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METHODOLOGY ARTICLE Open Access

Leveraging global gene expression patterns
to predict expression of unmeasured genes
James Rudd1, René A. Zelaya2, Eugene Demidenko3, Ellen L. Goode4, Casey S. Greene2 and Jennifer A. Doherty1*

Abstract

Background: Large collections of paraffin-embedded tissue represent a rich resource to test hypotheses based
on gene expression patterns; however, measurement of genome-wide expression is cost-prohibitive on a large
scale. Using the known expression correlation structure within a given disease type (in this case, high grade serous
ovarian cancer; HGSC), we sought to identify reduced sets of directly measured (DM) genes which could accurately
predict the expression of a maximized number of unmeasured genes.

Results: We developed a greedy gene set selection (GGS) algorithm which returns a DM set of user specified size based
on a specific correlation threshold (|rP|) and minimum number of DM genes that must be correlated to an unmeasured
gene in order to infer the value of the unmeasured gene (redundancy). We evaluated GGS in the Cancer Genome Atlas
(TCGA) HGSC data across 144 combinations of DM size, redundancy (1–3), and |rP| (0.60, 0.65, 0.70). Across the parameter
sweep, GGS allows on average 9 times more gene expression information to be captured compared to the DM set alone.
GGS successfully augments prognostic HGSC gene sets; the addition of 20 GGS selected genes more than doubles the
number of genes whose expression is predictable. Moreover, the expression prediction is highly accurate. After training
regression models for the predictable gene set using 2/3 of the TCGA data, the average accuracy (ranked correlation of
true and predicted values) in the 1/3 testing partition and four independent populations is above 0.65 and approaches
0.8 for conservative parameter sets. We observe similar accuracies in the TCGA HGSC RNA-sequencing data. Specifically,
the prediction accuracy increases with increasing redundancy and increasing |rP|.

Conclusions: GGS-selected genes, which maximize expression information about unmeasured genes, can be combined
with candidate gene sets as a cost effective way to increase the amount of gene expression information obtained in large
studies. This method can be applied to any organism, model system, disease, or tissue type for which whole genome
gene expression data exists.

Keywords: Gene expression, Greedy gene set selection, GGS, Imputation

Background
Gene expression studies can reveal genes and path-
ways critical for specific disease phenotypes [1, 2] and
can identify molecular subtypes [3–9], allowing for a
better understanding of the etiologies and features of
many diseases. The large numbers of formalin-fixed
paraffin-embedded (FFPE) tissues which are routinely
collected for clinical and diagnostic purposes repre-
sent an important resource for genomic studies. While
it is possible to perform whole genome expression

assays and sequencing in FFPE samples, it is currently
cost-prohibitive to do so in the very large collections
of FFPE samples that are available. Most FFPE-based
research to date has focused on assaying a subset of
genes selected based on a current hypothesis of inter-
est (e.g., genes associated with prognosis) or a reduced
gene set classifier of molecular subtypes [10–12]. The
number of genes included is determined both by
scientific rationale and cost, and by definition, repre-
sent only a subset of gene expression information. We
sought to develop a method to maximize the amount
of gene expression information obtained from assayed
samples by inferring the expression levels of unmeas-
ured genes.
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Conceptually, this problem is similar to genotype imput-
ation. Loci physically located near each other on a chromo-
some tend to be inherited together, and sets of highly
associated loci can be identified using linkage disequilib-
rium (LD) which is a measure of co-occurrence of alleles.
Representative or ‘tag’ single nucleotide polymorphisms
(SNPs) from these sets can be selected to be assayed and
the remaining values inferred based on LD [13, 14].
In an analogous manner, we propose to use the organ-

ism-, disease-, and tissue-specific gene expression correl-
ation structure to identify genes which indirectly provide
information about the expression of other genes in that
tissue. The correlation of gene expression values is well
studied and has been used to help inform molecular
pathway definitions [15, 16], disease subtype discovery
[3, 7, 8], and clinical prognosis and treatment [5, 6, 17].
Just as it is important to select tag SNPs based on allele
correlations in a population similar to the population
studied, it is also important to use gene expression
patterns from the specific tissue of interest [18]. The
robustness of the co-expression relationships directly
affects the inference of expression of unmeasured genes;
for this reason, our method is valid for stable systems of
co-expression, e.g., for design of large-scale targeted
assays following initial genome-wide measurements, not
dynamic systems such as differentiation where the co-
expression relationships are expected to change. We

focus on high grade serous ovarian cancer (HGSC) for
the development and evaluation of our algorithm, but
also apply our method to a breast cancer dataset. The
wealth of publicly available expression data allows our
method to be used for studies of a wide variety of differ-
ent organisms, tissues, model systems, and disease types.
While our intention is to identify genes that broadly
capture gene expression information for many genes,
recent work suggests that these genes may also be
enriched for disease drivers [19]. Herein, we present our
method of gene selection that can be combined with
candidate gene sets as a cost-effective way to increase
the amount of gene expression information obtained in
large studies where using a genome-wide measurement
platform is not feasible.

Results
Our greedy geneset selection (GGS) algorithm uses pair-
wise gene expression correlation (Pearson’s correlation
coefficient: rP) to identify sets of correlated genes, and
within those sets selects genes to directly measure and
genes to attempt to infer using the directly measured genes.
We applied this algorithm to the Cancer Genome Atlas
(TCGA) HGSC data (Affymetrix HGU133a; Fig. 1a), and
compared the ability of GGS to maximize the number of
inferred genes given a user defined size of directly mea-
sured (DM) genes to that of a ranked-degree gene selection

Fig. 1 Gene selection a and expression prediction b workflows. A.1) The workflow starts with the TCGA HGSC Affymetrix gene expression data
which is filtered to remove no/low expressed genes. A.2) A symmetrical gene-by-gene correlation matrix is created by calculating pairwise Pearson’s
correlation coefficients (rP). A.3) A user-determined threshold is applied to the absolute value of the Pearson’s correlation coefficients (|rP|) in order to
generate a binary adjacency matrix. Here, black indicates no correlation beyond the threshold between two genes, and white indicates the existence
of such a correlation. A.4) A greedy geneset selection algorithm iteratively builds a set of genes to directly measure (DM set; red) and a set of genes
that are predictable using the DM set (predictable set; blue). The predictable set is defined as those eligible but unmeasured genes that are strongly
correlated to at least n DM genes where n is the redundancy chosen. B.1) The expression prediction workflow starts with splitting the TCGA HGSC data
into training and testing partitions. The training partition is used to build a regression model for each gene in the predictable set. Only the genes in
the DM set that are correlated to the specific predictable gene above the |rP| threshold are used as predictors. If there are multiple predictors, a forest
of regression is trained. Otherwise, a polynomial regression of degree 2 is trained. B.2) The regression models are then used in the testing partition of
the TCGA HGSC data to predict expression. The true and predicted values are compared using the Spearman rank correlation (rS). B.3) The accuracy of
the regression models are assessed across populations and platforms using four independent HGSC datasets. In each dataset, the regression models
are used to predict expression and rS is calculated

Rudd et al. BMC Genomics  (2015) 16:1065 Page 2 of 11



method. We tested the ability to infer unmeasured expres-
sion by constructing regression models for unmeasured
genes and evaluating the accuracy of these predictions in
independent studies (Fig. 1b).

Characterization of eligible genes
We removed genes that did not appear to be expressed
(90th quantile thresholds below 5), leaving 8,265 genes
for analysis (Fig. 2a). We calculated pairwise correlations
between these genes to identify those for which an
expression level could be predicted. The minimum number
of genes to which an eligible gene must be correlated in
order for it to be eligible was set at 1, 2, or 3, for three
different correlation thresholds (|rP|; absolute value of the
Pearson’s correlation coefficient) of 0.60, 0.65, or 0.70. GGS
selects the directly measured genes and the theoretically
predictable genes from these eligible genes. The number of
genes eligible to be directly measured or predicted varies as
a function of the correlation threshold and the minimum
number of genes to which an eligible gene must be corre-
lated (Fig. 2b–d). More stringent correlation thresholds
reduce the number of genes correlated to at least one other
gene at or above that threshold. When the minimum num-
ber of correlated genes is 1 and |rP| is 0.60, 0.65, and 0.70,
there are 3,695, 2,463, and 1,577 eligible genes (i.e., genes

that can be used to predict or genes whose value can be
predicted) respectively. To determine the extent to which
the eligible genes represent a wide variety of biological
processes, we performed enrichment analysis on the
Protein Analysis Through Evolutionary Relationships
(PANTHER) GO-slim biological process terms (223
terms) using the 3,695 eligible genes identified using the
0.60 threshold with background frequencies determined
by the 8,265 truly expressed genes. After applying a
Bonferroni adjustment for the 223 enrichment tests, only
8 processes were underrepresented, and 4 processes were
overrepresented at a p-value cutoff of p < 0.05 (translation;
nucleobase-containing compound metabolic process;
protein metabolic process; regulation of translation;
Additional file 1: Table S1). This suggests that the
distribution of the eligible genes may be generally repre-
sentative of the distribution of all expressed genes across
most of these high-level biological processes.

GGS-selected gene sets can predict the expression
of a larger number of genes compared to ranked-
degree-selected gene sets
We compared the performance of GGS to a ranked-
degree method using all TCGA samples. The ranked-
degree method builds a set of n genes to directly

Fig. 2 Definition of eligible genes. a Distribution of the 90th quantile of expression values for all genes in the TCGA data. The distribution is
bimodal, and we excluded genes below the cutoff of 5 (dashed red line) because most samples have low/no expression for these genes. b
Number of eligible genes (y-axis) by the correlation threshold (x-axis) when the minimum number of genes to which an eligible gene must be
correlated is set to 1. Highlighted in red are specific values when the correlation threshold is set to 0.60, 0.65, and 0.70. c Same as B but with the
minimum number of genes to which an eligible gene must be correlated is set to 2. d Same as B but with the minimum number of genes to
which an eligible gene must be correlated is set to 3
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measure by selecting the top n genes correlated with the
largest number of genes. In contrast, as GGS constructs
the DM and predictable sets, the edges are removed; i.e.,
correlations associated with those genes are ignored for
the remainder of the set construction (Fig. 3). Both
approaches require: 1. a binary matrix indicating
whether pairs of genes are correlated beyond a specified
threshold (|rP|); 2. a minimum number of directly mea-
sured genes which must be correlated with an unmeas-
ured gene in order to consider that unmeasured gene
predictable (redundancy); and 3. the targeted size of the
DM set. We used the TCGA HGSC gene by gene
correlation matrix and three |rP| values (0.60, 0.65,
0.70) to create binary matrices, then applied both the
ranked-degree and GGS approaches specifying redun-
dancy as 1, 2, or 3 and a targeted DM set size of 400,
and calculated the size of the resulting predictable sets
(Table 1). GGS consistently returned at least approxi-
mately three times the number of predictable genes
across this range of redundancy values and |rP| thresh-
olds. Under the most conservative parameters, with
redundancy of 3 and |rP| = 0.70, the GGS predictable
set was approximately 11-fold larger than that of the
ranked-degree approach. Therefore, the edge removal
portion of the algorithm likely improves GGS perform-
ance by preventing over-representation of correlated
genes in the DM set.

Predictable gene set size across GGS parameter values
and for candidate gene sets
We performed a parameter sweep across |rP| of 0.60,
0.65, and 0.70, redundancy of 1, 2 and 3, and DM set
size (16 values between 10 and 400), totaling 144 indi-
vidual GGS runs with resulting DM sets. For each of the
DM sets, the size of the corresponding predictable set
was calculated (Fig. 4). As shown in Fig. 2b–d, the total
number of eligible genes for given parameter values is
known, and we subtracted the number of genes in the
DM and predictable sets from the number of eligible
genes to quantify the eligible genes missed (dotted lines
in Fig. 4). A consistent pattern was observed; the size of
the predictable set increased with increasing DM set size
and decreasing |rP| and redundancy. Redundancy strongly
influences the number of predictable genes. For example,
for |rP| of 0.60 and a DM set size of 250, the number of
predictable genes is 2.6-fold higher when redundancy is 1
(1,954 genes) compared to redundancy of 3 (752 genes).
The correlation threshold (|rP|) also has a strong effect;
when redundancy is 1 and the DM set size is 250, the
number of predictable genes is 2.3-fold higher for |rP| of
0.60 (1,954 genes) compared to |rP| of 0.70 (868 genes).
The increase in number of predictable genes as the num-
ber of directly measured genes increases is expected.
However, a plateau is reached as the size of the DM set
increases. This plateau is caused by GGS exhausting the

Fig. 3 Example run of greedy geneset selection (GGS). We represent the binary adjacency matrix as a network in which the nodes are genes, and
an edge exists if the genes are correlated beyond the |rP| threshold. DM size and redundancy are set to 2 and 1 respectively
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larger sets of correlated genes, and subsequently adding
genes to the DM set with a smaller return in increased
predictable set size. A network representation of the
eligible genes when |rP| is 0.70 and redundancy is 1 is pre-
sented in Additional file 2: Figures S2 and S3. The average
number of neighbors was approximately 9. The GGS-
identified DM set genes are red (20 genes Additional file
2: Figure S1; 400 genes Additional file 2: Figure S2), the
predictable genes are blue (430 genes Additional file 2:
Figure S1; 1018 genes Additional file 2: Figure S2), and the
remaining eligible genes are grey. GGS selects from the
dense neighborhoods first but with 400 genes in the DM
set the algorithm has started to select from the small 2
node connected components which means only 1 predict-
able gene is gained for every DM gene added. This
explains the diminishing returns in number of predicted
genes observed in Fig. 4 which occurs when selecting from
the small connected components.
We performed parallel analyses of breast cancer gene

expression data from TCGA. We observed results simi-
lar to the HGSC datasets, with increasing predictable set
size as a function of increasing DM size, decreasing
redundancy, and decreasing correlation threshold. Pre-
dictable set sizes were consistently larger than those
found in HGSC. For example, with a set of 400 DM
genes and a correlation threshold and redundancy of

0.70 and 3 respectively, 1,566 predictable genes were
identified in the breast cancer data, versus 337 predict-
able genes observed in the HGSC data. These results are
provided in our source code repository [20].
We developed GGS to augment hypothesis-driven

candidate gene sets with small numbers of additionally
measured genes that allow inference of many unmeas-
ured genes. In this scenario, GGS automatically adds all
of the candidate genes to the DM set and selects
additional DM set genes using the specified binary adja-
cency matrix. To characterize the performance of GGS
with candidate gene sets, we performed the parameter
sweep using either the Yoshihara et al. [21] or TCGA [9]
prognostic gene sets for HGSC which contain 121 and
183 genes respectively. Starting with a DM set that
includes the candidate gene set, the number of predict-
able genes was quantified across the remaining param-
eter sweep categories (Additional file 2: Figures S4). The
Yoshihara and TCGA candidate gene sets predicted 572
and 224 genes respectively when |rP| was 0.60 and
redundancy was 1. These candidate gene sets were
created to capture specific biological signals and are not
optimized to predict unmeasured gene expression (in
comparison, a GGS-generated DM set of 100 genes
returned by GGS predicted 1447 genes). Once GGS
augmented the Yoshihara et al. [21] and TCGA [9]

Table 1 Number of predictable genes using GGS versus a ranked-degree approach, by correlation threshold and redundancy

|rP| Redundancy

1 2 3

Ranked-Degree GGS Ranked-Degree GGS Ranked-Degree GGS

0.60 439 2219 355 1200 294 849

0.65 235 1467 170 745 136 518

0.70 102 1018 53 466 25 337

Fig. 4 Predictable gene set size across GGS parameters. The number of predictable genes by fold redundancy (1-red circle; 2-green triangle; 3-blue
squares), number of directly measured genes (x-axis), and correlation threshold (|rP|, column facets). Solid lines indicate the number of predictable
genes given a GGS-selected DM set of size indicated by the x-axis. The dotted line indicates the remaining eligible genes that are neither predictable
nor directly measured
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candidate gene sets with 20 additional DM genes, they
predicted 968 and 935 genes respectively. This suggests
that with a minimal investment in additional assayed
genes, GGS can more than double the amount of gene
expression data captured.

Using directly measured genes as predictors, regression
models predict unmeasured expression values with high
accuracy
To test whether the DM set accurately predicted unmeas-
ured genes, we built a regression model for each gene in
the predictable set using the TCGA training partition (2/3
of data) (Fig. 1b). For a specific predictable gene, only the
genes in the DM set that were correlated beyond the |rP|
threshold were used as predictors in the regression model.
To evaluate the performance of the regression models, we
predicted expression of specific genes using the regression
models in the TCGA testing partition (other 1/3 of data),
and then correlated the true and predicted values using
the Spearman rank correlation (rS). Expression prediction
was carried out for all parameter sets defined by the
parameter sweep (144 GGS runs) and for the parameter
sweep results with the two candidate gene sets.
We also assessed the performance of these regression

models in four independent HGSC expression datasets
(Tothill [8], Mayo, Yoshihara [21], and Bonome [22])
(Additional file 3: Table S2, Fig. 1B). We summarized
the accuracy (rS) of the regression models in the TCGA
testing partition and the four independent datasets
(Fig. 5), and repeated analyses including the two candi-
date gene sets (Additional file 2: Figure S4 and S5). We
observe similar average rS across most datasets for a
given set of parameters. As expected, the average accur-
acy of our prediction increases as redundancy and |rP|
increase. In most of the data sets (TCGA [9], Tothill [8],
and Bonome [22]), accuracy generally increases with
increasing DM set size. However, in the Yoshihara and
Mayo data, the maximum rS is achieved when the DM
set size is very small (10–20 genes); as more genes are
predicted the average rS slightly decreases and levels out
(e.g., 3-fold redundancy with |rP| = 0.70 in the Yoshihara
and Mayo datasets). A similar pattern is observed when
using GGS augmented candidate gene sets across all
datasets (Additional file 2: Figure S4 and S5). The highest
rS is achieved using the candidate genes alone to predict a
relatively small number of genes. However, as the DM set
size increases and there is a concomitant increase in the
number of predicted genes, the rS decreases and levels
out. Importantly, when redundancy is 3-fold the average
rS (i.e., imputation accuracy) consistently exceeds the
|rP|used to identify the genes in the DM and predictable
sets (in all data except for Bonome et al.; Fig. 5). The high-
est confidence in imputation accuracy is achieved with
redundancy of 3 and |rP| 0.70.

For 236 of the TCGA samples assayed on the Affymetrix
platform, RNA sequencing (RNA-seq) gene expression
data is also available. We used the regression models to
predict expression in these samples and in the subset of
these samples, which were included only in the TCGA
testing partition (n = 91; Additional file 2: Figure S6). The
overall pattern of rS is similar to that observed in the
validation datasets.

Discussion
Large collections of paraffin-embedded tissue are a rich
resource to test hypotheses based on gene expression
patterns; however, measurement of genome-wide expres-
sion is cost-prohibitive on a large scale. Using the known
expression correlation structure within HGSC, we dem-
onstrate that our GGS approach can efficiently identify
reduced sets of directly measured genes which accur-
ately predict a maximized number of unmeasured genes
in independent data sets, with the ranked correlation
between true and predicted expression of 0.60 or greater
in all testing scenarios, and nearing 0.80 for conservative
parameters. This testing accuracy was observed across
Affymetrix and Agilent mRNA expression array plat-
forms and was also demonstrated in RNA-seq expres-
sion data. While we emphasize the utility of GGS for the
selection of genes to be assayed in future studies, it can
also be used to increase the utility of existing targeted
gene expression data by using the existing gene set to
impute predictable genes.
Gene expression covariance relationships are highly

tissue-specific [23], and successful GGS-based expression
prediction requires a stable tissue-specific co-expression
structure. We demonstrate that in two very different cancer
types, breast and HGSC, the same trends in predictable
gene set size as a function of redundancy, correlation
threshold, and DM set size were observed. The number of
predictable genes was consistently much higher in breast
cancer than in HGSC. When predicting gene expression,
increasing the number of genes required to be correlated
with a predictable gene tends to increase the prediction
accuracy, since more predictor variables are added to
the regression models. However, it also decreases the
total number of eligible genes that could either be
predicted or used for the prediction. The overall
success of expression prediction depends on the redun-
dancy and |rp| selected and may vary by tissue type. If
the tissue-specific gene expression correlation struc-
ture has fewer but larger sets of correlated genes, then
larger redundancy values will have little impact on the
number of eligible genes. If, however, there are many
small sets of correlated genes, high redundancy values
would exclude many of the genes from being eligible.
In selecting gene sets to assay, higher values for
redundancy may be chosen to better accommodate
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probe failures, but such failures will result in decreased
accuracy.
There are several key differences between our work

and the National Institutes of Health Library of Inte-
grated Cellular Signatures (LINCS) program selection of
a set of 1000 “landmark” genes that can be used to infer

80 % of the genome. The goal of the LINCS project is to
increase the capacity of high throughput screening and
generation of expression signatures for small molecules
across cell lines. The 1000 genes were purposely selected
based on their minimally correlated expression across a
large number of cell lines, and their utility in inferring
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the expression of other genes [24]. In contrast, we
designed GGS to tailor gene selection using organism-,
disease-, and tissue-specific gene expression patterns,
identify genes that can be imputed from a given candidate
gene set, and select a user-specified number of additional
genes to assay which maximize the gene expression infor-
mation obtained. Additionally, we use a range of correl-
ation thresholds and redundancy to identify gene sets
whose values can be imputed with varying degrees of
confidence, allowing the user to choose a set of parame-
ters that balances cost and prediction accuracy.
While we demonstrate that GGS-augmented prognostic

ovarian cancer gene sets greatly increase the number of
genes that could theoretically be predicted, and the pre-
diction models using these genes generalize across studies
and platforms, GGS has several limitations. In order to
apply our algorithm, a binary correlation matrix must be
generated using readily available expression data, which
may not exist for a given tissue type or disease. Also, while
it is possible to consider higher order interaction between
gene expression values, we simplify our method by only
considering pairwise correlation between genes. Despite
this simplistic modeling of co-expression relationships, we
achieve high imputation accuracy across populations and
platforms. Another possible limitation is that DM gene set
performance can suffer from population or study variance
in the correlational structure. For example, imputation
accuracy is lower in the Bonome et al. data compared to
the other data sets we evaluated, suggesting that the
correlational relationships differ between these popula-
tions. Since there are various methods to define grade [25]
and there have been changes over time in the groupings
of histologic types of ovarian cancer [26], this could
potentially be due to differences in the characteristics of
cases included in the studies. Finally, our choice of a
greedy algorithm balances the need for DM sets that
maximize the number of predictable genes while
minimizing the running time, and therefore there is no
guarantee that the DM set selected is optimal. A brute
force approach which would guarantee the optimal DM
set selection that truly maximizes the possible predicted
genes would increase the running time by many orders
of magnitude. In contrast, our greedy algorithm runs
with the number of iterations equal to the number of
DM genes the user desires. While a variety of methods
could have been used to predict relative expression, we
chose polynomial regression and random forest models
because of their simplicity. Predicting relative expres-
sion is useful for associative analyses of subtype, out-
come, or other sample features, and is more resilient to
differences in batch, platform, and population than
predicting absolute expression. If absolute expression is
modeled and predicted, care should be taken to address
these issues.

In summary, we demonstrate that GGS augments
candidate gene sets selected for their biologic relevance
by increasing the amount of gene expression information
captured from the assay and potentially providing
preliminary support for future work.

Conclusions
For a given tissue, disease, organism, or model system,
GGS can select a set of genes to directly measure that
efficiently capture the expression levels of additional
genes across populations and assay platforms. GGS can
build from candidate gene sets as a cost-effective way to
increase the amount of gene expression information
obtained in very large studies where using a genome-
wide measurement platform is not feasible. This improves
the utility of existing studies and enhances the efficiency
of future studies by allowing researchers to use both the
directly measured and predicted expression values to test
unknown and difficult to anticipate future hypotheses.

Methods
Datasets and sample inclusion criteria
All data used for these analyses were de-identified and
publicly available. Data were primarily obtained from the
R package curatedOvarianData version 1.3.4 [27]. We
included only non-custom mRNA array datasets contain-
ing at least 100 HGSC or high grade endometrioid tumors
with data on at least 10,000 genes: The Cancer Genome
Atlas (TCGA [9]; n = 549; Affymetrix human genome
U133a); TCGA [9] (n = 236; Illumina HiSeq RNA sequen-
cing); Yoshihara et al. [21] (n = 260; GSE32062; Agilent
whole human genome microarray 4x44k); Tothill et al. [8]
(n = 242; GSE9891; Affymetrix human genome U133 Plus
2.0); and Bonome et al. [22] (n = 185; GSE26712 Affyme-
trix human genome U133a). We also included data
published by Konecny et al. [28] consisting of 174 HGSC
samples and additional unpublished data from the same
group (total n = 379; GSE74357 Agilent whole human
genome microarray 4x44k, termed Mayo in this manu-
script) (Additional file 4: Table S3). These samples were
collected under a protocol approved by the Mayo Clinic
Institutional Review Board.
Expression data and other variables for all samples were

compared within and between datasets using the R package
doppelgangR (https://github.com/lwaldron/doppelgangR)
which correlates sample pairs of expression vectors and
transforms the correlation coefficients using the arc tangent
hyperbolic function so that outliers (significantly similar or
dissimilar sample pairs) can be identified. Sample pairs with
significantly similar expression vectors were marked as
duplicates and dropped. If a pair was significantly similar in
both expression and other variables (e.g., age, grade, stage,
survival, etc.), one member of the pair was kept.
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Distinct datasets were chosen for discovery of the DM
and predictable sets using GGS, and validation of expres-
sion prediction for GGS-selected DM sets. We used the
Affymetrix data from TCGA [9] (n = 549; genes = 13,104)
as a discovery data set. We also used these data to build
and evaluate the expression prediction regression models,
divided into training (2/3, n = 366) and testing (1/3,
n = 183) partitions. We then assessed the perform-
ance of the predicted expression regression models
in four independent datasets: Mayo; Yoshihara et al. [18];
Tothill et al. [8]; and Bonome et al. [22], as well as in the
TCGA RNA sequencing data. Analyses were also per-
formed using TCGA breast cancer RNAseq expression
data [29] provided in the Firehose data repository and
accessed using the R package “RTCGAToolbox” [30]. All
breast cancer samples available from the TCGA firehose
repository (dated 2015-04-02) were used.

Definition of eligible genes
Analyses were restricted to genes that were expressed.
To determine which genes to include, we examined the
distribution of each of the 13,104 gene’s 90th quantile
threshold of expression in the full TCGA data set (549
samples) (Fig. 2a). The distribution is bi-modal and simi-
lar bi-modal distributions were found using the 95th and
99th quantile (data not shown). We chose the value 5 as
a threshold as it consistently falls between the two distribu-
tions when using the 90th, 95th, and the 99th quantiles;
values above 5 were considered truly expressed whereas
those below 5 expressed at a low level or not at all.
Analyses are restricted to those genes above the threshold
(8,265 genes). We next count the number of genes corre-
lated to at least one, two, or three other genes at the |0.60|,
|0.65|, and |0.70| Pearson’s correlation (|rP|) thresholds
(Fig. 2b–d). We define these genes as the eligible gene sets;
these genes can be selected by our method as either directly
measured genes or predictable genes. A network represen-
tation of the eligible genes when |rP| is 0.70 and redun-
dancy is 1 was generated using Cytoscape 3.2.1 using a
prefuse force-directed layout (Additional file 2: Figures S2
and S3).

Characterization of genes eligible for DM or predictable
sets
Using the TCGA discovery data, we identified all genes that
were eligible to be included in either the DM or predictable
set when |rP| is 0.60 and redundancy is 1; i.e., all genes that
are correlated with rP > = 0.60 or rP < = −0.60 to at least 1
other gene. Using the PANTHER human GO-slim [31, 32]
biological process pathways (223 terms), we tested the
distribution of the eligible genes across pathways in com-
parison to the 8265 truly expressed genes. The binomial
test p-values were Bonferroni adjusted to account for
multiple testing.

Selection of genes to directly measure and genes to
predict
We implemented a greedy algorithm to select the DM gene
set that provides the most information about unmeasured
genes and compared it to a ranked-degree approach as a
control. Both approaches take as input parameters: 1) a
binary adjacency matrix which indicates which pairs of
genes are correlated above a certain threshold, 2) the num-
ber of genes the user wishes to directly measure, and 3) the
fold redundancy. The binary adjacency matrix is created by
applying a user selected correlation threshold (|rP|) to the
gene by gene correlation matrix. Cells in the adjacency
matrix are 1 if the two genes are correlated above the
threshold and 0 otherwise. Redundancy is defined as the
number of genes in the DM set that must be correlated
with an unmeasured gene above the |rP| threshold in order
to consider that unmeasured gene to be predictable. The
ranked-degree approach sorts the genes by the number of
genes that they are correlated with at a specified threshold,
then selects the first n highest rank genes where n is the
desired number of directly measured genes. In contrast,
GGS iteratively constructs the DM gene set by looping over
the following four key operations (Fig. 3) until the DM set
reaches the specified size:

1. Sort the genes in the binary matrix by the number
of genes that they are correlated with at a specified
threshold

2. Add the gene with the maximum number of correlated
genes to the DM gene set

3. Add any genes which are now predictable
(i.e., correlated beyond the |rP| threshold to the
redundancy number of genes in the DM set) to
the predictable set

4. Remove all edges with the new DM and predictable
genes (i.e., set all cells in those genes’ rows and
columns to 0)

Given an undirected gene co-expression graph G = (V,E)
for which |V| = n and a user specified k where |DM| = k,
the time complexity required to sort the nodes by their
degree is O(n log(n)) and the time required to remove
edges is bound by O(n2) resulting in an overall time
complexity of O(kn2). Additionally, the co-expression
graph is stored as an adjacency matrix making the space
complexity O(n2).
The GGS analysis returns the DM set along with the final

subset of predictable genes (i.e., eligible but unmeasured
genes that are correlated at the specified threshold to at
least the specified redundancy number of genes in the DM
set). If candidate genes are provided, GGS automatically
adds all of them to the DM set and proceeds as described
above. We examined the performance of GGS with two
candidate gene sets developed to predict survival published
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by Yoshihara et al. [21] (126 genes) and TCGA [9] (200
genes). These two gene sets were chosen because they have
been shown to be most predictive compared to other
published survival signatures [17]. After mapping the candi-
date gene lists to standardized gene symbols using the R
package HGNChelper and restricting to the intersection
with the curatedOvarianData expressionSet, 121 and 183
genes were left for analysis from the Yoshihara et al. [21]
and TCGA [9] gene lists respectively.
While holding the size of the desired DM set constant

at 400, we compared the size of the predictable set
returned by the ranked-degree and GGS methods when
redundancy was set to 1, 2, or 3 and |rP| was set to 0.60,
0.65, or 0.70. These |rP| cutoffs correspond to r2 values
for which one member of the gene-by-gene pair explains
36, 42, or 50 % of the variance of the other respectively.
We further assessed the performance of GGS by
performing a parameter sweep across DM set sizes of
10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 150, 200, 250, 300,
350, and 400, for a total of 144 GGS runs. Parallel
analyses were also performed on the TCGA breast
cancer data.

Expression prediction
Once GGS identified the DM and predictable gene sets, for
each predictable gene, we tested how well the DM set
inferred unmeasured expression. First, all gene expression
vectors were scaled to the range [0,1]. Using 2/3 of the
TCGA Affymetrix data (n = 366) as a training partition, we
built a regression model for each gene in the predictable
set. Genes in the DM set that were correlated with the
specific predictable gene above the specific value of |rP|
were used as predictors, and when there were at least 2 pre-
dictors for a predictable gene, a random forest of regression
trees (R package randomForest [33]) was used to generate
the model. Otherwise, a polynomial regression model with
degree 3 was used (both x and x2 terms were included). In
the remaining 1/3 of the TCGA data (n = 183) we predicted
expression using the regression models and then correlated
the true and predicted values using the Spearman rank
correlation (rS). To summarize prediction accuracy across
all predictable genes defined by a specific parameter set, we
report average rS and a bootstrapped standard error. Only
regression models for which the response variable and all
predictors were present in the dataset were used. Expres-
sion prediction was evaluated for all combinations of |rP|,
redundancy, and DM set size. For each of the 144 param-
eter combinations, the predictable gene set was determined
and regression models were trained in the TCGA training
partition and tested in the TCGA testing partition
(analogous analyses were performed using the TCGA
breast cancer data). We tested the regression models in
the additional four independent HGSC datasets (Mayo,
Yoshihara et al. [21], Tothill et al. [8], and Bonome

et al. [22]). To assess how well the regression models
performed in non-array expression data, we determined
average rS for the 236 samples for which TCGA provides
both Affymetrix and RNA-seq expression values; we simi-
larly calculated average rS for the subset of samples with
RNA-seq data that were in the TCGA Affymetrix testing
partition (n = 91). All RNA-seq expression vectors were
log transformed and then scaled to the range [0,1].

Implementation details
The creation of the correlation and binary matrices as
well as the expression scaling and prediction model
creation and testing was performed using R 3.0.1 [34].
The following R packages were used throughout our
work-flow: curatedOvarianData [27], randomForest
[33], boot [35], igraph [36], doppelgangR (https://
github.com/lwaldron/doppelgangR), and ggplot2 [37].
GGS was implemented using Python 2.7 (using docopt,
numpy, itertools, and collections) and the entire work-
flow (including the preprocessing, parameter sweep, and
expression prediction) is made available [20] on github
(https://github.com/greenelab/greedy-geneset-selection).

Availability of supporting data
While for convenience, we accessed most of our data
through the R package “curatedOvarianData” [27], all
datasets used (other than the TCGA) are available from
the Gene Expression Omnibus (GEO). Specifically: Yoshi-
hara et al. (GEO Accession GSE32062), Tothill et al. (GEO
Accession GSE9891), Bonome et al. (GEO Accession
GSE26715), and Mayo (GEO Accession GSE74357). Add-
itionally, all the code used to perform our analyses as well
as the results for the TCGA breast cancer analysis are
publicly available on github (https://github.com/greene-
lab/greedy-geneset-selection) and has a DOI assigned via
zenodo: 10.5281/zenodo.35086.

Additional files

Additional file 1: Table S1. Distribution of eligible genes across
PANTHER Go-slim pathways. (XLSX 22 kb)

Additional file 2: Figure S1-S6. Additional figures provided illustrate
network structure of GGS selected and predictable genes, parameter sweep
results using candidate genesets, imputation accuracy using candidate
genesets, and imputation accuracy in RNA-seq data. (PDF 1622 kb)

Additional file 3: Table S2. Summary of GGS parameter sweep and
expression prediction results. (XLSX 46 kb)

Additional file 4: Table S3. Filtering of samples using inclusion criteria.
(XLSX 9 kb)

Abbreviations
DM: directly measured gene set (i.e., the genes selected to be assayed);
GGS: greedy gene set selection algorithm; HGSC: high grade serous ovarian
cancer; rP: pearson correlation coefficient; rS: spearman rank correlation
coefficient; TCGA: The Cancer Genome Atlas.

Rudd et al. BMC Genomics  (2015) 16:1065 Page 10 of 11

https://github.com/lwaldron/doppelgangR
https://github.com/lwaldron/doppelgangR
https://github.com/greenelab/greedy-geneset-selection
https://github.com/greenelab/greedy-geneset-selection
https://github.com/greenelab/greedy-geneset-selection
http://dx.doi.org/10.5281/zenodo.32087
dx.doi.org/10.1186/s12864-015-2250-5
dx.doi.org/10.1186/s12864-015-2250-5
dx.doi.org/10.1186/s12864-015-2250-5
dx.doi.org/10.1186/s12864-015-2250-5


Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JD and CG conceived the project. JR designed GGS. JR and RZ implemented GGS.
JR, CG, JD, and ED conceived experiment design. EG provided data. JR performed
experiments. JR, JD, and CG wrote manuscript. All authors read and approved the
final manuscript.

Acknowledgements
This work was supported by the Institute for Quantitative Biomedical Sciences; the
Norris Cotton Cancer Center Developmental Funds; the National Cancer Institute
at the National Institutes of Health (R01 CA168758 to J.A.D., F31 CA186625 to J.R.,
R01 CA122443 to E.L.G.); the Mayo Clinic Ovarian Cancer SPORE (P50 CA136393
to E.L.G.); the Mayo Clinic Comprehensive Cancer Center-Gene Analysis Shared
Resource (P30 CA15083); the Gordon and Betty Moore Foundation’s Data-Driven
Discovery Initiative (grant number GBMF 4552 to C.S.G.); and the American Cancer
Society (grant number IRG 8200327 to C.S.G.).

Author details
1Department of Epidemiology, Geisel School of Medicine at Dartmouth
College, One Medical Center Drive, 7927 Rubin Building, Lebanon, NH 03756,
USA. 2Department of Genetics, Geisel School of Medicine at Dartmouth
College; Department of Systems Pharmacology and Translational
Therapeutics, University of Pennsylvania Perelman School of Medicine,
10-131 SCTR, 34th & Civic Center Boulevard, Philadelphia, PA 19104-5158,
USA. 3Department of Biomedical Data Science, Geisel School of Medicine at
Dartmouth College, One Medical Center Drive, 7927 Rubin Building,
Lebanon, NH 03756, USA. 4Department of Health Sciences Research, Division
of Epidemiology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.

Received: 18 June 2015 Accepted: 27 November 2015

References
1. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to

the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98:5116–21.
2. Creighton C, Hanash S, Beer D. Gene expression patterns define pathways

correlated with loss of differentiation in lung adenocarcinomas. FEBS Lett.
2003;540:167–70.

3. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al.
Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

4. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated
observation of breast tumor subtypes in independent gene expression data
sets. Proc Natl Acad Sci U S A. 2003;100:8418–23.

5. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene
expression patterns of breast carcinomas distinguish tumor subclasses with
clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

6. Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK, et al.
Gene expression profiling reveals molecularly and clinically distinct subtypes
of glioblastoma multiforme. Proc Natl Acad Sci U S A. 2005;102:5814–9.

7. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al.
Integrated genomic analysis identifies clinically relevant subtypes of
glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and
NF1. Cancer Cell. 2010;17:98–110.

8. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel
molecular subtypes of serous and endometrioid ovarian cancer linked to
clinical outcome. Clin Cancer Res. 2008;14:5198–208.

9. The Cancer Genome Atlas. Integrated genomic analyses of ovarian carcinoma.
Nature. 2011;474:609–15.

10. Walter RH, Werner R, Ting S. Identification of deregulation of apoptosis and
cell cycle in neuroendocrine tumors of the lung via NanoString nCounter
expression analysis. Oncotarget. 2015;1:1–9.

11. Stricker T, La Madrid A, Chlenski A. Validation of a prognostic multi-gene
signature in high-risk neuroblastoma using the high throughput digital
NanoString nCounterTM system. Mol. 2014;8:669–78.

12. Northcott PA, Shih DJH, Remke M, Cho YJ, Kool M, Hawkins C, et al. Rapid,
reliable, and reproducible molecular sub-grouping of clinical
medulloblastoma samples. Acta Neuropathol. 2012;123:615–26.

13. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a
maximally informative set of single-nucleotide polymorphisms for association
analyses using linkage disequilibrium. Am J Hum Genet. 2004;74:106–20.

14. de Bakker PIW, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D. Efficiency
and power in genetic association studies. Nat Genet. 2005;37:1217–23.

15. Ponzoni I, Nueda M, Tarazona S, Götz S, Montaner D, Dussaut J, et al. Pathway
network inference from gene expression data. BMC Syst Biol. 2014;8 Suppl 2:S7.

16. Costa IG, Roepcke S, Hafemeister C, Schliep A. Inferring differentiation
pathways from gene expression. Bioinformatics. 2008;24.

17. Waldron L, Haibe-Kains B, Culhane AC, Riester M, Ding J, Wang XV, et al.
Comparative meta-analysis of prognostic gene signatures for late-stage
ovarian cancer. J Natl Cancer Inst. 2014;106.

18. Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, et al.
Understanding multicellular function and disease with human tissue-specific
networks. Nat Genet. 2015;47(6):569–76. doi:10.1038/ng.3259.

19. Logsdon BA, Gentles AJ, Miller CP, Blau CA, Becker PS, Lee SI. Sparse
expression bases in cancer reveal tumor drivers. Nucleic Acids Res. 2015;
43(3):1332–44. doi:10.1093/nar/gku1290.

20. Rudd J, Zelaya R, Greene C. Greedy Geneset Selection. 2015. doi:10.
5281/zenodo.35086.

21. Yoshihara K, Tsunoda T, Shigemizu D, Fujiwara H, Hatae M, Fujiwara H,
et al. High-risk ovarian cancer based on 126-gene expression signature
is uniquely characterized by downregulation of antigen presentation
pathway. Clin Cancer Res. 2012;18:1374–85.

22. Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA,
Bogomolniy F, et al. A gene signature predicting for survival in
suboptimally debulked patients with ovarian cancer. Cancer Res.
2008;68:5478–86.

23. Jong VL, Novianti PW, Roes KCB, Eijkemans MJC. Exploring homogeneity of
correlation structures of gene expression datasets within and between
etiological disease categories. Stat Appl Genet Mol Biol. 2014;13:717–32.

24. Library of Integrated Cellular Signature. 2015. http://www.lincscloud.org/.
Accessed 7 December.2015

25. Malpica A, Deavers MT, Lu K, Bodurka DC, Atkinson EN, Gershenson DM,
et al. Grading ovarian serous carcinoma using a two-tier system. Am J Surg
Pathol. 2004;28.

26. Bast RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities
for translation. Nat Rev Cancer. 2009;9:415–28.

27. Ganzfried BF, Riester M, Haibe-Kains B, Risch T, Tyekucheva S, Jazic I, et al.
CuratedOvarianData: clinically annotated data for the ovarian cancer
transcriptome. Database. 2013;2013:1–10.

28. Konecny GE, Wang C, Hamidi H, Winterhoff B, Kalli KR, Dering J, et al.
Prognostic and therapeutic relevance of molecular subtypes in high-grade
serous ovarian cancer. JNCI J Natl Cancer Inst. 2014;106:dju249.

29. Cancer Genome Atlas Network. Comprehensive molecular portraits of human
breast tumours. Nature. 2012;490:61–70.

30. Samur MK. RTCGAToolbox: a New tool for exporting TCGA firehose data. 2014.
31. Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function

analysis with the PANTHER classification system. Nat Protoc. 2013;8:1551–66.
32. Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, et al. The

PANTHER database of protein families, subfamilies, functions and pathways.
Nucleic Acids Res. 2005;33 suppl 1:D284–8.

33. Liaw A, Wiener M. Classification and regression by randomForest. R News.
2002;2(December):18–22.

34. Team RC: R. A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing; 2012. p. 2014.

35. Hinkley ACD, Hinkley DV. Bootstrap methods and their applications.
Cambridge: Cambridge University Press; 1997.

36. Csardi G, Nepusz T. The igraph software package for complex network
research. Inter J Complex Syst. 2006;1695:1–9.

37. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.

Rudd et al. BMC Genomics  (2015) 16:1065 Page 11 of 11

http://dx.doi.org/10.1038/ng.3259
http://dx.doi.org/10.1093/nar/gku1290
http://dx.doi.org/10.5281/zenodo.35086
http://dx.doi.org/10.5281/zenodo.35086
http://www.lincscloud.org/

	Dartmouth College
	Dartmouth Digital Commons
	12-15-2015

	Leveraging Global Gene Expression Patterns to Predict Expression of Unmeasured Genes
	James Rudd
	René A. Zelaya
	Eugene Demidenko
	Ellen L. Goode
	Casey S. Greene S. Greene
	See next page for additional authors
	Recommended Citation
	Authors


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Characterization of eligible genes
	GGS-selected gene sets can predict the expression �of a larger number of genes compared to ranked-degree-selected gene sets
	Predictable gene set size across GGS parameter values and for candidate gene sets
	Using directly measured genes as predictors, regression models predict unmeasured expression values with high accuracy

	Discussion
	Conclusions
	Methods
	Datasets and sample inclusion criteria
	Definition of eligible genes
	Characterization of genes eligible for DM or predictable sets
	Selection of genes to directly measure and genes to predict
	Expression prediction
	Implementation details
	Availability of supporting data

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

