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Methylation of leukocyte DNA and ovarian
cancer: relationships with disease status

and outcome

Brooke L Fridley'", Sebastian M Armasu?, Mine S Cicek?, Melissa C Larson?, Chen Wang?, Stacey J Winham?,
Kimberly R Kalli®, Devin C Koestler'*, David N Rider?, Viji Shridhar’, Janet E Olson?, Julie M Cunningham?®

and Ellen L Goode?

Abstract

differences in white blood cell type distributions.

with case status and overall survival.

Background: Genome-wide interrogation of DNA methylation (DNAm) in blood-derived leukocytes has become
feasible with the advent of CpG genotyping arrays. In epithelial ovarian cancer (EOC), one report found substantial
DNAm differences between cases and controls; however, many of these disease-associated CpGs were attributed to

Methods: We examined blood-based DNAm in 336 EOC cases and 398 controls; we included only high-quality
CpG loci that did not show evidence of association with white blood cell type distributions to evaluate association

Results: Of 13,816 CpGs, no significant associations were observed with survival, although eight CpGs associated
with survival at p < 1072, including methylation within a CpG island located in the promoter region of GABRE (p =
538 x 107>, HR = 0.95). In contrast, 53 CpG methylation sites were significantly associated with EOC risk (p <5 x107°).
The top association was observed for the methylation probe cg04834572 located approximately 315 kb upstream
of DUSP13 (p=1.6 x107"). Other disease-associated CpGs included those near or within HHIP (cg14580567;

p =5.6x10"""), HDAC3 (cg10414058; p=6.3x10""?), and SCR (cg05498681; p = 4.8x107").

Conclusions: We have identified several CpGs in leukocytes that are differentially methylated by case-control status.
Since a retrospective study design was used, we cannot differentiate whether DNAm was etiologic or resulting from
EOC; thus, prospective studies of EOC-associated loci are the critical next step.

Keywords: DNA methylation, CpG genotyping arrays, Epithelial ovarian cancer, Pathway, Etiology, Overall survival

Background

The role of DNA methylation (DNAm) in ovarian cancer
is multi-faceted. While tumor tissue shows clear methyla-
tion patterns associating with histopathology, the role of
blood-based DNAm patterns on disease etiology and out-
come has been a subject of growing interest [1-4]. This in-
cludes study of variation in inherent global methylation
levels, the relationship between exogenous exposures and
leukocyte methylation, and the role of inherited variants
on leukocyte methylation (mQTL) [5-8]. Five of the eleven
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confirmed ovarian cancer susceptibility variants and an
endometriosis locus are located in homeobox gene clus-
ters (HOXA, HOXB, and HOXD), homeobox related genes
(HNF1B), or genes expressed in early progenitor cells
(TERT) [9-13]. Thus, we hypothesize that DNAm levels in
circulating systemic leukocytes of ovarian cancer cases
and controls may differ, and that among cases, leukocyte
methylation may vary by disease outcome.

Previous work by Teschendorff et al. (2009) [14] identi-
fied peripheral blood methylation signatures that predicted
ovarian cancer case-control status using methylation mea-
surements at more than 27,000 CpGs in 113 cases and
148 controls. However, as pointed out in the discussion by
Teschendorff et al. and subsequently by Koestler et al.
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(2009) [15] and Houseman et al. (2012) [16], blood-based
methylation measurements are dependent on distribution
of white blood cell (leukocyte) types and the distribution
of cell types is also related to disease status (i.e., confound-
ing). Therefore, in order to minimize confounding by dis-
tribution of cell types, we performed case-control and
survival analyses using 336 EOC cases and 398 controls,
accounting for cell type associations to better understand
the role of blood-based DNAm in ovarian cancer risk and
survival.

Methods

Study participants

Eligible EOC cases were women aged 20 years or above
who were ascertained between 2000 and 2009 at the
Mayo Clinic within one year of diagnosis with pathologic-
ally confirmed primary epithelial ovarian, fallopian tube,
or primary peritoneal cancer. Controls were recruited
from among women seen at the Mayo Clinic for general
medical examinations and individually-matched to cases
on age (1l-year) and area of residence. Women were of
European descent and residing in a six-state area sur-
rounding Minnesota, representing >85% of EOC cases
seen at the Mayo Clinic, and cases had not begun chemo-
therapeutic treatment prior to blood draw. Table 1 summa-
rizes characteristics of 734 participants, following quality
control as outlined below. Peripheral blood (leukocytes)
was used as the source of DNA, which was extracted from
10 to 15 mL of fresh peripheral blood by the Gentra AutoP-
ure LSPuregene salting out methodology (Gentra) and
stored at -80°C. Samples were bar-coded to ensure accurate
processing. This work was approved by the Mayo Clinic
Institutional Review Boards and all participants provided
written informed consent.

DNA methylation assays and arrays

Peripheral blood (leukocytes) was used as the source of
DNA. DNA was extracted from four milliliters of fresh
peripheral blood using the Autogen Flexstar instrument
utilizing Flexigene chemistry (salting out methodology).
Blood is aliquoted for DNA extraction using an automated
liquid handler with barcoding to ensure proper sample
placement. Post-DNA extraction, DNA is aliquoted into a
permanent storage tube utilizing an automated liquid
handler with barcoding, again, to ensure proper sample
placement. DNA samples are assessed for quality and con-
centration using a Trinean DropSense 96 spectrophotom-
eter and DNA is then stored longterm at -80°C. The
leukocyte-derived DNA (1 ug) was bisulfite modified
(BSM) using the Zymo EZ96 DNA Methylation Kit
(Zymo Research, Orange, CA) according to the manufac-
turer’s protocol. BSM DNA (250 ng) was then assayed on
96 well plates in three batches at the Mayo Clinic Molecu-
lar Genome Facility (Rochester, MN): Batch 1 used the
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Infinium HumanMethylation27 BeadChip on 84 cases
and 91 controls, Batch 2 used this array on 172 cases
and 176 controls and Batch 3 used Illumina Infinium
HumanMethylation450 BeadChip on 156 cases and 157
controls. Methylation status at the target CpG sites was
determined by comparing the ratio of fluorescent signal
from the methylated allele to the sum from the fluores-
cent signal from both methylated and unmethylated al-
leles (i.e., the beta value).

To assess the quality of the DNAm data produced from
the Illumina arrays, Centre d'Etudes du Polymorphisme
Humain (CEPH) DNA, positive BSM controls (placental
DNA) and negative BSM controls (whole genome ampli-
fied [WGA] DNA) were assayed within each batch. For the
HumanMethylation27 BeadChips (Batch 1 and Batch 2), 9
CEPH DNA, 12 positive control DNA samples and 8 nega-
tive control DNA samples were also assayed, in addition
to 12 replicate/duplicate samples. Similarly, for the
HumanMethylation450 BeadChip batch (Batch 3), 6
CEPH samples, 11 positive control samples, 6 negative
control samples and 6 replicate samples were assayed.
Lastly, twenty duplicate samples were assayed using
both Illumina Infinium HumanMethylation27 and
HumanMethylation450 BeadChip in order to compare
the methylation levels between the two arrays.

Quality control and normalization

Using Illumina GenomeStudio software, DNAm values
from the HumanMethylation27 BeadChip assays were
scored as beta values, ranging from 0 (unmethylated) to
1 (methylated), resulting in methylation beta values for
27,578 probes. Quality control was done for Batch 1
and Batch 2 combined and then separately for Batch 3.
Probes were then excluded if they were on the Y
chromosome, positioned at a single nucleotide poly-
morphism (dbSNP build 137), had high beta values in
BSM negative controls (beyond four standard deviations
of mean), or were detected in less than 70% of samples.
Quality control was also conducted at the sample level,
based on the bisulfite conversion ratio and call rate
rates (based on a detection p-value of 0.05). Histograms
and scatterplots of these statistics were used to deter-
mine which samples to exclude (i.e., “outliers”). Similar
quality control steps were completed for the samples
assayed using the HumanMethylation450 BeadChips,
which contained 485,577 CpG site-specific probes.

For the HumanMethylation27 BeadChip arrays, 25,922
(94%) methylation probes passed quality control; for the
HumanMethylation450, 441,716 (91%) methylation probes
passed quality control. The pairwise correlations for beta
values among CEPH replicates were excellent (>0.97 for
Batches 1 and 2, and >0.99 for Batch 3), as were the intra-
class correlations of beta values among CEPH replicates
(>0.98 for Batches 1 and 2, and >0.99 for Batch 3) and
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Table 1 Characteristics of study participants

Variable Batch 1*  Batch 2*  Batch 3A Total
Age at case

diagnosis

N 69 146 121 336
Mean (SD) 60.2 (120) 633 (128) 622 (113) 623 (12.1)
Range (33.0-820) (280-91.0) (33.0-860) (28.0-91.0)
Age at control

enroliment

N 87 176 135 398
Mean (SD) 602 (12.1) 629 (127) 624 (114) 622 (122)
Range (33.0-85.0) (27.0-89.0) (33.0-88.0) (27.0-89.0)
EOC case

vital status

Alive 35(51%) 51 (35%) 59 (49%) 145 (43%)
Deceased 34 (49%) 95 (65%) 62 (51%) 191 (57%)
Follow-up time

(years)

Mean (SD) 28(15) 4128 30025 34 (25)
Range (0.1-64) (0.0-11.0) 0.1-11.4) (0.0-11.4)
Parity

Nulliparous 25 (16%) 47 (15%) 34 (13%) 106 (14%)
1-2 49 (32%) 104 (32%) 109 (43%) 262 (36%)
3+ 77 (50%) 156 (48%) 97 (38%) 331 (45%)
Unknown 4 (2%) 15 (5%) 16 (6%) 35 (5%)
Smoking status

Never/former 140 (90%) 284 (88%) 213 (83%) 637 (87%)
Current 10 (6%) 19 (6%) 20 (8%) 49 (7%)
Unknown 6 (4%) 19 (6%) 23 (9%) 48 (7%)
Alcohol use

Current 93 (60%) 172 (53%) 133 (52%) 398 (54%)
Former 22 (14%) 50 (16%) 47 (18%) 119 (16%)
Never 34 (22%) 73 (23%) 48 (19%) 155 (21%)
Unknown 7 (5%) 27 (8%) 28 (11%) 62 (8%)
Histology,

cases only

Serous 46 (66.7%) 97 (664%) 100 (82.6%) 243 (72%)
Endometrioid 16 (23.2%) 32 (22%) 15 (12%) 63 (19%)
Clear cell 4 (5.8%) 9 (6%) 3 (3%) 16 (5%)
Mucinous 1 (1.4%) 4 (3%) 3 (3%) 8 (2%)
Other 2 (2.9%) 4 (3%) 0 (0%) 6 (2%)
Grade, cases only

Grade 1 or 2 11 (16%) 29 (20%) 16 (13%) 56 (17%)
Grade 3 or 4 56 (81%) 117 (80%) 103 (85%) 276 (82%)
Unknown 2 (3%) 0 (0%) 2 (2%) 4 (1%)
Stage, cases only

Stage | or Il 14 (20%) 39 (27%) 21 (17%) 74 (22%)
Stage lll or IV 55 (80%) 107 (73%) 100 (83%) 262 (78%)
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Table 1 Characteristics of study participants (Continued)

Surgical debulking,

cases only

Optimal (<1 cm) 57 (83%) 123 (84%) 105 (87%) 285 (85%)
Sub-optimal (>1 cm) 11 (16%) 22 (15%) 14 (12%) 47 (14%)
Unknown 1 (1%) 1 (1%) 2 (2%) 4 (1%)
Ascites, cases only

No 39 (57%) 65 (45%) 76 (63%) 180 (54%)
Yes 23 (33%) 42 (29%) 32 (26%) 97 (29%)
Unknown 7 (10%) 39 (27%) 13 (11%) 59 (18%)

*Assayed using the lllumina Infinium HumanMethylation27 BeadChip.
AAssayed using the lllumina Infinium HumanMethylation450 BeadChip.

among duplicated study participant samples (>0.93 for
Batches 1 and 2, and >0.81 for Batch 3). For 20 samples
assessed across batches, the intra-class correlation for beta
values of the 24,520 overlapping probes in the Human-
Methylation27 and HumanMethylation450 BeadChips
was > 0.88. Of samples in Batches 1 and 2, 6 were ex-
cluded based on call rates, and one failed bisulfite con-
version; in Batch 3, 10 samples were removed following
quality control (9 samples failed the bisulfite conversion,
one sample with low mean methylation beta value across
probes). Following exclusions, we included 69 cases and
87 controls in Batch 1, 146 cases and 176 controls in
Batch 2, and 121 cases and 135 controls in Batch 3.

We assessed possible differences by plate and chips
within plates (8 BeadChips per plate were assessed with
12 DNAs each) through principal component analyses.
Based on the assessment of technical artifacts using prin-
cipal component analyses, a plate effect was observed
within each of the three batches and a chip within batch
effect for the HumanMethylation27 data (Additional file 1:
Figure S1). Therefore, we adjusted for a plate effect for
batch 3 and for chip within plate effect for batches 1 and 2
using a linear model of the logit-transformed beta value
for each CpG site, with the unstandardized residuals
saved. The logit-transformed locus mean was added back
onto the residuals followed by the transformation of the
residual to the O to 1 scale, producing an “adjusted beta”
value for all CpG sites.

Finally, we restricted analyses to probes in common be-
tween the DNAm arrays following quality control, excluding
9,341 CpG probes on the Illumina Infinium HumanMethy-
lation27 shown to associate with cell type distribution at
q-value < 0.05 [15,16], as well as 1,363 CpG probes found
by Chen et al. to be non-specific (i.e,, mapped to multiple
places along the genome) [17]. Thus, analyses focused on
the remaining 13,816 CpG probes (i.e., 24,520 probes in
common between the two panels following quality control
minus 9,341 probes associated with cell type distribution
minus 1,363 non-specific probes).
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Statistical association analysis

We analyzed each batch separately using Van der
Waerden rank, or rank-based inverse Gaussian, trans-
formed beta values and combined results across batch
using meta-analysis techniques. This allowed us to
examine similarity of effects across batches and to esti-
mate the combined effect. Meta-analysis was com-
pleted using a random effect meta-analysis. A Woolf’s
test of homogeneity of regression coefficients across
batches was performed, i.e. the distribution of regres-
sion estimates across batches for each probe is compat-
ible with that expected given a common regression
estimate. All statistical tests were 2-sided, and analyses
of individual batches were carried out using SAS (ver-
sion 9.3; SAS Institute Inc., Cary, NC) and R (version
2.14.0). Meta-analyses were carried out using the R
package rmeta (http://CRAN.R-project.org/package=r-
meta). To control for multiple testing, associations
with p<5 x 107® were considered statistically signifi-
cant (e.g., Bonferroni adjustment based on number of
independent tests). Pathway analysis used Ingenuity
Pathway Analysis (IPA) (Ingenuity” Systems, www.ingenuity.
com) for genes closest to CpG probes associated with
disease status or outcome at p < 0.0001.

The following linear model was used to determine if
DNAm levels differ between EOC cases and matched con-
trols for each CpG site. Let, Y, =a;+BX:+y/Z +ey,
where Yj; represents the adjusted methylation beta value for
subject i and CpG probe j (j=1..., 13816), X; represents
disease status for subject i (1 if case and O if control), Z;
represents covariates for subject i and ¢;, "N (0, a}). To iden-

tify covariates that differ between EOC cases and controls
to include in the model (i.e., potential confounders), poten-
tial covariates were examined for association with disease
status within a stepwise logistic regression model, resulting
in the inclusion of parity/age at first live birth combination
(nulliparous, 1-2 and age<= 20 years, 1-2 and age >20
years, 3+ and age< = 20 years, 3+ and age > =20 years,
missing), current alcohol use (never, former, current, miss-
ing), current smoking status (never or former, current,
missing), enrollment year, and recruitment state (MN
vs. non-MN). For each CpG probe j, the disease status
parameter (/%) was estimated using the rank-transformed
adjusted beta methylation values, along with a 95% confi-
dence interval (CI).

We assessed associations of methylation beta values
with overall survival (OS) using Cox proportional hazards
regression analyses, adjusted for age at diagnosis, tumor
stage (III/IV, I/ 1I), presence of ascites (yes, no, missing)
and volume of residual tumor following debulking surgery
(<1 cm, >1 cm, missing) based on stepwise Cox regression
analysis. The proportionality assumption was assessed by
the analysis of scaled Schoenfeld residuals for all covariates
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included in the statistical analysis and found to be upheld
[18]. We accounted for left truncation using start-stop
counting process style of input and estimated hazards ratios
(HR) and 95% ClIs [19].

Results

Disease status and DNA methylation

In a meta-analysis across the three batches (two sets of ex-
periments involving the Illumina Infinium HumanMethyla-
tion27 beadchip and one experiment involving the Illumina
Infinium HumanMethylation450 beadchip) evaluating asso-
ciation between each of the 13,816 CpG probes and ovarian
cancer case-control status (336 cases, 398 controls), 30
CpGs showed p-value <5x1077 (Table 2), where none of
the tests for heterogeneity of effects across batches were
significant (p > 0.05). We confirmed that these 30 CpGs
were also included in the Koestler et al. (2012) analysis, and
thus determined not to be associated with cell type distri-
bution. Of these CpGs, the following were also replicated in
an independent study (p < 0.001) conducted by Teshendorff
et al. [14]: cg04834572 near DUSPI3, cgl0414058 near
HDACS3, ¢g19280776 near PAGI, and cg24959428 near
GBP6. In addition to the replication of specific CpG sites,
C190rf18 and MARCHI contained CpG sites found to be
replicated for association with EOC risk [20]. All CpG sites,
with the exception of a CpG near PAGI, had negative par-
ameter estimates indicating lower methylation in the cases
as compared to controls (e.g., cases were hypo-methylated).
Plots of the entire set of results for the 13,816 CpG sites
(i.e., sites contained in both the 27K and 450K arrays, specific
and not associated with cell type distribution) are presented
in Figure 1A. The top association between methylation and
disease status, which as also replicated, was observed for the
CpG probe cg04834572 located approximately 315 kb up-
stream of DUSPI3 on chromosome 10 (Figure 2A) with a
meta-analysis p-value of 1.6 x 10™* and individual batch p-
values ranging from 2.1x10™* to 1.1 x 10°°. DUSPI3 is a
member of the protein-tyrosine phosphatase superfamily
and interacts with protein kinases involved in the regulation
of cell proliferation and differentiation. Other significantly
associated CpG sites were near biologically interesting/
relevant genes, such as SRC (cg05498681; p = 4.8x107)
(Figure 2B), HHIP (cg14580567; p =5.6x10™") (Figure 2C),
and replicated CpG near HDACS3 (cg10414058; p = 6.3x10?)
(Figure 2D).

To identify any commonality of highlighted genes
within biological pathways, pathway analysis using In-
genuity Pathway Analysis (IPA) was completed for the
155 genes closest to the CpG probes (based on Illumina
provided annotation) that were associated with disease
status based on a liberal threshold of p < 0.0001. The top
pathways enriched for these 155 genes were the telomer-
ase signaling (five genes in our top 155 were in the list
of 99 genes within the telomerase signaling pathway; p =
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Table 2 CpG sites associated with disease status (p <5x1077)
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Probe ID ch Position  Nearest Location of nearest ~Location Mgta-AnaIysis§ ABatch 1 hBatch 2 ABatch 3
(bp) genes gene (bp) to Island B P B [ B P B [
cg04834572* 10 76868766  DUSPI13 76854190-76868970 Shelf -065 16E-14 -082 21E4 -055 60E6 -073 1.1E6
€g11722531 19 1449857 APC2 1450148-1473243 Shore -062 27E-13 -064 35E3 -054 64E-6 -074 13E-6
RELL2 141016517~
cg10414058* 5 141017903 141020631 Shore -094 63E-12 -1.13 358 —-071 7.1E-10 —-1.05 9.0E-14
HoAcs 141000443-141016423
cg14580567 4 145567271 HHIP 145567148-145659881 Island -056 56E-11 -049 0024 -055 38E-6 -061 93E-5
€g08245789 22 40289538  ENTHDI 40139049-40289794 -056 36E-10 -066 40E-3 -043 394 -069 6.5E-6
€g27623214 19 58485726  C19orfl 8" 58469805-58485902 -0.52 1389 —-066 29E-3 -052 14E-5 -045 34E-3
€g23877385 15 59908652 GCNT3 59903982-59912210 -052 22E9 046 0043 -053 13E5 -052 63E4
SPACAS 47863734-47869130
€g26150490 X 47863595 INF182 47834950-47863394 Island -050 36E9 -034 010 -054 68E-6 -052 66E-4
€g22336401 9 140336227 ENTPD8  140328816-140335901 Island -050 539 027 024 051 25E5 -060 9.1E-5
€g20775254 2 95940705 PROM?2 95940201-95957056 -053 6J1E9 -058 53E3 -041 824 -069 56E-6
€g19280776* 8 82024586 PAGT 81880045-82024303 Shore 049 1.0E-8 060 6.2E-3 052 14E5 038 0.013
€g07634191 8 27850178  SCARA5 27727399-27850369 -048 18E-8 050 0025 -039 12E3 -061 45E5
€g21244955 22 21192955 PI4KA 21061979-21213100 -049 22E-8 -047 0039 -048 66E-5 -050 1.3E-3
cuL7 43005355-43021683
€g18159180 6 43022213 VRPLD 43001767-43027242 Shore -048 2288 -035 012 057 286 —-041 8O0E-3
KCTD4 45766988-45775175
€g04439215 13 45768901 CTF 5604631 45858940 -049 24E-8 065 44E3 -037 22E-3 -060 1.0E-4
€g26787239 5 132008525 L4 132009678-132018370 -048 29E-8 -050 0025 -050 34E-5 -043 48E-3
cg07259382 4 164536228 MARCH1"  164445450-165304407 -048 30E-8 058 85E-3 —-043 3.1E4 -050 12E3
914808739 17 17741098 SREBF1 17714663-17740325 Shore -048 37E-8 -041 0063 -052 23E-5 -044 38E-3
cg00065385 9 111623395 ACTL7/A  111624603-111626035 -047 61E8 050 0026 -049 50E-5 -043 69E3
€g04721883 X 103499577 ESX1 103494719-103499599 Island -046 76E-8 040 0068 -038 17E3 -062 46E-5
€g21400640 X 12992967  TMSB4X 12993226-12995346 Shore -046  1.1E-7 -050 0029 -046 14E-4 -044 40E-3
cg11871280 12 60082038  SLCI6A7  59989821-60183636 -045 17E-7 024 028 -051 24E-5 -046 3.1E3
€g09261015 X 103499647 ESXT 103494719-103499599 Island -045 21E-7 -046 0046 -039 1.1E-3 -054 47E4
cg18731813 X 100805683 ARMCXT  100805514-100809683 Shelf -044  24E-7 -023 030 -046 13E4 -051 73E4
€g23279136 X 74375966 ABCB7 74273105-74376132 -044 32E-7 -062 63E3 -033 57E-3 -054 49E-4
€g02254461 3 39195904  CSRNPIT 39183342-39195102 Shore -044 36E-7 -037 010 -048 9.1E-5 -042 6.1E-3
€g26246138 X 18372612 SCML2 18257433-18372844 Island -044 38E-7 -037 009% -037 23E-3 -057 16E4
€g24959428* 1 89829951 GBP6 89829436-89853719 -044 4187 =050 0025 -042 5284 044 44E3
cg05498681 20 35973318 SRC 35973088-36033821 Shore -044 48E-7 -017 045 -053 13E-5 -041 8IE3
cg01377911 19 49568036 NTF4 49564397-49567124 -043 50E-7 -038 008 -037 23E-3 -055 25E4

*#Locations based on NCBI (www.ncbi.nlm.nih.gov), build 37.
AShore CpG sites defined to be within +/- 2 kb from CpG island; Shelf CpG sites defined to be within +/- 2kb of CpG Shore.
SAll tests for heterogeneity of effects across the three batches were non-significant (p > 0.05); analysis adjusted for age at first live birth, alcohol use, smoking
status, enrollment year, and recruitment state; a negative parameter estimate indicates lower methylation in the cases as compared to the control (e.g., cases
where hypomethylated).
*Same CpG site found to be associated with EOC risk (p < 0.001) in a prior report [14].
CpG sites near this gene found to be associated with EOC risk in a prior report [14].

1.24x1072 for enrichment of pathway) and the paxillin
signaling (five genes in our top 155 were in the list of
110 genes within the paxillin signaling pathway; p =

1.42x107°). The five genes in the telomerase signaling
pathway with methylation associated with disease status
at p <0.0001 were HDAC3 (p = 6.33x107*2), IL2RG (p =
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Figure 1 Manhattan plots of the —-log10(p-value) vs. CpG location. (A) Association of CpGs and EOC status. Analysis adjusted for parity/age
at first live birth combination, alcohol use, current smoking status, enrollment year, and recruitment state. (B) Association of CpGs and overall
survival. Analysis adjusted for age at diagnosis, tumor stage, presence of ascites and volume of residual tumor following debulking surgery.




Fridley et al. BVIC Medical Genomics 2014, 7:21
http://www.biomedcentral.com/1755-8794/7/21

Page 7 of 12

A.

chr10: |
0904834572

hgte

100}
76,855,000 76,860,000 76,865,000 e oodl 76,875,000 76,830,000

DUSP13 B ffeeeiiiieeeeed deeeeeee P oo
DUSP D DODDOOIOOIIN i 1900000000000E-AA

B.. s
20| 35070000 35980000 590000 oooool  3e0t0000 36020000 36030000 36,040,000
cq05408681 |
S O00000000000000000000000HSU0OIOON0UN0NINHINIONNUNIE I HONNINNNN: 0t S0t T | —)
X747 164 -
Other RefSeq ! "
SNPs [N | I I 1 |
Human mRNAS
20503 ]
CpG: 65 L}
CpG: 96 n
CpG:20
CoG: 35
TFBS Conserved | I | e rre [ [ R |
sta Enhancers
e
Mammal Cons - bt e Ml
4
8 I || — i R B
3121913314
C.. ; s
chrd: | 145,600,000 145,650,000
cg14580567 [
UCSC Genes i + "
Other RefSeq ] I
SNPs | | | I |
Human mRNAS H—+H— 8 —+H—+——+1a
chra 122 | ereteceseotet !
cha 1222 | d
CpG: |
TFBS Conserved L] wmeron L V1 L Y | IO A}
vvvvv Enhancers
4
Mammal Cons RSO U N VTN VAU S0 PR TSSO T SOOI BRSSDRST ST T N KD —
4_
A

— rmmr—
widgdseseal il 733254

DGV Struct Var ' [l -

(B) SRC region; (C) HHIP region; (D) HDAC3 region; and (E) CUL/ region.

Figure 2 Differential methylation regions between EOC cases and controls displayed in UCSC Genome Browser. (A) DUSP13 region;

Scale
s 1610200000

cq10414058 o e |

FOrSD ! e—

FCHSD 1 I—

5D 1 e—

E Scale } { rg1o
ch6. | 43000000 430050001 43010000 43,015,000 43,020,000 43‘0250001 43,030,000 43,035,000 43,040,000 43,045,000/
cg18159180
RRP36 {1 cuur| vireL2 i
cuL| MRPL2 B«
COU7 et oeeoe
PIRAIRE LA e i TR
MRPL2Mfedeck
KL
PTK?
Other RefSeq+——4-+ t
SKPs
Human mRNAs-+—+—1l HI HH— i HHE - H—— i H——
ce |
6786 H
e 78 ]
16.788 Laasaanses
e 789 B
CpG: 50 | ] -
CpG:70
CpG: 97 -
“TFBS Conserves d | {1 LI 1L A L O O B O 1 } I 1 wir 1
Vista Enhancers
e
Mammal Cons. R N P ¥ Moo | ¥TTTR TWH S
4
P
o121

21618228] +14917068]

4.33x10°°), PIK3C2B (p=197x107°), PIK3RI (p=
5.19x107°), and POTI (p = 1.38x107°). PIK3C2B has been
implicated in development of glioblastoma multiforme,
while mutations in PIK3RI have been seen in ovarian
tumors and cancer cell lines and endometrial cancer
[21-23]. POT1 has been found to be associated with tumor
stage and telomere length in gastric cancer [24-26]. For the
paxillin signaling pathway, the five differentially methylated
CpGs were near ARFIP2 (p=4.60x10"), ITGB6 (p =
3.95><10_5), PIK3C2B, PIK3R1 and SRC, with some overlap
between the top two pathways (PIK3RI and PIK3C2B).

Survival following EOC and DNA methylation

Many fewer CpGs were associated with OS among the
366 cases than with case-control status, as illustrated in
Figure 1B. None of the associations were statistically sig-
nificant at the 5x107° level; the top eight CpG probes
with meta-analysis p-value <10~ for association with
OS are presented in Table 2. The top CpG sites associ-
ated with OS were ¢g10276549 within the promoter re-
gion of GABRE (p = 5.8x107%) (Figure 3A) and CpG site
(cg06171242) within the promoter region of TTRAP/
TDP2 (p = 4.4x10™%). GABRE is a target for many benzo-
diazepine drugs used in the treatment of pain, insomnia,
epilepsy, anxiety and panic related disorders [27-29].
However, little information can be found implicating a

role of GABRE in response to chemotherapies (http://
www.cancer.gov/clinicaltrials/). In addition to the modest
level of association for CpGs near GABRE, there was a
trend for association of CpG sites near the following bio-
logically relevant genes: MTIX (p =7.4x10™*) (Figure 3B),
ADORA2B (p =7.4x10"") (Figure 3C), and ABLM3 (p =
9.3x10™%). These three CpG sites moderately associated
with OS were all within CpG islands or shores and within
the promoter region of the corresponding gene.

Similar to the analysis of the disease-associated genes, an
exploratory pathway analysis using IPA was completed for
the 61 genes closest to the CpG probes most associated
with OS (meta-analysis p <0.01). The top canonical path-
ways enriched for these 61 genes were relaxin signaling
(five genes out of 147; GNAI12, GNBI, PIK3R4, RAPIA,
TDP2; p=7.09x10"> for enrichment of pathway) and
CXCR4 signaling (five genes out of 160; GNAI2, GNBI,
ITPRI1, PIK3R4, ROCKI; p = 1.25x10™%) and IL-8 signaling
(five genes out of 192; ARRB2, GNAI12, GNBI, PIK3R4,
ROCKI; p=3.05x10""*. Three genes (GNBI (p =0.006),
GNA12 (p =0.009), and PIK3R4 (p = 0.002)) are part of all
three of these canonical pathways.

Discussion
Via a CpG-by-CpG approach excluding CpGs known to
correlate with potentially confounding white blood cell


http://www.cancer.gov/clinicaltrials/
http://www.cancer.gov/clinicaltrials/

Fridley et al. BMIC Medical Genomics 2014, 7:21
http://www.biomedcentral.com/1755-8794/7/21

Page 8 of 12

Vista Enhancers

Mammal Cons
4

A Scale 10 kb} { hg19
chrx: 151,120,0000 151,125,000  151,130,0000  151,1350000  151,140,0000  151,1450000 151,150,000 151,155,000  151,160,000|
910276549 |
GABRE MIR4521
GABRE sl e e | I | 4
GABRE M cH i ' - 4
GABRE k<4 3 "
Other RefSeq HH— H—+— Hi
SNPs
Human mRNAs I .
chrX.1072 k {
chrX.1073 b |
CpG: 83 | |
TFBS Conserved [ TN | [ 1 Il | I

4-
U VNI WY TP TR U OSSO DU UL OV S
Muttiz Atign [ 1IN N0 N AT A AT U A O T A I T I

Vista Enhancers

Mammal Cons

DGV Struct Var

DGV Struct \/ar —
B Scale 1 kbl | hg19
chr16: 56,716,500| 56,717,000| 56,717,500| 56,718,000|
©g26802333
MT1X s} IS Mmoo
MT1X I— -
Other RefSeq S I e T —
SNPs |
Human mRNAs . e
chr16.912
CpG: 37 |
TFBS Conserved 1

T

4
itz Al 8 1SN 00000 N 0 0T NS OO0 0 0 T A0 5 R
T ———S—

Vista Enhancers

Mammal Cons

and (C) ADORAZB region.

C Scale 20 kb} { hg19
chr17: | 15,845,000]15,850,000 15,855,000] 15,860,000] 15,865,000] 15,870,000/ 15,875,000/ 15,880,000| 15,885,000| 15,890,000| 15,895,000] 15,900,000/ 15,905,000|
©g03729431
ADORA2B i} TTC19 b+~
ZSWIM7 m 1 | . j
ZSWIM7 } { : }
ZSWIM7 B
TTC19 M-+
Other RefSeq [} L o
SNPs | | [l [ | | | | [l |
Human mRNAs | | f - 1 H } —4 -+
chr17.366 | |
chr17.367 k |
chr17.368 |
CpG: 184 [ |
CpG: 124 [ ]
TFBS Conserved [ . (N Il L N

4-
S U O S OO U T AU WSROV PN NSOl ETTUDUE VGO USSPV ¥ SN 19 U ) N

4
Motz Al [ T T 02 e e
DGV Struct /2 |

Figure 3 Methylation regions associated with overall survival displayed in UCSC Genome Browser. (A) GABRE region; (B) MT1X region;

J

types, we identified methylation CpG sites (and corre-
sponding neighboring genes) with differential specific
hyper- or hypo-methylation signals by case-control sta-
tus and by survival time. To increase power to detect dif-
ferentially methylated CpG sites, we completed a meta-
analysis of results from three DNAm experiments using
two genome-wide methylation arrays, restricting focus to
high quality probes on both arrays.

A number of CpG sites were found to be differentially
methylated between EOC cases and age-matched controls
(Table 2). The CpG site that was most differentially meth-
ylated between EOC cases and controls was cg04834572
located at the splice region of exon 1 and intron 1 of

DUSP13 (p = 1.6x107'*). The blood-based methylation of
this CpG site was also reported to be associated with EOC
risk in a previous study with p=0.002 (Figure 2A) [14].
In addition to the replication of the association for the
methylation site at DUSPI3, four regions identified in this
study were replicated for association EOC risk with a p <
0.001, as reported in Teschendorff et al. [14]: ¢g02449608
(C190rf18, p=0.0002), cgl19280776 (PAGI, p=8x10"°);
cgl7271365 (MARCHI, p = 2x107°), cgl0414058 (HDACS,
p =0.001), and ¢g24959428 (GBP6, p = 0.001).

Many of the genes neighboring the top associated CpG
sites have biological relevance to cancer development.
Methylation at a CpG site on chromosome 20 at bp
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35973318 (cg0549868), located within the splicing re-
gion of exon 1 and intron 1 of gene SRC (35973088-
36033821 bp), was found to be associated with EOC risk
(p = 4.8x107) (Figure 2B). SRC is a proto-oncogene which
regulates EGFR, Akt, MAPK1 and NF-«B. SRC is a target
for many anticancer drugs [30]. A CpG island (cg14580567,
bp 145567271) within HHIP (145567148-145659881 bp)
was also found to be associated with EOC risk (p =
5.6x107'"). The genomic region surrounding HHIP
(hedgehog-interacting protein) (Figure 2C) has been im-
plicated in many cancers, with hypermethylation of the
promoter region found to down-regulate the expression
of HHIP found in many tumors, such as gastric and pan-
creatic cancer [31]. The hedgehog proteins are evolution-
arily conserved and are important for a wide range of
developmental processes; members of this family control
cell proliferation and differentiation, thus linking them
with many cancers, including basal-cell carcinoma, small
cell lung cancer and pancreatic cancer [32].

The methylation at a CpG site in the shore of a CpG
island, approximately 2.5 kb upstream of HDACS3, was
observed to be associated with EOC risk (p =6.3x107"?)
(Figure 2D). This association was also observed in a pre-
vious study (p = 0.001) [14]. Other studies looking at the
role of histone deacetylases (HDACs) found that the ex-
pression of HDACI, along with the expression levels
of HDAC2 and HDACS, to be increased in ovarian tu-
mors compared to levels in benign tumors and normal
tissue, suggesting the oncogenic potential of HDACs in
ovarian tumors [33-35]. Lastly, a CpG site near CUL7
(cg18159180, p = 2.2x10°%) was differentially methylated
between EOC cases and controls; CUL7 has been shown
to block Myc-induced apoptosis in a p53-dependent
manner (Figure 2E) [36,37].

Table 3 CpG sites associated with overall survival following EOC (p < 10
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In addition to individual CpG sites associated with EOC
risk, we also found the telomerase signaling and paxillin
signaling pathways to be enriched for genes with CpGs
that were differentially methylated between cases and con-
trols. The telomerase signaling pathway and inherited vari-
ation in TERT have been found to be associated with the
development of EOC and other cancers [11]. The main-
tenance of functional telomeres is critical in that telomeres
that become too short are unable to protect the chromo-
some from DNA damage. TERT plays an extensive role in
the maintenance of functional telomeres, and TERT can
be activated by AKT and HSP90 and inhibited by c-Abl
One gene identified to be moderately associated with EOC
risk was PIK3R1, which is also a member of the telomerase
signaling pathway. PIK3RI is involved in ATPase and es-
trogen receptor binding and regulates numerous genes,
such as AKT, NFKB, TNE and is involved in apoptosis,
proliferation and differentiation. PIK3RI has also been
linked to epithelial neoplasia and cancer, endometrial
ovarian cancer, and endometrioid carcinoma [20,22,23,38].
In contrast, the paxillin signaling pathway is involved in the
recruitment of signaling and structural proteins to paxillin
required for regulation of cell motility, with many of the
paxillin-binding proteins having oncogenic equivalents.

In contrast to the findings for EOC risk, we found no
statistically significant CpG probes associated with OS
following EOC (Table 3). However, many of genes sur-
rounding these CpG sites have potential biological rele-
vance and would be warranted for future follow-up. In
particular, the gene GABRE (Figure 3A) is a target for
many benzodiazepine agents [27,28]; MT1X (Figure 3B)
has been implicated in resistance to cisplatin therapy in
oral squamous cell carcinoma and irinotecan resistance
in gastric cancer patients [39,40]; ADORA2B (Figure 3C)

_3)

Position Nearest Location of nearest  Relation ~ Meta-Analysis* Batch 1 Batch 2 Batch 3
Probe Ch B A
(bp) genes gene (bp) to Island HR [ HR P HR [ HR P
cg10276549 X 151143686 GABRE 151121596-151143151 Shore 0.95 5.8E-5 09 032 097 019 094 29E-4
ACOTI13 24667263-24705297
cg06171242 6 24667490 Shore 1.10 44E-4 120 022 111 72E3 102 0.87
TTRAP/TDP2 24650205-24667115
RNF167 4843630-4848517
€g14360897 17 4843676 Shore 1.22 59E-4 125 0084 129 38E3 1.13 0.20
SLC25AT11 4840425-4843462
€g26802333 16 56716182 MTIX 56716382-56718108 Island 1.07 74E-4 111 0044 107 12E3 100 097
cg03729431 17 15848264 ADORA2B 15848231-15879210 Island .11 7.5E-4 097 085 112 58E-3 1.09 0.69
€g21858376 3 4534791 [TPR1 4535032-4889524 Island 1.12 79E-4 131 011 111 0022 1.09 037
C21orf84/
€g12003230 21 44899139 44881974-44898103 0.86 8.1E-4 082 0022 085 B89E-3 097 0.72
LINC00313
€g05026186 5 148520876 ABLIM3 148521054-148639999 Shore 0.96 9.3E-4 098 041 096 53E-3 096 0071

#Locations based on NCBI (www.ncbi.nlm.nih.gov), build 37.

AShore CpG sites defined to be within +/- 2 kb from CpG island; Shelf CpG sites defined to be within +/- 2kb of CpG Shore.
*All tests for heterogeneity of effects across the three batches were non-significant (p > 0.05); analysis adjusted for age at diagnosis, tumor stage, presence of

ascites and volume of residual tumor following debulking surgery.
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is an antagonist in many drugs (such as dyphylline and
aminophylline, used in treatment of asthma and pul-
monary emphysema), with recent research discovering
antagonists of ADORA2B are preferentially toxic to
breast tumor cells expressing Fra-1, a candidate metas-
tasis gene and expression of ADORA2B up-regulated in
colorectal carcinoma tissues and cell lines [41,42].

Single CpG probe analysis of the association of blood-
based DNAm with survival following EOC, followed by
pathway analyses found the top pathways to all contain
three genes (GNB1, GNAI12, and PIK3R4), although indi-
vidual CpG evidence for these three genes were modest.
The standard chemotherapy regimen for EOC patients fol-
lowing surgery is a combination therapy involving a taxane
(e.g., paclitaxel) and platinum (e.g., cisplatin, carboplatin)
agent, increasing our interest in the gene GNA12 found to
be associated with response to cisplatin/paclitaxel [43].
Guanine nucleotide binding protein (G protein), beta poly-
peptide 1 (GNB1) has been recently found to be associated
with breast cancer outcomes and clinical and patho-
logical measurements [44]. PIK3R4 is a member of the
phosphoinositide 3-kinases (PI3Ks) family that is in-
volved in multiple cell functions (e.g., proliferation, cell
survival, degranulation), and this gene is a novel candi-
date for outcome following EOC.

In summary, we have identified several methylation
CpGs sites, using blood-based or leukocyte DNAm, which
are differentially methylated by case-control status. Of
these CpGs, four CpGs and two genes containing signifi-
cant CpGs were replicated in an independent study of
DNAm and EOC risk. Strengths of our study are large
sample size, exclusion of CpGs associated with white
blood cell types, and inclusion of relevant covariates. Prior
work in a smaller set of cases and controls showed that
blood-based DNAm associated with case-control status
[14], thus providing additional evidence to “confirmed”
CpG regions associated with EOC. To ensure that none of
our findings could be attributed to confounding due to cell
type distribution, we removed of probes associating with
cell types (which in fact showed very strong associations
with case-control status; data not shown). In addition to
these strengths, there are also limitations to this study.
First, this study was limited to CpG sites assayed on the
[lumina array; future application of genome-wide DNA
methylation sequencing (i.e., methyl-seq) will enable add-
itional EOC related methylation marks to be discovered.
Secondly, the retrospective case-control design used in
this study precludes interpretation of these results as indi-
cators of EOC risk. As blood was drawn upon diagnosis,
we cannot exclude the possibility that the case-control dif-
ferences resulted from the cancer itself, from its treatment,
or from lifestyle changes. Nonetheless, this short list of
CpGs should be of high priority for cohort studies with
baseline blood draws and follow-up for later EOC. We
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note that our survival studies were limited primarily by
sample size (336 cases), and thus may have been under-
powered to detect modest effects; combining this study
with other blood-based methylation case studies will be a
key next step.

Conclusion

In conclusion, this early examination of blood-based
DNAm provides added experience to a relatively nascent
field, suggesting that careful pre-processing and consider-
ation of probes associating with distributions of white
blood cell types is critical. We also report specific CpGs
that associate either with case-control status or outcome,
which are worthy of follow-up in prospective cohort and
clinical studies.

Additional file

Additional file 1: Figure S1. Plot of the 1°' and 2" principal
components for each of the three batches before and after the
normalization step. The different colors in the figures represent the
different plates of 96 samples in each batch. Batch 1 Pre (A) and Post (B)
adjustment; Batch 2 Pre (C) and Post (D) adjustment; Batch 3 Pre (E) and
Post (F) adjustment.
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