areal primary production Intercept
P input
Daphnia/crustacean bio-

mass
DOC

3.28
0.512

20.543

20.0736

32
5.59
3.70

6.25

0.806 0.170

Volumetric primary pro-
duction

Intercept
P input
Crustacean biomass
Daphnia biomass
Daphnia/crustacean bio-

mass
DOC

2.21
0.650
0.0919

20.122
20.302

20.179

22
8.56
3.08
2.59
1.84

1.83

0.858 0.139

Bacteria concentration Intercept
Daphnia biomass

4.41
0.505

8.49
2.06

0.140 2.07

Leucine incorporation Intercept
P input
Crustacean biomass
Daphnia biomass
DOC

0.843
0.878
0.250

20.322
20.0533

4.05
5.71
3.61
3.83
2.44

0.794 0.290

POC Intercept
P input
Crustacean biomass
Daphnia biomass

0.802
0.737
0.293

20.376

5.12
3.44
3.57
3.83

0.596 0.434

Note: See Table 5 Notes, although crustacean biomass, Daphnia biomass, and ratio of Daphnia
biomass to total crustacean biomass are additionally presented here.

TABLE 8. Regressions using log10(P input rate), planktivore biomass (kg/ha), and dissolved organic carbon (DOC) as
independent variates.

Dependent variate

Intercept

Coeffi-
cient t

P input

Coeffi-
cient t

Planktivore

Coeffi-
cient t

DOC

Coeffi-
cient t R2 1 SE

Areal chlorophyll
Volumetric chlorophyll
Areal production
Volumetric production

1.98
1.21
3.59
2.68

12
6.69

20
15

0.545
0.662
0.547
0.668

7.17
7.93
6.47
7.96

0.00263
0.00163
0.00510
0.00403

2.27
1.28
3.96
3.16

20.101
20.0540
20.149
20.109

4.08
1.98
5.38
3.96

0.775
0.812
0.796
0.817

0.145
0.159
0.161
0.160

Bacteria
Leucine
POC

4.48
1.68
2.22

1.99
3.23
3.70

1.76
1.10
1.19

1.70
4.57
4.29

0.0236
20.00002

0.00598

1.49
0.01
1.41

0.0206
20.171
20.198

0.06
2.18
2.19

0.279
0.554
0.553

1.98
0.457
0.527

Notes: For each dependent variate, parameter estimates and t values (parameter estimate/1 SE) for intercept, P input,
planktivore biomass, and DOC are presented, as well as the overall coefficient of determination (R2) and standard error of
residuals (n 5 21). Significant values of t . 2.08. Chlorophyll and primary production were log10 transformed, and other
dependent variates were analyzed in the natural units. To simplify presentation, bacterial biomass was divided by 109 and
leucine incorporation was divided by 104.

efficients. In the piscivore regressions, P input rate had
significant positive effects on all dependent variates
except bacterial concentration. Dissolved organic car-
bon had significant negative effects on areal chloro-
phyll, both areal and volumetric primary production,
leucine incorporation, and POC.

DISCUSSION

Manipulations

Relatively high N:P ratios in added nutrients were
intended to prevent nitrogen limitation. Prior to en-
richment, bioassays and physiological studies showed
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TABLE 9. Regressions using log10(P input rate), piscivore biomass (kg/ha), and dissolved organic carbon (DOC) as inde-
pendent variates.

Dependent variate

Intercept

Coeffi-
cient t

P input

Coeffi-
cient t

Piscivore

Coefficient t

DOC

Coefficient t R2 1 SE

Areal chlorophyll
Volumetric chlorophyll
Areal production
Volumetric production

2.10
1.27
3.80
2.85

13
7.14

20
15

0.434
0.597
0.344
0.515

4.68
5.83
3.17
4.77

20.0102
20.00594
20.0186
20.0140

2.26
1.20
3.53
2.68

20.0963
20.0512
20.140
20.102

3.82
1.84
4.75
3.49

0.774
0.810
0.774
0.797

0.145
0.160
0.170
0.169

Bacteria
Leucine
POC

5.51
1.69
2.47

2.50
3.30
4.14

0.698
1.07
0.956

0.55
3.66
2.80

20.973
20.00232
20.0213

1.59
0.16
1.28

0.0718
20.169
20.188

0.21
2.13
2.04

0.290
0.554
0.545

1.97
0.457
0.533

Note: See Table 8 Notes, although piscivore, not planktivore, biomass data are presented here.

that the phytoplankton were either P-limited or co-
limited by N and P (Carpenter and Kitchell 1993). Dis-
solved inorganic nitrogen accumulated in the epilimnia
of enriched lakes during summer, while soluble reactive
phosphorus did not. The only exception was 1996,
when nutrient input rates were the highest, and both
dissolved inorganic N and soluble reactive P accu-
mulated in the epilimnia. Accumulation of excess in-
organic N and P in 1996 suggests that other factors
(e.g., light transmission or grazing) limited primary
producers of enriched lakes. Thus we conclude that N
was not the limiting nutrient for primary producers
during these experiments.

Fish manipulations successfully maintained a food
web with large-bodied cladoceran grazers in West Long
Lake. In Peter Lake, fish manipulations generally main-
tained high planktivory and small-bodied grazers.
However, minnow die-offs and bass introduction led to
irruptions of Daphnia in 1994, 1996, and 1997. These
events had short-term effects on chlorophyll and pri-
mary production (Carpenter et al. 1996, 1998), but did
not have large effects on the annual averages reported
here. In East Long Lake, food web structure and the
zooplankton community varied considerably. Small-
bodied grazers predominated in 1991, 1992, and 1997,
and large-bodied Daphnia spp. predominated in 1993–
1996.

The reference ecosystem, Paul Lake, was monitored
to determine the background variability of an unma-
nipulated lake, and to detect any trends that might have
affected all of the experimental lakes. Bass recruitment
events in Paul Lake caused brief, transient food web
responses in 1993 and 1994 (Post et al. 1997). However,
there are no major trends in the reference lake to sug-
gest patterns that should be considered when inter-
preting responses of the enriched lakes.

Responses of the lakes to nutrients and herbivory

The comparison of Peter and West Long lakes shows
that food web structure has consistent effects on pelagic
primary producers at a wide range of nutrient levels.
The piscivore-dominated lake had substantially lower
chlorophyll and primary production than the plankti-
vore-dominated lake, at all levels of P enrichment that

we studied. These food web effects were evident in the
unenriched condition, and at P input rates so high that
inorganic P accumulated in the epilimnion.

Differences between Peter Lake and West Long Lake
may underestimate the effects of food web structure on
producers. Peter Lake flushes more rapidly, which
should decrease chlorophyll for a given P input rate
(Vollenweider 1976). Also, Peter Lake experienced
several irruptions of Daphnia, which diminished the
contrast in grazing between the two lakes. Thus the
difference between Peter Lake and West Long Lake
should be viewed as a minimal estimate of the potential
impact of trophic cascades.

Food web structure also affected bacterial produc-
tion. Among diverse lakes, bacterial production tends
to track primary production (Cole et al. 1988, White
et al. 1991), and this pattern was repeated in our ex-
perimental lakes (Pace and Cole 1996). In Peter Lake,
where nutrients and small-bodied zooplankton pro-
duced the highest levels of chlorophyll and primary
production, bacterial production was also highest. Bac-
terial abundance, on the other hand, did not show strong
effects of either nutrient addition or food web structure.
Bacterivory, which also tracked nutrients and food web
changes, kept bacterial numbers within a relatively nar-
row range (Pace and Cole 1996, Pace et al. 1998). The
much higher bacterial production in Peter Lake, with-
out a concomitant increase in bacterial abundance, sug-
gests that the trophic cascade caused bacteria to turn
over more rapidly in Peter Lake vs. the other enriched
lakes.

Responses of East Long Lake are difficult to inter-
pret, because both grazing and colored dissolved or-
ganic carbon (DOC) can explain the reductions in chlo-
rophyll and primary production. Time series analyses
of weekly data suggest that both herbivory and colored
DOC had substantial effects on chlorophyll and pri-
mary production in East Long Lake (Carpenter et al.
1998a, b).

Recently the use of areal vs. volumetric measures of
chlorophyll and primary production for pelagic systems
has been debated (Carpenter et al. 1999, Nürnberg
1999). Areal units place pelagic ecosystems on the
same basis as terrestrial ecosystems, are appropriate
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for interpretation of gas exchange between lakes and
the atmosphere, and reflect the dynamics of buoyant
cyanobacteria, which integrate the water column ver-
tically. Volumetric units are appropriate for the mass
action laws that govern interactions of chemicals and
plankton in a three-dimensional environment, though
this may be less pertinent for fishes that may experience
the epilimnion as a two-dimensional environment (Es-
sington and Kitchell 1999). For the present study, the
distinction between areal and volumetric units is moot,
because areal and volumetric chlorophyll and produc-
tion responded in the same ways to nutrient and food
web manipulation. The only exception is a minor one:
in regressions against planktivore and piscivore bio-
mass, areal and volumetric chlorophyll responded in
the same direction, but the coefficients for fish effects
on volumetric chlorophyll were not significant. Areal
and volumetric production, however, responded sig-
nificantly (and in the same direction) to fish variates.
Also, areal and volumetric chlorophyll and primary
production always responded significantly and in the
same direction to grazer variates. The regressions in-
volving fish variates had fewer degrees of freedom than
those involving grazer variates, thereby displayed less
power to detect effects.

Trophic cascades

Our results demonstrate numerous patterns consis-
tent with the trophic cascade hypothesis: inverse re-
lationship of piscivore and planktivore biomass; in-
verse relationship of planktivore biomass to biomass
of Daphnia and crustacean mean size; and inverse re-
lationship of crustacean mean size to chlorophyll and
primary production. Other characteristics of the zoo-
plankton community, such as Daphnia biomass or the
ratio of Daphnia biomass to total crustacean biomass,
were also inversely related to chlorophyll and primary
production. Planktivore biomass was directly related
to primary production and to chlorophyll per unit lake
area. Piscivore biomass was inversely related to pri-
mary production and areal chlorophyll.

Fishes are likely to have threshold effects on trophic
cascades. Piscivore biomass in these, and other, lakes
is sustained by benthos (Carpenter and Kitchell 1993,
Schindler et al. 1997b). The high piscivore biomass
suppresses any planktivores that invade or recruit, even
though the piscivores are supported largely by nonfish
prey. Therefore, linear models may not represent the
relationship between piscivore biomass and zooplank-
ton or phytoplankton.

Since the introduction of the size efficiency hypoth-
esis (Brooks and Dodson 1965), many experiments and
case studies have demonstrated the size-selective im-
pact of planktivores on zooplankton communities.
Cross-lake comparisons of size effects are less common
(Currie et al. 1999). Mills and Schiavone (1982) found
a significant inverse correlation between biomass of
fish planktivores and mean zooplankter length (r 5

20.80, n 5 18, P , 0.01). Currie et al. found a sig-
nificant positive relationship between cladoceran body
mass and the presence of piscivores. Our data suggest
that the relationship of zooplankter size to planktivory
may be wedge-shaped, i.e., the variability around the
line changes with level of planktivory. When plank-
tivory is high, large zooplankters are excluded from
the community, but when planktivory is low large zoo-
plankters can be abundant and mean zooplankter size
is related to nutrient inputs.

While the effects of planktivorous fishes on zoo-
plankter mean body size are consistent, relationships
of planktivore biomass and zooplankton biomass
among lakes are more variable. Previous whole-lake
experiments showed that planktivory has variable ef-
fects on zooplankton biomass, even though impacts on
body size and Daphnia are consistently inverse (Car-
penter and Kitchell 1993). Relationships of zooplank-
ton biomass and planktivorous fish biomass were non-
significant in several studies (Mills and Schiavone
1982, Persson et al. 1992, Currie et al. 1999). Quiros
(1990a) found a positive relationship between zoo-
plankton biomass and planktivore biomass, suggestive
of a resource-controlled effect. In a later study, he
showed a positive relationship between the relative fre-
quency of piscivorous fishes and macrozooplankton
biomass, suggestive of a cascading effect (Quiros
1998). Our results show no significant relationship be-
tween planktivore biomass and total zooplankton bio-
mass. This finding is consistent with the idea that
planktivory affects zooplankton size structure and com-
munity composition more consistently than total bio-
mass.

The effect of planktivorous fishes on phytoplankton
biomass and production, however, is positive in some
comparative studies (Mills and Schiavone 1982, Quiros
1990b, Persson et al. 1992). Such correlations may be
explained by the impact of planktivores on zooplankton
size structure, combined with the greater grazing ca-
pacity of large-bodied herbivores.

Several lines of evidence support an inverse rela-
tionship of large-bodied zooplankton to phytoplankton
biomass, chlorophyll, or primary production. Larger
bodied zooplankters have greater per capita feeding
rates and broader diets than smaller animals (Peters
and Downing 1984). In particular, Daphnia seems to
be an especially effective grazer owing to its broad
diet, rapid numerical response, and ability to migrate
(Shapiro 1990). Population interactions that stabilize
the suppression of phytoplankton by Daphnia were de-
scribed by Murdoch et al. (1998). In addition, Daphnia
tends to sequester P rather than recyling it, exacerbating
P limitation of phytoplankton (Elser et al. 1996). Many
whole-lake experiments and biomanipulations show in-
verse relations of zooplankton body size to phytoplank-
ton biomass or production (Carpenter and Kitchell
1993, Hansson et al. 1998, Jeppesen et al. 1998, Meijer
et al. 1999). This pattern is consistent with several
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comparative studies (Mills and Schiavone 1982, Pace
1984, Quiros 1990b, Carpenter et al. 1991). In contrast,
Currie et al. (1999) failed to find a significant rela-
tionship between chlorophyll and zooplankter body
mass. There are several reasons why our results are
difficult to compare with those of Currie et al. (1999).

1) They tested for food web effects after correcting
statistically for total phosphorus (TP) differences,
whereas we used P input rates. In cross-lake data sets
like those of Currie et al. (1999), the relationship of
TP to P input rate may be noisy or inconsistent due to
interlake differences in mean depth and flushing rate
(Vollenweider 1976). Also, TP (unlike P input rate) is
itself affected by the food web (Carpenter and Kitchell
1993, Schindler et al. 1993, Elser et al. 1996, Houser
et al. 2000). Thus, statistical adjustments using TP may
remove food web effects a priori, and thereby decrease
the ability of subsequent statistical tests to detect food
web effects.

2) The narrow range of grazer sizes considered by
Currie et al. (1999) makes it unlikely that grazer effects
would be detected. Currie et al. (1999) calculated zoo-
plankter mass from measurements of body length using
the regressions of Peters and Downing (1984). Based
on this regression, the range of zooplankter mean
lengths in Currie et al. (1999) is only 0.2 mm, compared
with 0.6 mm in this study and ;1.1 mm among the
world’s lakes (Carpenter et al. 1996).

3) In addition, the length–mass regression adds sub-
stantial error variance that would tend to obscure any
existing effects of zooplankton body size on producers.
We used measurements of zooplankter length, which
are relatively precise and more likely to reveal effects.

4) Our experiments were designed to produce con-
trasts in food web structure, whereas Currie et al.
(1999) studied the existing variability among lakes in
a region. There are many possible explanations for dif-
ferences among comparative and experimental studies
of trophic cascades (Carpenter and Kitchell 1988, Car-
penter et al. 1991). Despite this, many comparative
studies (Mills and Schiavone 1982, Pace 1984, Quiros
1990b, Carpenter et al. 1991) and whole-lake manip-
ulations (Carpenter and Kitchell 1993, Hansson et al.
1998, Jeppesen et al. 1998, Meijer et al. 1999) indicate
inverse effects of zooplankton body size or large
daphnids on primary producers.

How stable are trophic cascades? In our study, food
web effects were sustained through five years of ex-
perimental enrichment. This duration is sufficient to
span tens of generations of zooplankton and hundreds
of generations of phytoplankton. Thus, the trophic cas-
cades were not brief, transient phenomena. They were
sustained, long-term impacts of fishes on primary pro-
ducers. Our findings are consistent with experiences in
long-term biomanipulation of eutrophic lakes (Hansson
et al. 1998, Meijer et al. 1999) and with comparative
studies that correlate indices of size-selective predation
with chlorophyll across broad cross-sections of lakes

(Mills and Schiavone 1982, Pace 1984, Carpenter et
al. 1991, Persson et al. 1992, Sarnelle 1992, Mazumder
1994, Quiros 1998).

Implications for hypotheses

Responses of Peter Lake and West Long Lake are
relevant to several recent hypotheses about the con-
ditions under which trophic cascades can control phy-
toplankton.

The data do not support the idea that P input rate
must fall below a certain threshold for herbivory to
control phytoplankton biomass (Benndorf 1987). On
the contrary, herbivory reduced phytoplankton biomass
and primary production across the full range of nutrient
input rates that we considered. Phosphorus input rates
in this study were sufficient to saturate inorganic P
uptake, and exceeded the rates (1.4–5.5 mg·m22·d21)
proposed as an upper limit for food web control of
chlorophyll (Benndorf 1995). Nevertheless, it is im-
portant to note that grazing was never able to eliminate
cyanobacterial blooms in West Long Lake (Carpenter
et al. 1995, Cottingham and Carpenter 1998, Cotting-
ham et al. 1998). Many of the cyanobacteria were co-
lonial, and contributed to the relatively high proportion
of chlorophyll in large particles in West Long Lake.
Although grazing consistently reduced chlorophyll and
primary production, cyanobacteria were able to form
visible blooms each year. In some summers blooms
were almost continual, while in other summers blooms
were episodic.

Colonial blue-green algae, which are resistant to
grazing, are thought to inhibit the control of chloro-
phyll by trophic cascades (Benndorf 1987, Reynolds
1994). Despite blooms of blue-green algae in West
Long Lake (Carpenter et al. 1995, Cottingham and Car-
penter 1998, Cottingham et al. 1998), both chlorophyll
and primary production were reduced by food web fac-
tors.

It has been proposed that rapid flushing (residence
time ,30 d) aids biomanipulation by selecting against
colonial cyanobacteria (Reynolds 1994). These lakes,
however, have much longer residence times. Our ex-
periments show that rapid flushing is not essential for
the control of chlorophyll and primary production by
grazing. However, our data do not contradict the idea
that rapid flushing may aid the control of cyanobacteria
in lakes.

The data contradict the proposition that trophic cas-
cades are confined to shallow unstratified lakes capable
of supporting abundant macrophytes (Reynolds 1994).
Like Hansson et al. (1998), we find that grazing can
effectively control phytoplankton in vertically stratified
lakes. The experimental lakes offer limited habitat for
macrophytes and were never colonized extensively by
macrophytes during this study.

Large-bodied species of Daphnia are thought to be
essential for trophic cascades from fish to phytoplank-
ton (Pace 1984, Shapiro 1990, Carpenter and Kitchell
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1993, Reynolds 1994). Our findings are consistent with
this hypothesis.

The stability of food web configurations that reduce
phytoplankton biomass has been considered by a num-
ber of authors (Shapiro 1990, Meijer et al. 1994, Reyn-
olds 1994, Scheffer 1997). Data presented here show
five years of food web control of phytoplankton in
experimentally enriched lakes. It is important to note
that fish communities of these lakes were not exploited.
Nevertheless, this study shows that multiyear control
of phytoplankton by grazing is possible where pisci-
vore populations can be sustained and planktivores ef-
fectively suppressed. Dynamics of Peter Lake show
that plankton communities respond rapidly to changes
in planktivory (Carpenter et al. 1996). This reinforces
the idea that fish community structure is a key to the
stability of trophic structures that suppress phytoplank-
ton. Rapid changes in fish communities may translate
into rapid changes in plankton (Carpenter and Kitchell
1993, Mittelbach et al. 1995).

Integrated ecosystem responses

Lake metabolism integrates the responses of eco-
system production and respiration (Schindler et al.
1997a). In many lakes, high carbon inputs from the
watershed lead to supersaturation of the water with CO2

(Kling et al. 1991, Cole et al. 1994). Consequently,
CO2 diffuses out of the lake into the atmosphere. This
situation occurs in the reference ecosystem, Paul Lake,
and in all the lakes in the absence of nutrient enrich-
ment. Nutrient enrichment should increase CO2 fixation
by primary producers, thereby drawing down CO2 con-
centrations. In Peter Lake, we observed such a draw-
down. Nutrient enrichment caused Peter Lake to be-
come undersaturated with CO2, so that the net flux of
CO2 was into the lake. In West Long Lake, high her-
bivory tended to counter the stimulation of primary
producers by nutrients. Although CO2 concentrations
were drawn down to some extent, the net flux was out
of the lake in some years, and into the lake at a small
rate in other years. East Long Lake, like Paul Lake,
discharged CO2 to the atmosphere throughout the ex-
periment, despite considerable nutrient inputs. The
high CO2 discharge of East Long Lake probably results
from a combination of high herbivory and high DOC
levels.

Under a given nutrient regime, trophic cascades that
decrease chlorophyll, and thereby decrease light ex-
tinction, may lead to increased production by light-
limited benthic algae (Vadeboncoeur et al. 2001). In
these whole-lake experiments, the responses of benthic
algae to reductions in phytoplankton biomass were sub-
stantial, but did not completely compensate for de-
creases in pelagic primary production (Vadeboncoeur
et al. 2001). Changes in CO2 flux, which integrate re-
sponses of all producers and decomposers in the eco-
system, indicate that total ecosystem production and
respiration were affected by food web structure.

We conclude that trophic cascades affected the re-
sponses of these lakes to nutrient inputs. Food webs
that promote large-bodied herbivores had lower pro-
ducer biomass, lower primary production, lower bac-
terial production, and higher rates of CO2 discharge to
the atmosphere. These impacts of trophic cascades oc-
curred even when phosphorus input rates were so high
that excess inorganic phosphorus accumulated in the
epilimnion. These sustained trophic cascades appear to
be linked to the stability of fish communities. Shifts in
the balance of piscivory and planktivory are likely to
lead to rapid responses in ecosystem processes.

Nature of evidence for trophic cascades

Demonstration of trophic cascades places relatively
heavy demands on the data. In lakes, it is necessary to
estimate biomass at every trophic level, to measure
grazer body size, and to correct for possibly confound-
ing effects of nutrient input rate and perhaps other fac-
tors, such as DOC. It is likely that comparably rich
data sets will be needed to test for the prevalence of
cascades in terrestrial and marine ecosystems. For
lakes, ecologists have accumulated sufficiently rigor-
ous data to show the widespread occurrence of cascades
(Persson 1999). Nevertheless, a great deal of work is
underway to determine the circumstances under which
cascades are likely to be expressed or suppressed
(Hansson et al. 1998, Jeppesen et al. 1998, Meijer et
al. 1999, Persson 1999). In this study, we have shown
the potential importance of cascades across a wide
range of nutrient input rates, indicating that high nu-
trient inputs do not necessarily preclude trophic cas-
cades. Our study also shows that DOC is an important
covariate to consider, but our experiment was not de-
signed to manipulate DOC, and many questions remain
about the role of DOC in trophic cascades (Pace et al.
1999).

Cascades have been demonstrated in marine benthos,
and a few examples are known for pelagic marine eco-
systems (Paine 1980, Shiomoto et al. 1997, Micheli
1999, Pace et al. 1999, Persson 1999). In pelagic ma-
rine ecosystems, cascades have been investigated using
multiyear time series that were not originally collected
for the purpose of testing hypotheses about food web
effects (Shiomoto et al. 1997, Micheli 1999). In such
data sets, cascades may be difficult to detect because
of time scale dependency of correlations (Carpenter
and Kitchell 1988), lack of strong manipulations of
food web structure (Carpenter 1988), management pol-
icies intended to stabilize fish stocks and thereby sup-
press variability that could reveal cascades (Walters
1986), or large observation errors. In addition, biotic
mechanisms, such as interference competition, food
quality, or migrations, may suppress cascades (Micheli
1999). While data sets demonstrating pelagic marine
cascades are rare, we cannot determine whether the
rarity is due to statistical problems or truly low prev-
alence of cascades.
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The prevalence of cascades in terrestrial ecosystems
is uncertain, although examples exist (Pace et al. 1999,
Persson 1999, Polis 1999). Terrestrial ecosystems with
large generalist mammalian grazers, keystone species
subject to control by pathogen outbreaks, or the po-
tential for massive insect outbreaks are among the more
likely candidates for cascades. Experience with aquatic
ecosystems suggests that serendipitous events, com-
parisons of extant data sets, and collections of case
studies will be useful, but insufficient, to resolve ques-
tions about the frequency and control of terrestrial cas-
cades. Carefully planned comparisons of contrasting
ecosystems and deliberate ecosystem-scale experi-
ments will probably be needed to determine the con-
trolling factors of cascades in an unambiguous way.
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