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METHODOLOGY ARTICLE Open Access

Identification of yeast cell cycle regulated genes
based on genomic features
Chao Cheng1,2*†, Yao Fu3†, Linsheng Shen4 and Mark Gerstein3,5,6*

Abstract

Background: Time-course microarray experiments have been widely used to identify cell cycle regulated genes.
However, the method is not effective for lowly expressed genes and is sensitive to experimental conditions. To
complement microarray experiments, we propose a computational method to predict cell cycle regulated genes
based on their genomic features – transcription factor binding and motif profiles.

Results: Through integrating gene-expression data with ChIP-chip binding and putative binding sites of
transcription factors, our method shows high accuracy in discriminating yeast cell cycle regulated genes from
non-cell cycle regulated ones. We predict 211 novel cell cycle regulated genes. Our model rediscovers the main
cell cycle transcription factors and provides new insights into the regulatory mechanisms. The model also reveals
a regulatory circuit mediated by a number of key cell cycle regulators.

Conclusions: Our model suggests that the periodical pattern of cell cycle genes is largely coded in their
promoter regions, which can be captured by motif and transcription factor binding data. Cell cycle is controlled
by a relatively small number of master transcription factors. The concept of genomic feature based method
can be readily extended to human cell cycle process and other transcriptionally regulated processes, such as
tissue-specific expression.

Keywords: Cell cycle regulated genes, Genomic features, Prediction

Background
Cell division is under precise regulation in eukaryotic
organisms. Many genes functioning in cell division are
regulated and expressed right before they are needed [1].
These genes show periodical expression patterns with peaks
at certain mitotic stages. The most effective way for
identifying these genes is to analyze gene expression
profiles using time course microarray. For example, in
Saccharomyces cerevisiae, several hundreds of periodic-
ally expressed genes have been identified based on micro-
array [2-6]. Despite the high throughput, microarray has
its limitations in terms of identifying cell cycle regulated
gene. First, genes identified from different studies are
poorly overlapped, presumably due to varied experimental

conditions or de-synchronization problems [7]. Second, it
is often difficult to identify lowly expressed or weakly reg-
ulated genes due to technical issues [4,7].
To overcome the limitations of microarray experiments,

several computational methods have been proposed as
compensatory methods to find cell cycle regulated genes
in yeast. Streib et al. [8] predicted cell cycle regulated
genes based on causal interaction using regulatory net-
works. Wang et al. [9] combined genetic interactions and
co-expression data to infer candidate cell cycle regulated
genes. These two methods are based on the assumption
that these genes tend to possess interacting relationship
with each other. Alternatively, de Lichtenberg et al. found
that many cell cycle regulated genes shared common
protein features, thus proposed a method to predict novel
ones based on protein features [7]. These protein-level
features mainly reflect cell cycle regulation at the post-
translational level, such as protein stability. However,
the DNA sequence features, which contribute at the tran-
scriptional level, are completely ignored by this method.

* Correspondence: chao.cheng@dartmouth.edu; mark.gerstein@yale.edu
†Equal contributors
1Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover,
NH 03755, USA
3Program in Computational Biology and Bioinformatics, Yale University,
260 Whitney Avenue, New Haven, CT 06520, USA
Full list of author information is available at the end of the article

© 2013 Cheng et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Cheng et al. BMC Systems Biology 2013, 7:70
http://www.biomedcentral.com/1752-0509/7/70

mailto:chao.cheng@dartmouth.edu
mailto:mark.gerstein@yale.edu
http://creativecommons.org/licenses/by/2.0


A subset of transcription factors responsible for the coor-
dinated regulation of cell cycle genes has been uncovered
[10]. For example, Mbp1 is a crucial transcription factor
involved in cell cycle progression from G1 to S phase
[11]; Mcm1/Fkh1/Ndd1 cooperatively regulate G2/M
genes through binding to their promoters [12]. Since
cell cycle regulated genes tend to be regulated by a com-
mon set of regulators, we hypothesize that whether a
gene is cell cycle regulated can be inferred based on
genomic features - specifically, the regulatory transcrip-
tional factors (TFs) binding (trans-factors) and motifs
profiles in their promoters (cis-elements). Fortunately,
in yeast the genomic occupations of most TFs have been
identified with ChIP-chip experiment [13]. Meanwhile,
the potential regulatory cis-elements have been sys-
tematically investigated by computational analysis [14].
Thus, we are motivated to construct statistical models
to predict yeast cell cycle regulated genes based on
these features.
In this study, we combined the large-scale TF binding

data and motif profiles to predict cell cycle regulated genes
in budding yeast. The predictive model achieved high
accuracy evaluated by 10-fold cross-validations. We pre-
dicted 211 novel cell cycle genes and determined their
potential phases (G1, S, G2, or M phase). These genes
are enriched for cell cycle related processes according
to Gene Ontology (GO) analysis and tend to be lowly
expressed. The model also provided us a set of TFs
significantly contributed to cell cycle gene regulation.
Our analysis in this work suggests that genomic fea-
tures are informative for predicting periodically expressed
genes. The statistical model proposed in this paper can
be applied to identify cell cycle regulated genes in other
organisms or broadly to genes under transcriptional
level regulation.

Results
Genomic features are predictive of cell cycle regulated genes
Considering the discrepancy of different experimental
studies, we chose 599 periodically expressed genes (here-
after called cell cycle genes) and 454 non-periodically
expressed ones (hereafter called non-cell cycle genes) as
our training data (see Methods for details) based on the
meta-analysis in Cyclebase.org [15] that combines mul-
tiple yeast cell cycle time-course datasets. To examine
whether transcriptional level regulation can explain the
periodical expression patterns, we focused our analysis
on proximal genomic features: trans-features, TF binding
data from ChIP-chip experiments, and cis-features, mo-
tifs profiles in gene promoter regions (Figure 1).
Specifically, for each gene we collected the binding

strength of 203 TFs from Harbison et al. [13] and calcu-
lated the matching score of 537 motifs from Beer et al.
[14] (see Methods for details). A penalized logistic re-
gression model (PLR with L2 norm) was then fitted to
classify cell cycle genes using these genomic features. We
evaluated the performance of the model using 10-fold
cross-validations (see Methods). As shown in Figure 2A,
both the TF model (with 34 pre-selected TF binding
predictors) and the motif model (with 21 pre-selected
motif predictors) achieved fairly high accuracies with
AUC (area under ROC curves, see Methods) scores of
0.762 and 0.766, respectively. Moreover, the combined
TF + Motif model achieved the highest predictive ac-
curacy (AUC = 0.818). These results indicate that cell
cycle and non-cell cycle genes are different in their
transcriptional regulation, which can be reflected by
both TF binding and motif existence in their promoters.
They also indicate that the two types of genomic features
provide, at least partially, regulatory information from
different perspectives.
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Figure 1 Schematic description of genomic feature based method. For each gene, 203 transcription factors binding and 537 motif-matching
profiles were collected to train the prediction model. The model was then applied to quantify the periodicity and stage specificity of yeast genes.
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In addition to the PLR model, we also evaluated the
performance of other methods, including Logistic Re-
gression (LR), Random Forest (RF) and Support Vector
Machine (SVM). For all methods, the TF + Motif model
gave rise to higher accuracy than the TF or motif only
models (Figure 2B). PLR model has slightly better per-
formance and is easy to be interpreted. Thus, we focused
on results from this method in the subsequent analysis,
but similar conclusions can be achieved when other
methods are used (Additional file 1).
We then investigated key genomic features that were

critical for discriminating cell cycle genes from non-cell
cycle ones. Significant features (p-value <0.01) in the
combined model are listed in Figure 2C. Positive con-
tributors (z-score > 0) include the trans-feature Mbp1
and several cis-features, i.e. the motifs for Mbp1, Mcm1,
Swi4 and Fkh1. All of these TFs are known to be import-
ant for cell cycle regulation. Mbp1 is the DNA binding
component of MBF complex, which binds to the promoters
of DNA synthesis genes and regulates gene expression

during G1/S transition [11,16-18]. Mcm1, together with
Fkh2 or Fkh1, activates G2/M expressed genes through
the recruitment of Ndd1 [10,12,18]. It is also involved in
the repression of M/G1 gene transcription by interacting
with Yox1p and Yhp1p [18,19]. Swi4 shares a similar func-
tion with Mbp1. It regulates late G1 specific target genes
by forming an SBF complex with Swi6 [3,20-25]. Motif
M357 is a significant predictor for cell cycle genes as
identified by the model. The regulatory protein binding
with this motif is not clear, but it shares certain similar-
ity with Mbp1 or Swi6 binding motifs (TOMTOM [26],
p-values ~4e-4). The model also identifies several nega-
tive contributors (z-score < 0), e.g. Fhl1 and the binding
motif of Rap1. These two TFs are involved in transcrip-
tional regulation of ribosomal proteins, which are consti-
tutively expressed at very high levels during cell growth
[27,28]. Generally, genes associated with positive features
are more likely to be periodically expressed; conversely,
genes associated with negative features are less likely to
be periodical.
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M46 (Swi4) 0.50844 0.15647 3.249 0.001 Regulate gene expression of late G1 
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Figure 2 Performance of prediction methods. (A) ROC curves for TF binding, motif, and TF + Motif combined models using penalized logistic
regression with 10-fold cross validations. (B) AUC comparisons of four different machine learning methods, penalized logistic regression (PLR),
random forest (RF), support vector machine (SVM) and ordinary logistic regression (LR). (C) Significant genomics features discriminating cell cycle
regulated genes from non-cell cycle regulated ones (p-value < 0.01).
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Genomic features distinguish phase-specific cell cycle genes
Based on the expression peak time, cell cycle genes can
be further divided into G1, S, G2 and M phase genes.
We examined whether phase specific genes had unique
genomic features that distinguish them from other peri-
odical ones. Among the 599 cell cycle genes, 219, 156,
100 and 95 were classified as G1, S, G2 and M phase
specific genes, respectively, based on Cyclebase [15]. We
constructed four phase-specific models to distinguish genes
in one phase from the other phases with 10-fold cross-
validations. As shown in Figure 3, genomic features are
also predictive of phase-specific cell cycle genes with
AUC scores of G1, S, G2, and M phases 0.833, 0.803,
0.807 and 0.868, respectively. Although phase classifi-
cation is somehow arbitrary, the high AUC scores indi-
cate that these genomic features are informative to
infer phase-specificity of genes. In Table 1, we listed
the significant genomic features in at least one cell cycle
phase. Transcriptional regulation of genes at a certain
phase is mainly controlled by a small number of TFs or
cis-regulatory motifs. Most of the significant features
are previously known to be cell cycle stage specific regu-
lators. For example, Mbp1 is the major regulator in late
G1 phase and Swi5 activates gene transcription at the
M/G1 checkpoint [29]. Consistently, our model suggests

that cell cycle genes associated with Swi5 or Mbp1 bind-
ing motifs are more likely to be G1 specific genes. In
general, the positive features in one phase often contribute
negatively in other phases due to the exclusive nature of
these phase-specific models.
Phase-specific models suggest some interesting findings

about regulatory mechanisms. The model indicates Fkh1
as a S-phase predictor, although it is mainly known to
function at the G2/M checkpoint. This is supported by
Simon et al. [10] showing that many S phase genes
contain Fkh1 binding sites in their promoter regions.
Although Mbp1 and Swi4 are previously known as late
G1 regulators, our analysis suggests that Swi4 might
function later than Mbp1. In Cyclebase, Mbp1 reaches
its expression peak during S/G2 stages, while Swi4
demonstrates peak in middle G1 phase. Consistently,
motif analysis suggests that Swi4 is likely to be regulated by
Mbp1. The unexpected predictor for S-phase genes is M95,
which resembles Met32 binding motif (AAACTGTGG)
(TOMTOM [26]). Met32 is generally known as a tran-
scriptional regulator of methionine biosynthetic genes
[30], but recently has been shown as the primary medi-
ator of the Met30-controlled cell cycle checkpoint [31].
Spellman et al. [3] also found that several S-phase genes
function in methionine metabolism and contain a Met32/
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Figure 3 Phase specific models (selected phase vs. all other phases). (A) G1 phase specific. (B) S phase specific. (C) G2 phase specific.
(D) M phase specific.
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Met31 motif in their promoters. Our analysis suggests
a crosstalk between cell cycle control and metabolic
regulation.

Novel cell cycle regulated genes are identified by
genomic feature based method
We applied the TF + Motif model to predict novel peri-
odically expressed genes. After excluding training set, we
calculated the probability of genes to be cell cycle regu-
lated. Among the 5,168 unclassified genes, 211 have a
probability greater than 0.8 (corresponding to a false
positive rate of 2.86% and a sensitivity of 37.7%). We

then inferred their phase-specificity using penalized multi-
nomial logistic regression (RMLR, see Methods for
details). As a multi-class classification method, RMLR
simultaneously calculates the probabilities of a gene to be
G1, S, G2 or M phase specific, and assigns the gene to
the phase with highest probability. One can set a thresh-
old for the highest probability to improve the prediction
accuracy, i.e. assign a gene to be “unclear” if the highest
probability is lower than the threshold. The perform-
ance of the RMLR model was evaluated using the posi-
tive training data (576 cell cycle genes) with 10 fold
cross-validations, resulting in a multi-class AUC score

Table 1 Significant genomic features in phase specific models

TF or Motif Function G1 S G2 M

Mbp1 Late +** _**

Swi5 M/G1, G1 +** _**

M24 Mbp1, late G1 +** _** _**

M496 +**

M568 +*

M571 +*

Ndd1 G2/M _** +*

Fkh2 G2/M _** +*

M493 _**

Dot6 De-acetylation _**

M6 Bas1, purine and hisitdine biosynthesis, meiotic recombination _*

Met32 Methionine-biosynthesis _*

M207 _*

Srd1 Pre-rRNA processing _*

M12 Fkh1, G2/M +** _**

M46 Swi4, late G1 +** _** _**

M95 Met32 ′ +** _**

M93 +*

M25 Mcm1, G2/M, M/G1 _** +**

Ace2 M/G1 _**

M374 _**

M524 _**

Rap1 Telomere related _*

M203 _*

YPR196W Maltose response _*

M103 _*

Stp4 _*

M577 _*

M357 _*

M179 _*

Met31 Methionine-biosynthesis _*

M168 _*

“+” denotes positive contributors; “-” means negative contributors; “**” means P value < 0.01; “*” means P value < 0.05. M95 is predicted to be Met32 binding
motif. Genomic features in more than one stage are highlighted in bold.
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[32] of 0.885 (see Methods for multiple class AUC score
calculation). Without setting threshold for highest prob-
ability, about 65.7% of genes were correctly assigned to
their peak stages; increase of the threshold led to rapid
precision improvement (Figure 4A).
Among the 211 predicted genes, 99, 52, 41 and 19 were

assigned to G1, S, G2, M phases, respectively, according
to the maximum probability they achieved in the four
phases (Additional file 2). The higher the maximum
probability, the more likely the phase is correctly assigned.
These genes tend to have lower p-values in both periodicity
(PPer, the significance of periodical expression pattern in
the cell cycle) and regulation (PReg, the significance of
varied expression levels in the cell cycle) than the non-cell
cycle genes (detailed definition of these p values, refer to
Cyclebase [15]). As shown in Figure 4B, cell cycle regu-
lated genes in training set (positive set) have lowest PPer
and PReg as expected, whereas non-cell cycle genes
(negative set) have significantly higher values (p-value <
2.2e-16, wilcoxon test). The 211 novel genes have sig-
nificant lower PPer and PReg compared to predicted
non-cell cycle genes (p-value = 8e-7 for PPer and p-value =
3e-5 for PReg, wilcoxon test). These results indicate that
these predicted genes tend to have periodical expression
patterns and varied expression levels across the cell cycle.

Consistent with previous assumptions, our predicted
genes have more physical interactions (BIOGRID [33])
with known cell cycle genes compared to those that are
predicted not to be (p-value < 4e-4) (see Methods).
We collected 9 experimental or predictive results from

previous studies (see Methods for details). Out of the
211 predicted genes, we found that 85 (40.3%) genes
were supported by at least one evidence, as shown in
Figure 4C (Additional file 3). Specifically, 24 genes have
been shown as periodical ones in at least one experiment
in Cyclebase [2-5,15]; 33 are in the cell cycle gene list
identified by Granovskaia et al. [34]; and 60 are reported
as such by Rowicka et al. [35]. In contrast, only 18.7% of
genes in the negative prediction set have been supported
by these data sources (p-value =3e-8, fisher’s exact test).
A recent study in fission yeast identified 513 cell cycle
genes with long cell phenotype using knockout [36]. We
examined the cell cycle orthologs of the 211 predicted
cell cycle genes. Out of the 64 genes with orthologs in
fission yeast, 9 (14%) are identified as cell cycle ones,
with only slightly higher percentage than the predicted
non-cell cycle genes (13%). It has been shown that the
overlap of periodically expressed genes between budding
and fission yeast is very small [37]. However, the pre-
dicted cell cycle genes with orthologs that are also cell
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cycle related in fission yeast might be core cell cycle
genes (we added those genes in Additional file 3).
We investigated the functions of these 211 predicted

cell cycle genes using Gene Ontology and Saccharomyces
Genome Database (SGD) [38]. These genes are involved
in a wide range of biological functions. Based on SGD,
50 genes participate in unknown biological process and
the others are involved in lipid metabolic process, re-
sponse to chemical stimulus, mitotic cell cycle, cytoskel-
eton organization and so on (see Additional file 2 for
detailed gene description). GO analysis from DAVID [39]
(see Methods) suggests the enrichment of genes related
to cell walls, organelle fission, chromosome condensation,
DNA packaging, nuclear localization and other processes.
More specifically, the predicted G1-specific genes are
mostly involved in cellular metabolism, such as lipid
metabolic process, cellular protein catabolic process,
cytoskeleton organization and carbohydrate metabolic
process. This is consistent with the concept that G1
phase is the interval with enhanced protein synthesis
and metabolism preparing for mitosis. For the predicted
S-specific genes, many are involved in cytoskeleton
organization, mitotic cell cycle, organelle fission, chromo-
some segregation, and regulation of organelle organization.
G2 phase is another intermediate phase preparing for
mitotic process. Consistently, the predicted G2-specific
genes function in lipid metabolic process, carbohydrate
metabolic process and other metabolic pathways. They
are also involved in regulation of cell cycle, sporulation,
and trans-membrane transportation. The predicted M-
specific genes are mainly involved in nuclear related
processes, nuclear transport, response to DNA damage/
chemical stimulus, signaling and DNA repair. Considering
the complexity of cell cycle process and the intensive
regulatory cooperation between different layers, it is not
surprising to observe such a high diversity in functions
of the predicted cell cycle genes (see Additional file 4
for results of GO analysis).
For those predicted genes coding for transcription factors,

we investigated their transcriptional regulators based on the
YEASTRACT database (Yeast Search for Transcriptional
Regulators And Consensus Tracking) [40], which pro-
vides a curated repository of regulatory associations
between transcription factors (TF) and potential target
genes in yeast. We found that many of these predicted
cell cycle TFs themselves were regulated by the known
cell cycle regulators. For instance, Cyc8, Mga1, Haa1,
Hms2, Mot3 and Tye7 are regulated by Mbp1/Swi4; Yap6,
Rsf2, Ume1 and Ime1 are regulated by Fkh1/Fkh2; Tfc4,
Ime1, Hms2, Tye7 and Zds2 are regulated by the M phase
regulator, Mcm1/Ace2. These TFs might function down-
stream of key cell cycle TFs to regulate the transcription
of a specific group of genes. For example, Ime1 is required
for sporulation and has been shown as one of the major

regulators that induce meiosis [41]. In consistency with
this function, our model predicts Ime1 to be a cell cycle
gene of G2/M specific.
We also investigated the question: why these predicted

genes were not identified as such by the meta-analysis in
Cyclebase. We found that this was mostly due to high
noise of microarray data or loss of synchronization dur-
ing the cell cycle induction. For example, we predicted
Cdc8 as a G1-specific gene with a probability of 0.73. It
contains a strong Mbp1 binding motif (M24) in its pro-
moter region. Although Cdc8 is identified as a periodically
expressed gene by one of previous studies [42], it has only
moderately significant overall P-value (p-value > 0.001) in
its periodical expression patterns according to Cyclebase,
and thus was not included in our positive set. We exam-
ined the expression profiles of Cdc8 in the 6 experiments
used by Cyclebase. As shown in Figure 4D, it turns out
that 5 of these profiles demonstrate a potential peak at the
G1 phase; however, the peak disappears after the second
cell cycle, presumably due to de-synchronization of cells.
Another example is the serine/threonine protein kinase,
Cla4, which is involved in mitotic exit and cytokinesis.
Our model predicts Cla4 as a cell cycle regulated gene
with peak expression at M/G1. It shows strong binding
affinity with Mcm1, Swi4 (motif existence) and Mbp1
(TF binding) in its promoter. Binding of Mcm1 and
Swi4 with this gene is also verified by experiments [10].
In consistency with our prediction, the microarray ex-
pression profiles of Cla4 demonstrate a peak at M/G1.
However, it was not identified as a cell cycle gene, appar-
ently due to the loss of periodically expression pattern
from the second cell cycle (Additional file 5).
Due to technical issues, it is difficult to identify period-

ically expressed genes with low expression levels based
on microarray [4,7]. We examined the expression levels
of our 211 predicted genes. As shown in Figure 5A,
compared to the positive set, these genes are lower in their
mRNA expression levels [43] (p-value = 0.02, wilcoxon
test; see Methods for details). To some extent, our gen-
omic feature based method can complement traditional
microarray methods and uncover lowly expressed cell
cycle genes.

Genomic feature based model reveals circular regulation
of cell cycle transcription factors
The progression of cell cycle is under precise control of
a serial of interrelated TFs. It has been proposed that
cell cycle TFs regulate one another in a serial manner by
forming a circular regulatory chain: a TF function in one
phase will regulate TFs required for next phase [10]. Our
genomic feature model recapitulates the conception. We
selected the 9 key cell cycle TFs: Swi5, Ace2, Mbp1,
Fkh1, Swi4, Swi6, Ndd1, Fkh2 and Mcm1, and investi-
gated their genomic features, i.e. TF binding and motif
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existence, in their promoter regions. We examined the
inter-regulatory relationship of the 9 key cell cycle TFs
(Figure 5B). As shown in Figure 5C, there is a clear
regulatory loop formed by these TFs. Mbp1 regulates the
transcription of Swi4, which in turn regulates Ndd1 as
inferred by motif existence. Ndd1, together with Fkh2
and/or Fkh1, promotes the transcription of Swi5.
TFs that regulates Mbp1 and Mcm1 is not clearly in-

ferred from the TF binding data and motif information
(Figure 5B). Mbp1 is periodically expressed, which might
be regulated by other TFs or at the post-transcriptional
level (e.g. mRNA degradation). Mcm1 is a key regulator
at M/G1 checkpoint, but it is constantly expressed during
the cell cycle. To achieve its function, Mcm1 cooperates
with factors Yox1 and Yhp1p [18], which are activated by
Mbp1 in G1 phase, and by Ndd1 and Fkh2 in G2 phase
[10,18]. Yox1 and Yhp1p bind to positions upstream of
Mcm1 binding sites acting as gene expression repressors
(see Additional file 6 for more comprehensive circuit).

Comparison with protein-feature based method
de Lichtenberg et al. have applied a machine-learning
method that utilized protein features (such as phosphor-
ylation and number of positively charged residues) to
predict cell cycle genes [7]. We then asked which types

of features (protein or genomic features) were more in-
formative for cell cycle gene prediction. We applied our
model to the same training data used by de Lichtenberg
et al. The training data consists 97 high-confidence cell
cycle genes and 556 non-cell cycle ones. To be consistent
with their analysis, we also used 3 fold cross-validations to
evaluate the performance of our method. As shown in
Figure 5D, with this training data our genomic feature
based model results in an AUC score of 0.921, which is
significantly higher than that of the protein feature based
method (AUC = 0.788). Detailed examination of model
performance (Additional file 7) indicates that, as setting
higher threshold, false positive rates dramatically de-
crease. Generally, genomic features are more effective
for predicting periodical expression across the cell cycle
than protein features.
In addition, we compared the two PLR models trained

by the two different training data sets from de Lichtenberg
et al. [7] and Cyclebase, respectively. First, the two models
result in similar set of significant features. Specifically,
the model using de Lichtenberg’s training data gives rise
to a total of 7 significant features, among which 5 (Mbp1,
M24, M25, M357, M46) are shared with the model
using Cyclebase training data (Figure 2C). Secondly, we
compared the top 211 most significant cell cycle genes
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predicted by the two models and found that 132 of them
were overlapped. The genes in one of the top 211 lists
are mostly predicted to have higher probabilities to be
cell cycle ones in the other model.

Discussion
The idea of modeling gene expression based on regulatory
information has been applied to predict gene expression
levels [14,44]. In this work, we used similar idea to quan-
tify gene expression patterns assuming common mecha-
nisms underlying cell cycle regulated genes. Genomic
features used in our model include trans-regulators and
cis-elements. They possess complementary effect in pre-
dicting cell cycle regulated genes. Trans-regulators’ binding
gives the direct measure of involvement of transcription
factors, whereas cis-elements give overall binding potentials
of regulatory proteins, such as transcription factors and
other proteins. Our method suggests cell cycle progression
is possibly dominated by only a few key transcription fac-
tors and these transcription factors themselves form a
regulatory circuit. Other cell cycle transcription factors
may function downstream of these key regulators. Com-
pared to previous protein feature based method, which
focused on post-transcriptional level regulation, genomic
feature based method demonstrates increased prediction
performance. The improvement is not surprising as
transcriptional level regulation is the first and the most
critical step that controls gene expression. Even though
our method could separate periodical genes from non-
periodical ones with fair accuracy, cell cycle progression
control is a much more complex system than could be
simply explained by proximal transcription regulation
alone. Other levels of regulation, such as distal transcription
regulation, protein modification, activation, localization, and
degradation are also important components. These regula-
tions may account for false positives and false negative
predictions in our method. Future works could focus on
combining all kind of regulations together to explain cell
cycle control.
One of the advantages of our method is the independ-

ence of microarray experiments in identifying novel peri-
odical genes. As we known, microarray analysis is quite
sensitive to de-synchronization and experimental condi-
tion influence. Also cell cycle process induced by different
chemicals might harbor biases towards certain categories
of cell cycle regulated genes. Thus, our method could
provide an alternative way to complement and verify
known list of cell cycle regulated genes. After quantify-
ing cell cycle genes by general model, we also applied
phase specific model to further classify genes. Phase spe-
cific prediction model is affected by the stage separation
quality in Cyclebase.org. For example, several genes are
classified having some ambiguity, as their expression peak
lying in the conjunction of two stages. However, it could

provide clues to stage specificity of genes and is easy to
adapt to other predefined data.
Wu and Li proposed a simple method to predict cell

cycle genes based on ChIP-chip, TF binding sites and
other data [45]. They predicted 178 novel yeast cell cy-
cles genes that were regulated by at least two of 17 cell
cycle TFs. Here we applied a supervised statistical model
to improve their method. Out of the 178 cell cycle genes
predicted by Wu et al., 8 are in our positive training set.
In the remaining 170 genes, 49 are also predicted to be
cell cycle genes by our model (i.e. in the 211 gene list).
Out of the 170 genes, 69% (118) have physical interac-
tions with known cell cycle genes, and 31% (52) have at
least one of the 9 supporting evidences (see Methods),
compared with 63% (132) and 40% (85) for the 211 cell
cycle genes predicted by our model. GO analysis indi-
cates that the 170 genes were enriched in various meta-
bolic processes (e.g. glucose metabolic process), while
the 211 genes we predicted are more involved in cell
cycle related processes (e.g. cell wall and chromosome
condensation).
There are also certain drawbacks of our model. (1) Dif-

ferent transcription factors or motifs are weighted the
same in our model, without considering their position and
orientation relative to the gene. This information may
further influence the expression peak time of genes. (2)
As we shown, different cell cycle stages possess intrinsic
varied regulatory mechanisms, but the general model we
used assumes all cell cycle regulated genes harbor com-
mon genomic features. Thus the model could be further
modified to accommodate both common features and
stage specific features. Our genomic-based method can
also be modified and extended to predict genes in other
periodical processes, such as human cell cycle process
and circadian phenomenon, or generally to transcription-
ally regulated processes, such as tissue-specific expression.

Conclusions
We model the cell cycle regulated genes using their gen-
omic features (transcription factor binding and motif pro-
files), especially in the promoter regions. It suggests that
cell division, to a large extent, is controlled by a relatively
small number of master transcription factors. These master
TFs form a self-regulatory circuit and then regulate down-
stream TFs and genes. Genomic feature based method ex-
empts us from the drawbacks of microarray and helps us
to reveal the regulatory machinery. This concept can be
applied to other organisms and transcriptionally regu-
lated processes.

Methods
Cell cycle and non-cell cycle regulated genes
In Cyclebase, Gauthier et al. collected 6 cell cycle time
course microarray datasets and performed a meta-analysis
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to calculate the significance of gene periodicity. The
resulting p-values are based on a summarization of all
these 6 datasets, which represent a more confident evalu-
ation of periodical expression than a single dataset. Based
on Cyclebase, we select 599 cell cycle genes that show sig-
nificant periodical expression pattern (combined p-value <
0.001). At the same time, we select 454 non-cell cycle
genes that are not periodically expressed in any of the 6
datasets (p-value > 0.1). Alternative, we also tried another
non-cell cycle gene set by randomly selecting 454 genes
that are not in the positive set. Classification models based
on the two sets of training data achieve similar classifica-
tion accuracy and consistent results.

ChIP-chip data for yeast TFs
We use the large-scale ChIP-chip experiments performed by
Harbison et al. to determine the TF-gene binding strength.
The data contains binding information of 203 yeast TFs in
the promoter region (the DNA sequences from translation
initiation site up to 1 kb upstream) of all yeast genes
under YPD condition. Each TF-gene pair is assigned an
occupancy ratio, which reflects binding strength of the TF
to the promoter of the gene. A larger occupancy ratio
indicates stronger binding strength. We represent the
ChIP-chip occupancy ratio data as a matrix with 6,229
rows and 203 columns, each row corresponding to a gene
and each column corresponding to a TF. These TF bind-
ing features are used as predictors in our model to classify
cell cycle gene versus non-cell cycle ones.

Motif matching scores for all yeast genes
In a systematic analysis performed by Beer et al., 666 po-
tential regulatory motifs are enriched in the promoter
regions (the DNA sequences from translation initiation
site up to 800 bp upstream) of all yeast genes using the
AlignACE software. The occurrences of each motif in
the promoter region of all genes were then determined
by setting up a threshold of matching-score larger than
0.5. From this motif discovery data, we select 537 motifs
after removing redundancy. For 46 of these motifs, the
associated transcription factors have been determined
according to literatures.
Based on this data, we define a matching-score matrix,

which contains 6,328 rows each corresponding to a yeast
gene, and 539 columns each corresponding to a putative
motif. The element in the matrix is the aggregated
matching-score of a motif in the promoter region of a
gene. Namely, when a motif occurs with multiple copies
in a promoter, we calculate the summation of all the
matching-scores. If no occurrence is found in the pro-
moter of a gene, the score is set to 0. The aggregated
matching-score reflects the binding affinity of a motif to
the promoter of a gene. These motif features are also used
as predictors in our model.

For a set of selected motifs without corresponding tran-
scription factors, we used TOMTOM [26] to quantify
motif similarity with known transcription factors. Tran-
scription factor identified with highest similarity score
and with p-value smaller than 0.01 is assigned as the
potential TF for that motif.

Penalized logistic regression models and other
classification methods
We apply the penalized logistic regression (PLR)
method to classify yeast genes into cell cycle and non-
cell cycle ones. To train the model, a positive and a
negative gene set are prepared based on the Cyclebase
as described above. From the TF binding and motif
features, we pre-select those that are significantly dif-
ferent between the cell cycle and the non-cell cycle
gene set (p-value <0.001, the student t-test), which are
used as predictors.
PLR imposes a penalty term to each correlation coeffi-

cient to overcome the colinearity among variables and the
over-fitting problem. Specifically, we use quadratic penal-
ization term (L2 norm) in this analysis. For a gene i, we
denote its predictor vector as xi, and yi = 1 if it is a cell
cycle gene and yi = 0 otherwise. The logistic regression

model can be defined as: log Pr y¼1jxð Þ
Pr y¼0jxð Þ ¼ β0 þ xtβ , where

β is the parameter vector to be estimated (β = (β1, β2,
…, βm)

t for the model with m predictors).
Given this model, we can write the probability

pi ¼Pr yi ¼ 1ð Þ ¼ exp β0þxtβð Þ
1þ exp β0þxtβð Þ . PLR estimates the param-

eter vector θ = (β0, β)t by minimizing the following
equation: L β0; β; λ

� � ¼ −l β0; β
� �þ λ

2 jjβj 2
2

�� , where the first
term l indicates the binomial log-likelihood, ||β||2

2 is
the quadratic penalization term, and λ is a positive con-
stant. Prediction performance with varied λ is shown in
Additional file 8.
In addition to the PLR method, we also test other su-

pervised machine-learning approaches for predicting cell
cycle genes, including SVM (support vector machine),
Random forest and regular logistic regression. The clas-
sification accuracy of these methods is evaluated by calcu-
lating the AUC score, area under ROC (receiver operating
characteristic) curve, based on 10 fold cross-validation
results. The best accuracy is achieved by PLR method.
To implement these methods, the R packages, “stepPlr”,
“e1071”, “randomForest”, “glm” are used for PLR, SVM,
Random Forest, and regular logistic regression respect-
ively.Multinomial logistic regression analysis (RMLR) ex-
tends PLR to multiple categories classification, assigning
each category relative possibility among all possible re-
sults. RMLR follows the similar schema as PLR. Instead of
using t-test, one-way ANOVA is conducted to pre-select
features (p < 0.01). MATLAB package “logregFit” is used
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to implement the RMLR method. For multiple class classi-
fication, AUC score is the area under ROC surface. We
follow Hand and Till’s multi-class AUC score calculation
[32]. AUCtotal ¼ 2

Cj j Cj j−1ð Þ∑ Ci;Cjf g∈CAUC Ci;Cj
� �

, with C

are the different categories.

Enrichment of protein-protein interactions
We download yeast protein-protein interaction data from
BIOGRID [33]. Among the 211 predicted genes, 132 have
physical interaction with at least one of the 599 known
cell cycle genes in the positive training set. There are
126,389 possible pairs between the predicted cell cycle
genes and the known cell cycle genes, among which 499
pairs have physical interactions. Meanwhile, we observed
9,943 physical interactions out of the 2,969,243 possible
pairs between the predicted non-cell cycle genes and the
known cell cycle genes. We used the Fisher’s exact test
to calculate the significance for physical interaction en-
richment of predicted cell cycle genes with known cell
cycle genes. Specifically, the R function “fisher.test” is
implemented for the computation.

Gene ontology analysis
We perform gene ontology (GO) analysis by using the
bioinformatics tool DAVID (the Database for Annotation,
Visualization and Integrated Discovery) [39]. We note that
we exclude all genes from the positive and negative gene
sets, and use the remaining genes as the background gene
set for GO analysis to avoid the impact of known cell cycle
genes. Function annotation of yeast genes is obtained from
the Saccharomyces Genome Database (SGD) [38]. To clus-
ter gene function, we use the GO slim mapper in SGD.

Comparison of our predictions with results from previous
cell cycle studies
To find supporting evidence for our prediction, we collect
9 different datasets: protein-feature based method predic-
tion [7], known cell cycle regulated genes [7], datasets
from Zhao [6], Spellman [3], Cho [2], Granovskaia [34]
and Rowicka [35], weakly expressed periodical gene paper
[4] and 6 experiments in Cyclebase.org. In total, 85 out of
211 genes have evidence from these resources.

Normalization of TF binding and motif matching scores
The regulatory potential of gene by a TF can be reflect
by the TF binding score from ChIP-chip experiment or
by the motif matching score from sequence analysis. To
make the TF binding scores and motif scores directly
comparable, we combine the TF binding matrix and
motif-matching matrix, and perform quantile normalization
to normalize them. For each feature (740 TF or motif
features), the values are sorted across all genes and then
set to the average of distributions. So the highest value

in all genes becomes the mean of the highest values, the
second highest value becomes the mean of the second
highest values, and so on. After quantile normalization,
the TF binding and motif score features will have the
same distribution and are comparable with one another.
We use the following criteria to determine the TF-TF

regulatory relationships based on TF binding or motif
scores. (1) quantile normalization score for TF binding
or motif is greater than 0.9; (2) for TF binding data, the
log transformed occupancy ratio is larger than 2; (3) for
motif data, the motif score is larger than 0.5.

Availability of supporting data
All the supporting data are included as additional files.
The related files are also available at: http://archive.
gersteinlab.org/proj/yeastCC/.

Additional files

Additional file 1: Comparison of predicted gene lists from different
methods (cut-off = 0.8).

Additional file 2: 211 predicted cell cycle regulated genes. Each gene
is annotated with general and phase specific prediction scores and
corresponding gene functions.

Additional file 3: 211 genes ordered by support from other studies.

Additional file 4: GO analysis of newly predicted genes.

Additional file 5: Expression profiles of Cla4 in Cyclebase.

Additional file 6: Extended circuit of transcription factors.
a) Normalization scores of TFs respect to key genomic features in cell
cycle regulation. b) Regulatory circuit of transcription factors. “Red” lines
are regulatory relationship between key transcription factors. “Green” lines
are regulatory relationships between key TFs and other TFs. The
inhibitory effects are from literatures (the effect is on function level
instead of promoter regulation level). Yox1 and Yhp1 are under positive
regulation of several TFs, such as Mbp1, Fkh2 and Ndd1. Their expression
will inhibit Mcm1 function in G1, S and G2 phases. It is interesting to
notice that in M phase Mcm1 promotes Yox1 and Yhp1 expression, and
at the same time, Yox1 and Yhp1 inhibit Mcm1’s function.

Additional file 7: Prediction performance with training data from
de Lichtenberg et al.

Additional file 8: AUC score changes with respect to penalized term
λ in TF + Motif model (cell cycle genes vs. non cell cycle genes). AUC
score is quite insensitive to λ in certain ranges. Thus, our model is quite
stable to parameter λ.
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