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Abstract. We present the WD2014 chronology for the upper

part (0–2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet

(WAIS) Divide (WD) ice core. The chronology is based on

counting of annual layers observed in the chemical, dust

and electrical conductivity records. These layers are caused

by seasonal changes in the source, transport, and deposi-

tion of aerosols. The measurements were interpreted man-

ually and with the aid of two automated methods. We val-

idated the chronology by comparing to two high-accuracy,

absolutely dated chronologies. For the Holocene, the cos-

mogenic isotope records of 10Be from WAIS Divide and
14C for IntCal13 demonstrated that WD2014 was consis-

tently accurate to better than 0.5 % of the age. For the glacial

period, comparisons to the Hulu Cave chronology demon-

strated that WD2014 had an accuracy of better than 1 % of

the age at three abrupt climate change events between 27 and

31 ka. WD2014 has consistently younger ages than Green-

land ice core chronologies during most of the Holocene. For
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the Younger Dryas–Preboreal transition (11.595 ka; 24 years

younger) and the Bølling–Allerød Warming (14.621 ka; 7

years younger), WD2014 ages are within the combined

uncertainties of the timescales. Given its high accuracy,

WD2014 can become a reference chronology for the South-

ern Hemisphere, with synchronization to other chronologies

feasible using high-quality proxies of volcanism, solar ac-

tivity, atmospheric mineral dust, and atmospheric methane

concentrations.

1 Introduction

Polar ice cores are a powerful tool for investigating past

changes in the Earth’s climate and are the only direct mea-

sure of past concentration of greenhouse gases in the atmo-

sphere (Monnin et al., 2001; Siegenthaler et al., 2005; Mar-

cott et al., 2014). Ice cores also provide insight into other cli-

mate forcing mechanisms, such as atmospheric dust loading

(Lambert et al., 2008), volcanic eruptions (Sigl et al., 2014),

and biomass burning (Ferretti et al., 2005). The drilling site

for the West Antarctic Ice Sheet (WAIS) Divide (WD) ice

core (79.48◦ S, 112.11◦W; 1766 m above sea level) was se-

lected to obtain a precisely dated, high time resolution ice

core record that would be the Southern Hemisphere equiv-

alent of the deep Greenland ice cores (Greenland Ice-Core

Project Members, 1993; NGRIP-Project-Members, 2004;

NEEM community members, 2013; Taylor et al., 1997). The

relatively high annual snowfall rate of 22 cm ice equivalent

per year and the thick ice enable the development of a long

annual-layer-based timescale.

A previous chronology, WDC06A-7 (WAIS Divide

Project Members, 2013), was constructed mainly by in-

terpreting the seasonal variations of the electrical proper-

ties of the ice and for some sections also the ice chem-

istry (Fig. 1). This chronology, WD2014, supersedes that ef-

fort by considering additional, seasonally varying parameters

over larger sections. The WD2014 chronology is validated

by comparison to the tree-ring-based IntCal13 (Reimer et

al., 2013) and the U–Th-decay-based Hulu Cave chronology

(Edwards et al., 2016), which are absolutely dated chronolo-

gies with small uncertainties. WD2014 extends to 31.2 ka BP

(thousands of years before present, with present defined as

1950 CE) and provides the WAIS Divide ice core with a

timescale that has a similar resolution and accuracy to that of

the deep Greenland ice cores (e.g. the layer-counted Green-

land Ice Core Chronology, GICC05). For ages older than

31.2 ka, we are no longer confident that we can identify all

the annual layers. Thus, below 2850 m, WD2014 is dated by

stratigraphic matching of methane as described in the com-

panion paper of Buizert et al. (2015).
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Figure 1. Overview of the data sets used for development of WAIS

Divide annual-layer dating chronologies. Left: depth and age in-

formation for the WAIS Divide aerosol records obtained at the

Desert Research Institute (DRI) and South Dakota State Univer-

sity (SDSU), and ECM–DEP (electrical conductivity measurement–

dielectric profiling) data used to establish the new WD2014

chronology. Right: data sets used for development of the previous

WDC06A-7 chronology. Also shown is the position of the acidity

anomaly (17.8 ka event), a major chronostratigraphic age marker

across West Antarctica (Hammer et al., 1997; Jacobel and Welch,

2005). Aerosol data below 2300 m (> 15 ka) are from insoluble par-

ticle measurements (i.e. dust) only.

2 Methods

2.1 Measurements

The physical characteristics of the ice and the character of

the annual layers vary with depth, which results in different

data sets and methods being better suited to identify the an-

nual layers at different depths. The following is a discussion

of the measurement methods. The measurements relevant to

this work and their corresponding effective measurement res-

olution are listed in Table 1.

2.1.1 Continuous flow chemical measurements

The Desert Research Institute (DRI) Ultra Trace Chemistry

Laboratory makes continuous and simultaneous measure-

ment with high depth resolution for many chemical ele-

ments, black carbon, dust and water isotopes in ice cores us-

ing a black carbon (BC) and trace element continuous flow

Clim. Past, 12, 769–786, 2016 www.clim-past.net/12/769/2016/
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Table 1. Data used in the construction of the WD2014 ice core chronology.

Depth interval (m) Analytical Speciesa Estimated effective

technique resolution (mm)

0–577 BC-TE-CFA Na, S, Sr, BC, Br 10–20

577–1300 CFA-IC/ IC Na+, SO2−
4

, NO−
3

25

DEP H+(and others) 5

1300–2300 BC-TE-CFA Na, S, Sr, BC, Br, NH+
4

, Mg 10–20

ECM H+ 2

2300–2712 ECM H+ 2

(BC-TE-CFA)b insoluble particle count 5

2712–2850 ECM H+ 2

BC-TE-CFA insoluble particle count 5

a Displayed are only species used for annual-layer dating. b The section between 2421 and 2427 m characterized by

enhanced acid deposition (17.8 ka event) was annually layer dated using the insoluble particle count obtained from a

reanalysis of a secondary longitudinal ice core section performed at the Desert Research Institute with an improved

analytical set-up of the BC-TE-CFA similar to that for the ice core sections below 2712 m.

analysis (BC-TE-CFA) system (McConnell, 2002, 2010;

McConnell and Edwards, 2008; McConnell et al., 2007,

2014; Pasteris et al., 2014a, b). With BC-TE-CFA analy-

ses, longitudinal samples of ice core (cross-sectional area

of 3.3 cm× 3.3 cm and length of ∼ 100 cm) were melted se-

quentially, with the meltwater stream split into three regions.

Meltwater from the innermost ring is used for inductively

coupled plasma mass spectrometry (ICP-MS) using two par-

allel instruments (Element 2; Thermo Scientific) and for

BC mass and particle size distribution measurements using

a laser-based instrument (SP2; Droplet Measurement Tech-

nologies) (Schwarz et al., 2006) coupled to an ultrasonic neb-

ulizer (A5000T; Cetac; Bisiaux et al., 2012; McConnell et al.,

2007). Meltwater from the middle ring is used for traditional

continuous flow measurements of nitrate, liquid conductiv-

ity, ammonium, and pH (Pasteris et al., 2012; 2014b). Anal-

yses of aerosols are complemented by addition of a laser-

based particle counter (Abakus; Klotz) into the melt stream

that quantifies size-resolved aerosol mass (Ruth et al., 2003).

Measurements used in this study are from four analysis cam-

paigns taking place between 2008 and 2014, with small ad-

ditions and improvements applied to the analytical set-up

over this timespan. Modifications, for example, resulted in

improved resolution of the insoluble particle concentration

data below 2711 m (> 28 ka) that allowed a joint annual-layer

interpretation in combination with the ECM (electrical con-

ductivity measurement) record. About 15 % of the core at

regularly spaced intervals was rerun using duplicate samples

of ice, to provide a check on issues that might adversely in-

fluence the data quality over the 6-year period in which mea-

surements were made.

At ice melt rates of approximately 5 cm min−1, the sys-

tem achieved a depth resolution for most analytes of approx-

imately 1–2 cm in ice and > 2 cm in low-density firn due to

larger signal dispersion. High sampling resolution (in combi-

nation with high annual snowfall rates) permits detection of

annual cycles in impurity data (Table 1; Fig. 1), a prerequisite

for precise annual dating of ice core records (Rasmussen et

al., 2006; Sigl et al., 2013). The BC-TE-CFA system is well

suited for ice samples that are long continuous pieces. De-

pending on how the instruments were configured, the annual

layers had to be thicker than 2.5 cm (dust; resolution approx-

imately 0.5 cm; used below 2711 m depth; see Fig. 1) or 7 cm

(all other parameters) to be confidently identified.

2.1.2 Discrete chemical measurements

Between about 577 and 1300 m depth, the ice was brittle due

to stress in the ice–air bubble matrix (the brittle ice zone)

and the quality of the ice core was reduced. Ice core sample

quality was rated poorest between 1000 and 1100 m depth,

corresponding to an age interval of 4.3–4.9 ka (Souney et

al., 2014). Where sample quality permitted, measurements

of trace chemical impurities were performed online with a

continuous flow analysis system with ion chromatography

detection (CFA-IC) at the Trace Chemistry Ice Core Lab-

oratory at South Dakota State University (Cole-Dai et al.,

2006). This technique consists of an ice core melter linked to

a group of eight ion chromatographs (four Dionex DX-600

for anion detection, four Dionex ICS-1500 for cation detec-

tion). Longitudinal samples of ice core (cross-sectional area

of 3.5 cm× 3.5 cm) were melted sequentially at an ice melt

rate of about 2.4 cm min−1, with the meltwater stream from

the inner zone feeding the IC instruments. This analytical

technique has previously been applied to various ice cores

from Antarctica and Greenland, achieving reproducible re-

sults in agreement with discrete measurements (Cole-Dai et

al., 2009, 2013; Ferris et al., 2011; Jiang et al., 2012). The

CFA-IC set-up used for the WD analysis provided major-ion

analysis and can resolve annual layers in the brittle ice zone

of WD (Table 1; Fig. 1). Where sample quality did not permit

the use of the online continuous technique (38 % of the depth

interval), discrete samples were individually decontaminated

www.clim-past.net/12/769/2016/ Clim. Past, 12, 769–786, 2016
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and analysed using traditional IC techniques (Cole-Dai et al.,

2000).

2.1.3 Electrical measurements

Seasonal variations of the ice chemistry influence the electri-

cal conductivity of the ice, which allow electrical measure-

ments to detect annual layering (Hammer, 1980; Taylor et

al., 1997). Three types of electrical measurements were em-

ployed. In the brittle ice, dielectric profiling (DEP) was used

because it is insensitive to close-fitting fractures and the low

spatial resolution was not a concern because the annual lay-

ers were thicker than 15 cm. For the remainder of the core,

two types of electrical conductivity measurements were used:

alternating current (AC-ECM) and direct current (DC-ECM).

The AC-ECM is primarily controlled by the acidity but also

responds to other ions (Moore et al., 1992), and it can identify

annual layers thicker than 2 cm. The DC-ECM is controlled

by the acidity of the ice. The data quality of the DC-ECM

was improved by making multiple measurements along the

core, which made it possible to avoid the adverse influence

of many fractures in the core. DC-ECM has the highest spa-

tial resolution of all the measurements described here and

can identify annual layers that are thicker than 1 cm (Taylor

et al., 1997).

2.1.4 10Be measurements

10Be concentrations for the WAIS Divide ice core for sec-

tions 0–577 and 1191–2453 m depth were measured at UC

Berkeley’s Space Sciences Laboratory and Purdue’s PRIME

Laboratory (Woodruff et al., 2013). Sampling resolution var-

ied from 1.9 to 4.2 m, but samples typically represented con-

tinuous ice core sections of 3 m length. The time resolution

of each sample ranged from 10 to 30 years for the past 12 kyr.
10Be / 9Be ratios of all samples were measured by accelera-

tor mass spectrometry (AMS) and normalized to a 10Be AMS

standard (Nishiizumi et al., 2007). 10Be concentrations in the

ice and the 14C content in tree rings are both influenced by

the varying flux of cosmic rays; hence, 10Be measurements

provide a link between the ice core and tree-ring chronolo-

gies (Muscheler et al., 2014).

2.2 Seasonality in aerosol deposition

Most of the aerosol records from WAIS Divide show strong

seasonal variations due to seasonality in aerosol source

strength and transport efficiency, and these seasonal signals

can be used to detect annual layers (Banta et al., 2008; Sigl

et al., 2013). For example, Southern Hemisphere forest and

grass fires usually peak during a confined burning season fol-

lowing the meteorological dry period driven by seasonal in-

solation changes (Bowman et al., 2009; Schultz et al., 2008;

van der Werf et al., 2010), and aerosols emitted by these

fires (e.g. black carbon) get transported and deposited on the
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Figure 2. Average annual cycle computed for WAIS Divide ECM

record and aerosol records of Na, nssS, and BC for a 1000-year

period centred over the early Holocene (10–11 ka; thin line) and

Antarctic Cold Reversal (ACR; 13–14 ka; bold line). Shown are

average monthly values for two complete annual cycles assuming

constant snowfall distribution throughout the year. The month 0 is

equivalent to the position of our annual-layer boundaries (nominal

January first), broadly consistent with the minimum in [Na]. Un-

certainty bars are 1σ standard error of the mean. Average WAIS

Divide annual-layer thickness for the investigated time intervals is

10.0± 1.6 cm a−1 (Holocene) and 9.2± 1.4 cm a−1 (ACR).

Antarctic ice sheet (Bisiaux et al., 2012) with peak concen-

trations in austral autumn.

A typical annual layer at WAIS Divide is characterized by

a concentration maximum of biomass burning tracers (e.g.

BC, NH+4 ) in austral autumn, a maximum of sea-salt depo-

sition (e.g. Na, Cl) during austral winter, and a maximum of

marine biogenic aerosol emission tracers (e.g. S, Br) in late

austral summer (Fig. 2). Dominant sources, absolute con-

centrations, and relative timing of deposition of the various

aerosols are, however, not stationary through time (Fischer

et al., 2007; Wolff et al., 2010). Concentrations and fluxes of

Ca, Mg, and insoluble particles, for example, are low dur-

ing the Holocene and are dominated by a sea-salt source

(indicated by co-deposited Na and Cl), whereas during the

Antarctic Cold Reversal (ACR; Fig. 2) and during the glacial

(Fig. 3) concentrations and fluxes at WAIS Divide are of-

ten higher by 1 order of magnitude and dominated by conti-

nental dust sources (as indicated by co-deposited dust trac-

ers such as V, Cr, and Ce). In contrast, BC concentrations at

WAIS Divide are driven by a constant single source – natu-

ral forest and savannah fires in the Southern Hemisphere –

but Holocene concentrations are more than twice as large as

during the late glacial period (Fig. 2).

Some aerosol (e.g. non-sea-salt sulfur, nssS) and electri-

cal measurements have pronounced seasonal cycles that are

occasionally obscured by acids from volcanic eruptions. A

multi-parameter approach to the interpretation of annual lay-

ers can reduce the challenges of correctly identifying layer-
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Figure 3. Average annual cycles for WAIS Divide aerosol records

similar to Fig. 2, but for a 1250-year period between the onset

of Dansgaard–Oeschger (DO) events 3 and 4 (i.e. 28.1–29.4 ka),

as determined from the WAIS Divide CH4 record (Buizert et al.,

2015). Shown are average monthly values for two complete annual

cycles (January: month 1) assuming constant snowfall distribution

throughout the year. Uncertainty bars are 1σ standard error of the

mean. Average WAIS Divide annual-layer thickness for this interval

is 3.4± 0.7 cm a−1.

ing in such sections where the seasonal signal in one param-

eter is overprinted by influx caused by an abnormal event.

2.3 Interpretation of individual layers

The chemical and electrical measurements discussed above

contain a record of annual layers. To develop the depth–age

relationship for the core, three different methods were used

to identify the annual layers and thereby determine the age of

the ice. Manual interpretation of the data was done by multi-

ple individuals to identify the individual layers. This method

is labour intensive, subjective, and can be prone to both

short-term and long-term inconsistences (Alley et al., 1997;

Muscheler et al., 2014; Sigl et al., 2015). Given the flexibility

of a manual approach, manual interpretation may nonethe-

less be the best method for interpreting time periods with an

irregular or weak expression of the seasonal cycle (see Sup-

plement, Figs. S1, S2). Two computer algorithms were also

used to identify the annual layers. The StratiCounter algo-

rithm (downloadable from https://github.com/maiwinstrup/

StratiCounter) uses methods from hidden Markov models

(HMMs) and is adapted from machine speech recognition

methods (Winstrup et al., 2012; Winstrup, 2016). The sec-

ond method uses selection curves (McGwire et al., 2011),

followed by manual adjustments in infrequent irregular sec-

tions. Both methods mimic the thought process of a human

making a manual interpretation. The computer algorithms re-

quire less effort and can provide a more objective interpre-

tation (Sigl et al., 2015). They are, however, better suited

for time periods with a consistent and clear annual signal.
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Figure 4. Example of a 3 m long ice core section within the WAIS

Divide brittle ice zone (approximately 4400 years BP), a section

for which ice core sample quality was rated poorest (Souney et al.,

2014). WD2014 annual-layer markers (triangles with grey lines) are

indicated. Annual layers are identified by summer and winter trac-

ers: winters are characterized by maxima in [Na+]; summers are

characterized by maxima in [NO−
3

], [nss-SO2−
4

] and corresponding

DEP maxima. Also shown is the ratio of [nss-SO2−
4

] / [Na+].

The computer algorithms are less subjective than the manual

method, but when the layering becomes difficult to interpret

(e.g. during the ACR), the algorithms have to be adjusted

to produce acceptable results, and these adjustments are also

subjective.

The StratiCounter algorithm uses its inferred layering to

optimize the layer description as function of depth, resulting

in relatively few adjustable parameters. The two main inputs

to the StratiCounter runs were (a) a selection of depth inter-

val for initializing the algorithm based on a preliminary set

of manual layer counts, thus providing the general pattern

of seasonal influx of the various chemical species, and (b) a

decision on whether the percentage-wise variability of layer

thicknesses should be allowed to change freely with depth.

The algorithm was initialized using representative sections

for the different climate periods (Supplement Table S1). For

the upper part, the data contained sufficient information for

the algorithm to perform well when self-selecting all parame-

ters used for modelling the layer shapes. For the deepest part

(2711–2800 m), however, it was necessary to prescribe the

percentage-wise variability of individual layer thicknesses.

Examples of typical WAIS Divide aerosol records for var-

ious depth intervals are presented in Figs. 4–7. Typically,

the minimum values of Na, the maximum values of ECM,

nssSO2−
4 , or nssS /Na were used to identify austral summer

(nominal January) in the impurity records. The timing of the

maximum values of these impurity records was, however, not
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constant through time and therefore not exactly the same be-

tween the different subsections (Figs. 2–3).

The methods used to identify the annual layers changed

with depth because the characteristics of the annual sig-

nal changed with time, the quality of the ice changed with

depth, and the annual-layer thickness decreased with depth

due to ice flow. However, in contrast to the Greenland deep

cores, most of these changes took place relatively slowly with

depth, which facilitated consistent layer counting. The fol-

lowing is a description of the interpretation methods used in

different depth intervals.

2.3.1 Section 0–577 m (0–2345 yr BP)

In this section the high quality of the ice and thick annual

layers (> 15 cm) favoured the use of the DRI continuous flow

measurements. The previous WDC06A-7 timescale was sus-

pected of being in error by 7 years for ages older than 700 CE

because of a consistent delay of tree-ring-based surface tem-

perature cooling events with respect to ice-core-based vol-

canic forcing (Baillie, 2008, 2010; Baillie and McAneney,

2015). We revised the dating of the upper 577 m of the WAIS

Divide core by applying the StratiCounter algorithm (Win-

strup et al., 2012) using six records of Na, nssS, nssS /Na,

Sr, BC, and Br. The algorithm was used between 188 m (cor-

responding to the depth of the Samalas 1257 CE volcanic ice

core sulfur signal) and 577 m depth. The layer-detection al-

gorithm used all six parameters in parallel for the layer in-

terpretation and thus produced a multi-parameter timescale

based on these (Sigl et al., 2015). The annual layers were

generally very clear, allowing the algorithm to be run au-

tonomously and without any added constraint; manual rein-

terpretation of the layer counts was not required.

2.3.2 Section 577–1300 m (2345–6009 yr BP; brittle ice

zone)

For the brittle ice, where drilling fluids may have penetrated

the ice through internal cracks, it is more difficult to obtain

undisturbed and uncontaminated high-resolution chemistry

records. The fractures precluded using the DRI continuous

flow chemistry system, and measurements were instead made

at South Dakota State University. Ice with many fractures

was measured with discrete samples, while ice with few frac-

tures was measured using continuous flow analysis (Cole-Dai

et al., 2006).

Manual interpretation of annual layers was performed with

non-sea-salt sulfate (nssSO2−
4 ) as the primary parameter and

using Na+ and NO−3 as secondary parameters (Fig. 4). When

establishing WDC06A-7 (WAIS Divide Project Members,

2013), the independent DEP data set was used, with the an-

nual layers initially identified with the selection curve algo-

rithm (McGwire et al., 2011) subsequently manually verified

or rejected. An initial reconciliation by one interpreter of the

multi-parameter chemistry and DEP was performed. This in-

Figure 5. Example of a 2.5 m long ice core section of WAIS Divide

(approximately 9900 years BP) with annual-layer markers (trian-

gles with grey lines) indicated. Annual layers are here identified by

matching pairs of winter, spring, and summer tracers. Summers are

characterized by maxima in [nss-S] and corresponding ECM max-

ima; autumn is indicated by maxima in [BC] from biomass burning,

whereas the [Na] records show maxima in winter. Also shown is the

ratio of [nss-S] / [Na].

terpretation was re-examined once the tendency for the ECM

to overcount was discovered by comparison to the multi-

parameter measurements (WAIS Divide Project Members,

2013) and after the comparison of 10Be and 14C showed the

interpretation to have more years than the tree-ring timescale

(see Sect. 3.1). A consensus decision was then obtained by

two investigators using both data sets. The StratiCounter al-

gorithm was not run for this interval because the character

of the data (i.e. discrete vs. continuous measurements) is fre-

quently changing. This is the first time annual layers have

been identified in chemistry data through the brittle ice zone,

which occurs in all deep ice cores.

2.3.3 Section 1300–1940 m (6009–11 362 yr BP)

Below 1300 m core quality was excellent and we used

records obtained by the DRI continuous flow system. The

average layer thickness remained above 10 cm and the an-

nual cycles were well resolved in all parameters (Fig. 5).

The primary aerosol records used were BC, nssS, Na, and

nssS /Na. The aerosols were interpreted both manually and

with the StratiCounter algorithm. Any differences between

the manual, StratiCounter, and ECM interpretations were in-

vestigated by three interpreters and a consensus was reached.

We outline in the Supplement (Figs. S1, S2) two specific case

studies (Holocene vs. Late Glacial) in which we describe in

detail how consensus was reached on the basis of the three

Clim. Past, 12, 769–786, 2016 www.clim-past.net/12/769/2016/
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Table 2. Constructing the WD2014 ice core chronology: annual-layer interpretation results using various data and interpretation techniques.

N/A ice core section was not annually dated with the respective dating method or data.

Depth interval (m) 0–577 577–1300 1300–1940 1940–2020a 2020–2274 2274–2300 2300–2711 2711–2800 2800–2850

Bottom age (yr BP) 2345 6009 11 362 12 146 14 980 15 302 26 872 29 460 31 247

Mean annual-layer thickness λ (cm) 24.0 19.7 12.0 10.2 9.0 8.1 3.6 3.4 2.8

N
u
m

b
er

an
n
u
al

la
y
er

s
(r

el
.
to

W
D

2
0
1
4
)

Interpretation method

Consensus decision 2402 3664 5353 784 2834 322 11 570 2588 1787

I ECM Selection N/A 3704 5396 N/A 2855 322 11 567 2585 N/A

curve +40 +43 +21 0 −3 −3

(1.1 %) (0.8 %) (0.7 %) (0.0 %) (0.0 %) (−0.1 %)

II Aerosols Manual 2415 3668 5368 N/A 2843 321 N/A N/A N/A

+13 +4 +15 +9 −1

(0.5 %) (0.1 %) (0.3 %) (0.3 %) (−0.3 %)

III Aerosols StratiCounter 2402b N/A 5323 768 2645 N/A N/A 2649c N/A

0 −30 −16 −189 +61

(0 %) (−0.6 %) (−2.0 %) (−6.7 %) (+2.4 %)

a The depth interval from 1940 to 2020 m was originally interpreted by using the combined aerosol and ECM data sets (WAIS Divide Project Members, 2013) . b The StratiCounter algorithm was run starting from

188 m depth (1256 CE), with the uppermost part of the WDC06A-7 timescale being adopted as is. c This section is based only on particle concentration data from the aerosol data set.

individual layer interpretations resulting from the three dif-

ferent interpretation methods.

2.3.4 Section 1940–2020 m (11 362–12 146 yr BP)

For this interval, a multi-parameter (aerosol and ECM) in-

terpretation had already been performed for the WDC06A-7

timescale to confirm the observed sharp rise in annual-layer

thickness (WAIS Divide Project Members, 2013). To esti-

mate the reliability of the layer counting, the StratiCounter

algorithm was also run on this interval using the multi-

parameter aerosol data set (Table 2), which reconfirmed this

rise in layer thicknesses. The WD2014 interpretation is un-

changed from WDC06A-7 since it was based on the larger

data set of both ECM and aerosol records.

2.3.5 Section 2020–2300 (12 147–15 302 yr BP)

The average annual-layer thickness during this interval was

less than 10 cm (Fig. 8), making it more difficult to con-

fidently identify all annual layers using the DRI continu-

ous aerosol data (Fig. 6). The ECM retained sufficient mea-

surement resolution. Thus, the interpretation relied upon the

ECM records more than at shallower depths. The Strati-

Counter algorithm was only run to 2274 m depth because

we noticed that the number of annual layers detected by the

StratiCounter started to slowly drift away from the other two

interpretations (Table 2), which we believe to be an arte-

fact arising from the lower time resolution of the data below

2000 m (Fig. S2).

2.3.6 Section 2300–2711 m (15 302–26 872 yr BP)

In this depth interval, the aerosol records did not have suf-

ficient depth resolution for reliable identification of the an-

nual signal so the annual-layer interpretation is based solely

Figure 6. Example of a 2 m long ice core section of WAIS Divide

(approximately 14 700 years BP) with annual-layer markers (trian-

gles with grey lines) indicated. Similar to Fig. 5, annual layers are

identified by matching pairs of winter, spring, and summer tracers.

[Na] and [nss-S], determined by inductively coupled plasma mass

spectrometry (ICPMS), do not always show clear annual cycles in

this section with an average layer thickness of 8 cm a−1, thus lim-

iting their use for annual-layer dating in the deeper part of WAIS

Divide. Annual layers are identified here using the autumn maxima

in [BC] and the summer maxima in the ECM record.

on ECM data. The interpretation was not changed from

WDC06A-7 because (a) the ECM interpretation agreed well

with the consensus interpretation between 2020 and 2300 m

(Table 2), (b) it agreed well with the dust data between 2711

and 2800 m (Table 2), (c) the age comparison in the glacial

period (Sect. 3.2) showed no significant bias, and (d) the 1 %

www.clim-past.net/12/769/2016/ Clim. Past, 12, 769–786, 2016
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bias identified during the Holocene is not directly applicable

to the full length of the ice core due to the different char-

acter of the annual signal in ice from the glacial and glacial–

interglacial transition. Although atmospheric dust burden and

deposition flux over Antarctica were higher in the glacial

than in the Holocene (Fischer et al., 2007), with short-term

dust deposition events noticed to occasionally obscure the

ECM signals (Fig. S2), we, however, note that the compara-

ble small dust input does not significantly change the shape

or seasonality of the ECM signal driven by acidity input. This

is best visualized in the opposing maxima of the ECM (aus-

tral summer maximum) and dust (austral winter maximum)

mean annual cycles during the Glacial (Fig. 3).

The only period of reinterpretation is for 2421.75 and

2427.25 m depth, corresponding to a period of enhanced

acid deposition at WAIS Divide that forms a distinctive

horizon and prominent radar reflector across West Antarc-

tica (Hammer et al., 1997; Jacobel and Welch, 2005). Dur-

ing this approximately 200-year-long deposition event, the

annual-layer dating was based on dust particle concentra-

tions. The additional measurements were made using a sec-

ond stick from the main core and a modified analytical set-up

with increased measurement resolution of the Abakus parti-

cle counter. Annual layers in the dust were identified using

the automated interpretation from the selection curve algo-

rithm (McGwire et al., 2011) with manual adjustments that

included the ECM data during periods without volcanic acid

deposition.

2.3.7 Section 2711–2800 m (26 872–29 460 yr BP)

In this section of the core, the DRI continuous analytical sys-

tem was modified to increase the resolution of the particle

counter measurements. This allowed insoluble particle con-

centration data to also be used as an indicator of annual layers

between 2711 and 2800 m depth. These data were interpreted

with the StratiCounter algorithm and compared to the inter-

pretation of the ECM based on the selection curve algorithm.

The final timescale was mostly found by adopting the pre-

vious interpretation of the ECM data, but the particle record

with the StratiCounter layer interpretation was used to make

manual adjustments when the ECM layer signal was ambigu-

ous.

2.3.8 Section 2800–2850 m (29 460–31 247 yr BP)

The annual-layer interpretation was extended using the ECM

data past the 2800 m stopping depth of WDC06A-7. Parti-

cle concentration data were also interpreted with the Strati-

Counter algorithm, but the results were deemed unreliable

with too few layers being identified, likely due to too low res-

olution of the record. Layer interpretation in the ECM data

below 2850 m became increasingly difficult. This difficulty

in interpreting the annual cycles appears to be driven by a

lack of amplitude in the annual cycle as well as decreasing

Figure 7. Example of two 0.8 m long ice core sections of WD from

(a) approximately 29 500 and (b) 29 700 years BP, with annual-

layer markers indicated. Annual layers are here identified by match-

ing pairs of winter and summer tracers. Summers are characterized

by ECM maxima. Winters are indicated by maxima in dust depo-

sition derived from the WD insoluble particle concentration record

using the particle size range < 1.2 µm typical for dust transported

over large distances. Dust concentrations are shown on a logarith-

mic scale. Also shown is an example (2801 m) of how dust input can

mask annual cycles in the ECM record by neutralizing acids present

in the snowpack that are usually responsible for the annual cycle

observed in electrical properties in the ice (a). The insoluble dust

record provides confident and independent information on annual

layering at WAIS Divide, also in the presence of acidity excursions

caused by large volcanic eruptions as indicated by a 4-year-long

period of increased acidity content centred at 2806.6 m depth (b).

layer thickness below 2850 m. Although an annual-layer sig-

nal appears to be present in the ECM data in much of the

interval from 2850 to 3100 m, we were not confident that all

annual layers could be identified and we therefore terminated

the annual-layer interpretation (see Fig. S3).

By combining the annual-layer counting from the eight

depth intervals discussed above, we obtained the new annual-

layer counted chronology (WD2014) that spans the past

31 247 years BP. The resulting depth–age scale and inferred

annual-layer thickness profile are shown in Fig. 8. The layer

thicknesses stay above 9 cm down to 2250 m (age: 14 694

years BP), after which depth the layers relatively quickly de-

crease to a relatively stable level of ∼ 3 cm at 2500 m (age:

20 031 years BP). This level is maintained back to 2850 m,

where we stopped the layer interpretation. In comparison

to the Greenland ice cores, however, which show abrupt

Clim. Past, 12, 769–786, 2016 www.clim-past.net/12/769/2016/
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Figure 8. Depth–age profile for WAIS Divide and evolution of the

annual-layer thickness (λ) for the annual-layer-dated part of the

WD2014 chronology.

changes in layer thickness over this period with large transi-

tions in the climate system, the decrease in layer thicknesses

around 14.7 ka still takes place very gradually.

2.4 Timescale uncertainty

When establishing ice core chronologies by annual-layer in-

terpretation, various sources contribute to uncertainty in the

resulting timescale (see discussion in Andersen et al., 2006;

Rasmussen et al., 2006). Uncertainty can be assigned to two

primary causes. First, uncertainty associated with the ability

of the ice core records to preserve the seasonal variations as

annual layers. Second, uncertainty associated with correctly

interpreting the annual layers preserved in the records.

The uncertainty associated with ability of the ice core

records to preserve the annual signal occurs for several rea-

sons. The primary concern is a season with abnormal weather

(e.g. an exceptionally mild winter or short summer) that pre-

vents the robust recording of the seasonal variations. Gaps

in the data records due to low ice core quality or failure of

the measurement process are negligible and have been min-

imized by the use of independent measurements and data

sets. During multiyear volcanic eruptions the seasonal sig-

nal in some chemical and electrical records is compromised,

but the black carbon recorded the annual signal because it is

only influenced by biomass burning on a hemispheric scale.

The uncertainty associated with the ability to correctly in-

terpret the annual layers occurs because a small percentage of

the features in the records can be interpreted in several ways.

To overcome this we used records indicative of multiple as-

pects of the climate system (dust, black carbon from biomass

burning, nssS–Na, electrical conductivity), and we used mul-

tiple interpretation methods (machine-assisted interpretation

and multiple manual interpreters). The vast majority of an-

nual layers was clearly visible in at least one data set, but in

some cases multiple interpretations were possible.

It is not possible to rigorously calculate the uncertainty

of the depth–age relationship for the WAIS Divide core. Al-

though there are multiple parameters that express the annual

signal, and multiple methods to interpret the annual signal,

they all rely on an ice sample from the same 12 cm diame-

ter cylinder from the ice sheet. We have higher confidence in

depth intervals where all layer interpretations were consistent

and layers appeared well resolved by the measurements. We

have lower confidence deeper in the core where ice flow has

thinned the layers to such extent that they are approaching the

ability of the measurements to resolve them. For example, in

the upper part of the ice core, all aerosol records showed clear

peaks and troughs between neighbouring maxima (Figs. 4, 5,

S2); in the lower part of the core, layer boundaries in some

aerosol records (e.g. nssS, Na) were occasionally only recog-

nizable by small inflections in the concentration data (Figs. 6

and S2).

For the GICC05 timescale, ambiguous layers were identi-

fied and used to estimate uncertainty in the annual-layer in-

terpretation. Each “uncertain” annual layer was counted as

0.5± 0.5 years, and the half-year uncertainties were summed

to determine a “maximum counting error” estimated to repre-

sent a 2σ age uncertainty (Andersen et al., 2006; Rasmussen

et al., 2006; Svensson et al., 2006). We did not take this ap-

proach because (1) it assumes that the ice core records the

seasonal variations without any bias towards recording too

many or too few layers, (2) it assumes that the interpretation

errors are equally split between too many and too few years,

and (3) classifying the interpretation of specific individual

layers as “uncertain” adds another subjective judgement to

the interpretation process.

We can determine the reproducibility of the interpreta-

tion by comparing manual interpretations made by differ-

ent people and by the machine-assisted interpretations. This

approach cannot be used to rigorously determine the un-

certainty of the age–depth relationship because investiga-

tors conducting the interpretations influence each other when

they discuss their general approach to interpreting layers, and

they also determine the rules used in the machine interpreta-

tions. Furthermore, this approach only considers the inter-

pretation uncertainties and does not include the uncertainty

associated with years that might not be recorded in the core.

A comparison of different interpretations is given in Table 2.

From 0 to 577 m depth, the StratiCounter-based WD2014

ages are younger than the manually derived WDC06A-7

ages by a maximum of 14 years, confirming the existence

of a dating bias (Baillie and McAneney, 2015; Sigl et al.,

2015) in the previous chronology. In the brittle ice section

(577–1300 m), the number of annual layers derived using

the multi-parameter aerosol records was 3668, which is 36

years (1 %) less than obtained using the DEP record. An ini-

tial reconciliation by one interpreter of the multi-parameter

and DEP records found a total of 3690 years. After re-

examination, the consensus decision resulted in 3664 annual

layers, which closely followed the original aerosol interpre-

tation. The StratiCounter algorithm was not run on this data

set.

From 1300 to 1940 m, 5368 annual layers were manually

identified in the multi-parameter aerosol records, 5323 an-
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nual layers were identified by the StratiCounter algorithm

on the same data set, and 5396 annual layers were identified

with the ECM. The consensus decision resulted in 5353 an-

nual layers, slightly less (0.3 %) than the manual aerosol in-

terpretation, about 0.6 % more than the StratiCounter-based

interpretation, and about 0.8 % less than the ECM-based in-

terpretation.

For the section 1940–2020 m, the multi-parameter (aerosol

and ECM) WDC06A-7 interpretation was compared with

the StratiCounter interpretation based on the multi-parameter

aerosol data set, which had a net difference of 16 fewer years

(2 %) in the interval. From 2020 to 2274 m, the consensus de-

cision found 2834 years, which was 0.3 % less than the man-

ual aerosol interpretation and 0.7 % less than the ECM in-

terpretation. The StratiCounter interpretation found a much

smaller number of 2645 years (7 % less). At these depths,

the annual-layer thickness is near the resolution limit of the

aerosol measurements and thin years were not well resolved.

The StratiCounter algorithm seemed to miss the small ex-

pression of these layers, especially where volcanic eruptions

caused disruptions of the annual-layer signal in multiple data

series simultaneously. As volcanic peaks tend to obscure the

annual signal in subsequent years, this may lead to some an-

nual layers not being counted by StratiCounter.

Between 2200 and 2300 m depth, the total number of an-

nual layers based on manual interpretation from aerosols and

ECM agreed within a few years. The aerosol layer interpreta-

tion became increasingly difficult, and we stopped interpret-

ing the multi-parameter aerosol records at 2300 m depth.

For the intervals from 2300 m to 2711 m, and between

2800 and 2850 m, where only the ECM data resolve annual

layers, there is no way to test the interpretation repeatability.

In sections where only ECM data were available for dating,

the duration of volcanic events was dated under the assump-

tion of constant annual-layer thickness, thereby resulting in

less confidence in the layer interpretation.

Between 2711 and 2800 m, improved resolution of the par-

ticle concentration data allowed a comparison between layer

counts based on the ECM and particle concentration records.

StratiCounter layer counts based on the particle concentra-

tion data identified 2649 layers, which was 2 % more than

the ECM-based counts.

3 Comparison to other timescales

The interpretation repeatability in Table 2 and described

above is not a measurement of the accuracy of the chronology

over long time periods, since over longer sections, the layer

interpretation uncertainties are expected to partially cancel

out assuming the absence of any consistent bias (e.g. Ras-

mussen et al., 2006). To assess the accuracy of WD2014

we need to compare it to other chronologies with high ac-

curacy and defined uncertainty. We have selected the tree-

ring-based radiocarbon calibration chronology (Reimer et

al., 2013; Friedrich et al., 2004) and the Hulu Cave chronol-

ogy (Edwards et al., 2016). The tree-ring chronology was se-

lected because it is considered to have virtually no age un-

certainty, at least for the well-replicated time interval with

high sampling coverage from present to 11.5 ka (Friedrich

et al., 2004). For ages older than 25 ka, we use the Hulu

Cave chronology because the radiometric dating yields small

(∼ 100 years) age uncertainties. We describe the age com-

parisons to these two records below and then assess the age

accuracy for the full WD2014 timescale. We also compare

WD2014 to GICC05, but since the GICC05 absolute un-

certainties are large and may be underestimated during the

Holocene and at the end of the glacial transition (Muscheler

et al., 2014; Lohne et al., 2013, 2014), we do not use this

comparison to develop estimates of the WD2014 timescale

accuracy.

3.1 Comparison to tree-ring chronologies

Solar variability leads to cyclic modulation of the magnetic

shielding of the Earth against galactic cosmic rays, result-

ing in changes in the production rates of the cosmogenic ra-

dionuclides 14C and 10Be, which are both produced in the

upper atmosphere and incorporated into tree rings and ice

cores, respectively. These globally synchronous variations

provide a means to compare the timescales of the two proxy

series by comparing ice core 10Be records with 14C pro-

duction rates obtained from tree-ring 14C analysis and car-

bon cycle modelling (e.g. Adolphi et al., 2014; Muscheler

et al., 2014). Matching cosmogenic isotope records between

proxy archives has a long tradition, with numerous appli-

cations existing in climate and solar sciences as well as in

geochronology (Adolphi et al., 2014; Finkel and Nishiizumi,

1997; Muscheler et al., 2008; Raisbeck et al., 2007; Stein-

hilber et al., 2012).

The new WD2014 timescale is consistent with indepen-

dent tree-ring chronologies over the past 2400 years as

demonstrated by 10Be analysis obtained from WAIS Divide

(Sigl et al., 2015) for a short-lived cosmic ray anomaly de-

tected in tree rings in 775 CE (Miyake et al., 2012). Further-

more, ages for all major volcanic WAIS Divide sulfur sig-

nals are within ±3 years of corresponding signals from a

new NEEM ice core chronology over this period and from

Northern Hemisphere cooling events as indicated by sum-

mer temperature reconstructions from tree rings (Sigl et al.,

2015). Given the constraints from historic events, the close

correspondence between ages of major volcanic signals, and

events observed in tree-ring data, we estimate the uncertainty

envelope to be smaller than ±5 years for this period.

To assess the accuracy of WD2014 prior to 2.4 ka, we

compared WD2014 to the independent IntCal13 radiocar-

bon calibration curve (Reimer et al., 2013), which for ages

younger than 12 ka is based on the fully anchored, abso-

lutely dated European oak and pine chronologies (Friedrich

et al., 2004), which are considered to have no age uncertainty.
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Figure 9. Comparison to the independent chronology IntCal13. Up-

per panel: filtered 10Be (blue) and 14C (red) data on their respec-

tive timescales. Lower panel: most likely time shift (red line) for

the highly significant correlations together with the 2σ uncertainty

range inferred from the r2 distribution. Results are superimposed

on a WD2014 age uncertainty envelope using an absolute age un-

certainty of 0.5 % over most of the Holocene. For the most recent

2500 years we estimate the uncertainty envelope to be smaller than

±5 years (Sigl et al., 2015). Also shown is the difference between

the WAIS Divide chronologies (WDC06A-7 minus WD2014), indi-

cating consistently younger ages for WD2014. Ice corresponding to

the age interval 2.5–5.4 ka has not been sampled for 10Be.

Therefore, reliable stratigraphic ties between the ice core and

the tree-ring chronologies can assess the true age confidence

of the WD2014 timescale.

We compare relative changes in 10Be from WAIS Divide

and 14C from tree rings using a Monte Carlo approach with

a moving 2 kyr time window to objectively estimate the most

likely time shift for synchronization (Muscheler et al., 2014).

The method is described by Muscheler et al. (2014) and is

summarized here. We applied filters (Muscheler et al., 2014;

Vonmoos et al., 2006) to the cosmogenic isotope records to

extract only variations on timescales longer than 20 years.

To account for systemic carbon cycle influences on the at-

mospheric 14C concentration, we used a box-diffusion, car-

bon cycle model (Oeschger et al., 1975; Siegenthaler, 1983)

to reconstruct 14C production rates (p14C) from the tree-ring

measurements of atmospheric 14C (Reimer et al., 2013). For
10Be, we assumed an average 1-year delay between 10Be pro-

duction and deposition on the ice sheet and applied a 1-year

time shift to the 10Be ice core concentration data. The data

were de-trended by dividing the 10Be and 14C time series

by their 500-year low-pass curves, thereby focusing on time

periods between 20 and 500 years that show the most promi-

nent longer-term solar cycles. These records were then com-

pared to each other using a 2 kyr window at 100-year steps.

The data are varied within the range of measurement errors

(Monte Carlo approach) and within a time lag of up to +100

and −100 years between WD2014 and IntCal13. The agree-

ment between the radionuclide records is determined using

linear regression analysis. The time shift for the best correla-

tion (maximum r2 value) is considered to represent the most

likely time shift (i.e. “best fit”) for synchronization. The es-

timate of the uncertainty of this solution is derived from the

distribution of the best fits from all iterations, since different

best fits can be obtained for the different Monte Carlo real-

izations (Muscheler et al., 2014). Consistent with a suggested

error in the tree-ring chronology prior to 12 ka (Muscheler

et al., 2014), our stepwise regression analysis does not re-

trieve correlations with r2 > 0.2 between WAIS Divide 10Be

and IntCal13 14C prior to 11.2 ka. New radiocarbon mea-

surements on tree rings encompassing the Younger Dryas are

currently being undertaken to further improve the calibration

curve (Reimer et al., 2013; Hogg et al., 2013).

Figure 9 shows the results of the timescale comparison.

The upper panel shows de-trended and normalized records

for the ice core and tree-ring cosmogenic isotopes for the

past 12 kyr. The lower panel gives the age difference of the

timescales (IntCal13 minus WD2014) for the inferred “best

fit” and 95 % confidence interval derived from the Monte

Carlo approach. The close agreement at 6 ka is expected be-

cause the brittle ice section of WD2014 was re-evaluated

after an offset of a couple of decades to the tree-ring data

was observed following the initial reconciliation. However,

it should be noted that the final WD2014 age at 6 ka differs

only by 4 years from the original manual interpretation of

the multi-parameter aerosol records (Table 2). The maximum

timescale offset is observed at approximately 8 to 9 ka when

ice core ages appear to be relatively older by about 15 years.

At 11 ka, WD2014 ice core ages are younger than IntCal13

by approximately 10 years (Table 3).

3.2 Comparison to a speleothem chronology

Similar to the cosmogenic radionuclides produced in the at-

mosphere, methane also has a global signal and can be used

to synchronize ice core records between both hemispheres

(Blunier and Brook, 2001; Blunier et al., 2007) and to as-

sess differences in respective age models. Further, East Asian

monsoon regions – a major source area of global methane

emissions – are tightly linked to rapid temperature variability

in the North Atlantic region (Wang et al., 2001, 2005; Pausata

et al., 2011). Rapid changes at Dansgaard–Oeschger (DO)

events are distinct in both Greenland oxygen isotopes and

methane and in the oxygen isotope records of stalagmites that

are a proxy for the strength of the East Asian monsoon. The

changes in these three parameters are expected to be near-

synchronous (Buizert et al., 2015; Rosen et al., 2014; Svens-

son et al., 2006, 2008), with this assumption based amongst

other things on the strong coherency of their time series in

the high-frequency domain (see Supplement).

Methane synchronization (Buizert et al., 2015) pro-

vides a means to independently assess the accuracy of the
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Table 3. Comparison of the WD2014 ice core chronology to independent chronologies, Hulu Cave (Wang et al., 2001; Buizert et al., 2015;

Edwards et al., 2016) and tree-ring-based IntCal13 radiocarbon curve (Reimer et al., 2013). A detailed description and discussion for the

WAIS Divide 1 age estimation and synchronization procedures between the WAIS Divide CH4 record Hulu δ18OCalcite record is provided

by Buizert et al. (2015).

Climate event or Age in Comparison Age in comparison Age difference (%)

comparison point WD2014 record record (yr BP) between records

8.5 ka (WAIS Divide 8500 IntCal13 8516 16 years

offset older maximum) (0.2 %)

10.5 ka (WD offset 10 500 IntCal13 10 490 10 years

younger maximum) (0.1 %)

Onset of DO3 27 755 Hulu 27 922± 95 167 years

(0.6 %)

Onset of DO4 29 011 Hulu 29 134± 92 123 years

(0.4 %)

Onset of DO5.1 30 730 Hulu 30 876± 255 146 years

(0.5 %)

Table 4. Comparison to the independent ice core chronology GICC05 from NGRIP (Andersen et al., 2006; Rasmussen et al., 2006; Svensson

et al., 2006). To calculate from WD2014 ages for rapid climate transitions (transition ages; bold) in Greenland (i.e. δ18O), we use a Greenland-

CH4 phasing of 50± 30 years for the Younger Dryas–Preboreal (YD–PB) transition, 45± 30 years for the Older Dryas to Bølling–Allerød

(OD–BA) transition and 25± 30 years for all other transitions (Rosen et al., 2014; Buizert et al., 2015). A detailed description and discussion

for the WAIS Divide 1 age estimation and synchronization procedures between the WAIS Divide CH4 record and NGRIP δ18O is provided

by Buizert et al. (2015) and in the Supplement.

WAIS Divide (WD2014) NGRIP (GICC05)

Climate transition Depth Ice age Gas age Transition age Depth Ice age± 2σ

(m) (yr BP) (yr BP) (yr BP) (m) (yr BP)

YD–PB 1983.02 11 740± 74 11 545± 78 11 595± 90 1490.89 11 619± 98

BA–YD 2096.61 12 987± 106 12 769± 111 12 794± 127 1524.20 12 775± 136

OD–BA 2259.40 14 804± 148 14 576± 151 14 621± 157 1604.05 14 628± 185

DO 3 (termination) 2747.25 27 905± 279 27 521± 293 27 546± 297 1861.90 27 498± 822

DO 3 (onset) 2755.74 28 144± 281 27 755± 295 27 780± 297 1869.00 27 728± 832

DO 4 (termination) 2787.99 29 091± 291 28 697± 304 28 722± 312 1882.60 28 548± 887

DO 4 (onset) 2797.92 29 396± 294 29 011± 306 29 036± 308 1891.27 28 838± 898

DO 5.1 (termination) 2845.37 31 067± 311 30 618± 328 30 643± 334 1916.50 30 571± 1010

DO 5.1 (onset) 28 48.38 31 186± 312 30 730± 329 30 755± 331 1919.48 30 731± 1023

annual-layer counted WD2014 chronology because some

speleothem records, e.g. the Hulu Cave in China (Edwards

et al., 2016; Wang et al., 2001), have very precise age

scales (based on U–Th dating). The ice-age–gas-age differ-

ence (1age) is relatively small for WD (≤ 525± 120 years

throughout the WAIS Divide core) because of the high an-

nual snowfall rates at the site. The uncertainty of the lag of

atmospheric CH4 behind Greenland δ18O is on the order of a

few decades (Huber et al., 2006; Baumgartner et al., 2014;

Rosen et al., 2014), and the total gas-age uncertainty (for

ages older than approximately 11 ka) is dominated by the

cumulative annual-layer interpretation uncertainty (Table 4).

The methodology and results of the methane synchronization

are described in detail in the companion paper addressing the

deeper part of the WD2014 chronology (see also Fig. 5 in

Buizert et al., 2015).

Comparing the onset of DO 3, DO 4 and DO 5.1 as de-

termined from the WD2014 gas-age scale and Hulu Cave

shows that WD2014 is consistently younger than Hulu. The

maximum age difference between WD2014 and Hulu is 167

years (0.6 % of the age) for the onset of DO 3 (Table 3). The

WD2014 ages agree with the Hulu ages to within the com-

bined Hulu age uncertainty and the WAIS Divide gas-age un-

certainty (Buizert et al., 2015). The age difference between

WD2014 and Hulu is much less than the cumulative uncer-

tainty in identifying annual layers in WD2014.

3.3 Age accuracy

As described above, Table 3 shows the comparison of

WD2014 to these records at times when we are able to con-

fidently make a stratigraphic link to either the tree-ring 14C
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record or the Hulu Cave δ18O record. The age confidence is

more difficult to determine when there are no age compar-

isons. This encompasses large portions of the timescale: the

brittle ice zone (2.4 ka to 5.5 ka) and the glacial–interglacial

transition to the Last Glacial Maximum (LGM; 11 ka to

27 ka). Considering the interpretation repeatability (Table 2)

and the comparison to the tree-ring chronology (Fig. 9), we

recommend considering the ages in WD2014 to be accu-

rate to better than 0.5 % in the Holocene (to 11 ka) and to

have even higher precision (±5 years) during the last 2500

years. Without any comparisons for the next 16 000-year in-

terval, estimating the age accuracy is difficult. The compar-

isons with the Hulu Cave chronology indicate that the oldest

part of the WD2014 annual timescale is accurate to within

1 % of the age, which is also supported by using an alterna-

tive precisely dated cave record (Luetscher et al., 2015) from

the European Alps (Fig. S4, Table S2). We suggest using a

1 % age confidence for the timescale older than 14.5 ka. Be-

tween 11 and 14.5 ka, the age confidence is likely better than

1 % because there has been a limited number of years since

11 ka to accumulate uncertainty. Therefore, we linearly in-

crease the age confidence from ±55 years at 11 ka to ±145

years at 14.5 ka.

We recognize that this is not a rigorous determination of

uncertainty; however, it is the best that can be done with the

information that is available now or in the foreseeable fu-

ture. We assumed our errors to be random, mostly because

we could avoid large systematic errors by using independent

information, where possible taking advantage of the multi-

ple different aerosol records (see Figs. S1, S2 for details).

The assumption of random interpretation errors seems valid

at least over the Holocene as demonstrated by the compara-

ble small mean ice core or tree-ring age offset varying around

zero (Fig. 9). We note that the uncertainty in the duration be-

tween two climate events is not the difference between the

age accuracy of the two climate events. The age accuracy

decreases slowly on the assumption that uncertainties in the

annual-layer count will tend to cancel. Therefore, for short

intervals, the uncertainty in the duration is better estimated

by the interpretation repeatability, and we suggest to use 1 %

during the Holocene and 2 % during the Glacial.

3.4 Comparison to the Greenland Ice Core Chronology

(GICC05)

Here we summarize the observed age differences as de-

rived from the methane synchronization to the GICC05 δ18O

chronology for rapid climate transitions within the annual-

layer counted part of the WD2014 chronology (Table 4). The

abrupt climate changes observed in the North Greenland Ice

Core Project (NGRIP) δ18O record and leading to global

methane rise (Baumgartner et al., 2014; Buizert et al., 2015)

are clearly expressed during the onset of the Younger-Dryas–

Holocene warming, Bølling–Allerød warming, and DO 3,

DO 4, and DO 5.1, while the termination of the interstadi-

Table 5. Comparison of interval durations between WD2014,

GICC05 (NGRIP-Project-Members, 2004) and Hulu Cave (Ed-

wards et al., 2016) chronologies. Years of difference are given as

reference – WD2014. We use a Greenland-CH4 phasing of 50± 30

years for the Younger Dryas (YD) to Preboreal (PB) transition,

45± 30 years for the Older Dryas (OD) to Bølling–Allerød (BA)

transition and 25± 30 years for all other transitions (Rosen et al.,

2014; Buizert et al., 2015). We assume no age difference between

Hulu and CH4 during the transition of DO 5.1, DO 4 and DO 3.

WD2014 GICC05 Hulu

YD–PB to 1199 1156 N/A

BA–YD −43 (−4 %) N/A

BA–YD to 1827 1853 N/A

OD–BA 26 (1 %)

DO3 to 1256 1110 1212

DO4 −146 (−12 %) −44 (−4 %)

DO4 to 1720 1893 1742

DO5.1 173 (10 %) 23 (1 %)

DO3 to 2976 3003 2954

DO5.1 27 (0.9 %) −21 (−0.7 %)

N/A: not analysed

als appears more gradually (Buizert et al., 2015; NGRIP-

Project-Members, 2004; Wang et al., 2001).

The absolute calendar ages for the Bølling–Allerød warm-

ing and the Preboreal warming are slightly younger on

WD2014 than GICC05 (Fig. 10) but agree within the

GICC05 uncertainty. A dating correction of approximately

70 years for GICC05 for the early Holocene has recently

been independently proposed based on synchronizing the

Greenland Ice Core Project (GRIP) 10Be record to the Int-

Cal13 radiocarbon chronology (Muscheler et al., 2014) and

by matching distinctive tephra horizons between Green-

land ice cores and radiocarbon-dated lake sediments from

Kråkenes Lake, Norway (Lohne et al., 2013, 2014). WD2014

is older than GICC05 at DO 3 by 52 years, at DO 4 by 198

years and by 24 years at DO 5.1 (Fig. 10; Table 4). The ter-

minations of the DO events are all older on WD2014 than

GICC05 by 49 years at DO3, 174 years at DO4, and 72 years

at DO 5.1.

We can also compare the duration of intervals although

this is more challenging due to uncertainties in the feature

matching; the 1age and feature matching uncertainties are

on the order of 100 years during the DO events. However, the

1age uncertainty is likely biased in the same way for events

at similar times (i.e. if the temperature reconstruction is too

cold for DO3, it is likely too cold for DO4 as well, leading to

a 1age that is too large for both events) such that much of it

may cancel when calculating the duration. Therefore, while

we calculate the duration differences in Table 5, we recog-

nize that more precise matching of the timescales must be

done (e.g. using volcanic synchronization) before definitive

differences between the timescales can be ascertained.
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Figure 10. Comparison between WD2014 and two independently

dated records from the Northern Hemisphere. Age differences are

shown between WD2014 and GICC05 (NGRIP-Project-Members,

2004) and between WD2014 and Hulu Cave (Wang et al., 2001;

Buizert et al., 2015; Edwards et al., 2016) using CH4 synchroniza-

tion for time periods of rapid climate transition (i.e. NGRIP δ18O,

Hulu δ18O calcite) between 31 and 27 ka (left panel) and between

15 and 11 ka (right panel). We use a Greenland-CH4 phasing of

50± 30 years for the YD–PB transition, 45± 30 years for the OD–

BA transition and 25± 30 years for all other transitions (Rosen et

al., 2014; Buizert et al., 2015). We assume no age difference be-

tween Hulu and CH4 during the transition of DO 5.1, DO 4 and

DO 3. Note the different scaling of the respective y axis for the two

time periods. A positive value means that the reference record is

older than WD2014. Error bars represent 2σ age uncertainties of

the reference chronologies. Also shown are gas-age uncertainties

(black dashed line) for WD2014 (Buizert et al., 2015).

A potential concern of the WD2014 timescale is that an-

nual layers might be systematically missed near the end of

the timescale due to small layer thicknesses and decreasing

amplitude of the seasonal cycles. To check whether this oc-

curred, we compared the length of the intervals using the

DO3, DO4, and DO5.1 tie points. For the entire interval

from DO3 to DO 5.1, WD2014 has a very similar number

of years to GICC05: 27 (1 %) fewer. The duration in the

Hulu record is also quite similar, with WD2014 finding 22

(1 %) more years. This is a strong indication that WD2014

is not consistently biased and years are not being skipped.

However, the difference between WD2014 and GICC05 was

much greater for the two shorter intervals between DO3 and

DO4 and DO4 and DO5.1: WD2014 finds 146 (13 %) more

years than GICC05 in the interval between DO3 and DO4.

Between DO4 and DO5.1, WD2014 finds 173 (9 %) fewer

years than GICC05. These differences are large enough that

they are unlikely to be fully explained by1 age and matching

uncertainties and likely originate, at least partially, in the un-

derlying annual-layer interpretations. It is not currently pos-

sible to diagnose these differences in detail. We note that the

WD2014 durations differ by 4 and 1 % from the Hulu dura-

tions for these shorter intervals.

4 Conclusions

WD2014 is the first multi-parameter, annual-layer-based

timescale extending into the last glacial for an Antarctic ice

core. This was possible due to (1) the high annual snowfall

rates present at the drill site, (2) the small amount of layer

thinning due to the thick ice and basal melting and (3) use

of the most recent analytical techniques. The data included

for the first time measurements of black carbon, a unique

biomass burning tracer with strong intra-annual emission

variability arising from an insolation-driven annual biomass

burning cycle in the Southern Hemisphere. Annual layers

were continuously identified through the brittle ice zone us-

ing chemistry, which has not been done before, and with

DEP. This allowed a continuous timescale to be developed

without needing to match sections of multiple ice cores.

The age accuracy, as deduced by comparisons with abso-

lutely dated timescales, is much better than the interpretation

repeatability. The age accuracy for the Holocene (11 ka and

younger) is estimated to be better than 0.5 % of the age; the

age accuracy is estimated to increase to 1 % for ages older

than 14.5 ka. WD2014 can become a reference chronology

for Antarctic ice core records and the Southern Hemisphere

equivalent of the GICC05 chronology. Synchronization be-

tween ice cores can be achieved using the WAIS Divide sul-

fur record of volcanic events, which does not require using

the gas timescale and1age calculations, as demonstrated for

the past 2000 years where 25 ice core records from Antarc-

tica were synchronized to WAIS Divide (Sigl et al., 2014).

Sulfate records are available for other deep ice core records

from East Antarctica including Vostok (Parrenin et al., 2012),

Talos Dome (Severi et al., 2012), the EPICA cores from

Dronning Maud Land, and Dome C (Severi et al., 2007).

Future synchronization of these records to WD2014 of-

fers the possibility of new insights into the spatial pattern

of climate variability and potential leads and lags in the cli-

mate system between West and East Antarctica. Similar to

how the GICC05 ice chronology is being integrated into

a developing stratigraphic framework of marine and terres-

trial climate proxies in the North Atlantic region (Blockley

et al., 2012; Lowe et al., 2008; Rasmussen et al., 2014),

WD2014 will help support development of a framework of

Southern Hemisphere climate proxies from marine and ter-

restrial proxy archives (Alloway et al., 2007; Petherick et al.,

2013). Synchronization with many of these climate records

from the Southern Hemisphere seems feasible using WAIS

Divide 10Be during the Holocene (Fig. 9), or by using dust

tracers (e.g. Ca) during the LGM, a method recently applied

to marine records of iceberg-rafted debris to link into an

ice core chronology from Antarctica (Weber et al., 2014).

With a growing number of high-resolution Southern Hemi-

sphere climate proxies from such a developing network (in-

cluding those obtained directly from WAIS Divide) on an ac-

curate common timescale, we will gain a better understand-

ing of climate forcing, mechanisms, and feedbacks driving
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the worldwide transition from ice age climates to the present

climate and their impact on ice sheets and global sea level.

The Supplement related to this article is available online

at doi:10.5194/cp-12-769-2016-supplement.
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