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METHODOLOGY ARTICLE Open Access

Improved IBD detection using incomplete
haplotype information
Giulio Genovese1*, Gregory Leibon1, Martin R Pollak2, Daniel N Rockmore1,3

Abstract

Background: The availability of high density genetic maps and genotyping platforms has transformed human
genetic studies. The use of these platforms has enabled population-based genome-wide association studies.
However, in inheritance-based studies, current methods do not take full advantage of the information present in
such genotyping analyses.

Results: In this paper we describe an improved method for identifying genetic regions shared identical-by-descent
(IBD) from recent common ancestors. This method improves existing methods by taking advantage of phase
information even if it is less than fully accurate or missing. We present an analysis of how using phase information
increases the accuracy of IBD detection compared to using only genotype information.

Conclusions: Our algorithm should have utility in a wide range of genetic studies that rely on identification of
shared genetic material in large families or small populations.

Background
Genetic studies designed to identify the location of loci
that influence phenotypes depend on identifying regions
of the genome that are shared among different indivi-
duals. This is true for both identification of rare, highly
penetrant monogenic disease loci via linkage analysis or
for common alleles that influence disease susceptibility
via linkage disequilibrium as revealed by genome-wide
association studies (GWAS). The use of very dense
panels of single-nucleotide polymorphisms (SNPs) via
microarrays makes direct identification of disease-asso-
ciated variation possible in some study designs. How-
ever, in family-based studies of monogenic or oligogenic
phenotypes, causal alleles are expected to have non-tri-
vial penetrance and be relatively rare, thus making iden-
tification of disease-associated chromosomal regions a
necessary prerequisite for identifying causal variation.
There has been tremendous recent progress at both

ends of the spectrum for finding disease-influencing var-
iants. There are useful techniques for identifying rare,
but highly penetrant, monogenic disorders as well as for
uncovering common variation conferring small but
reproducibly increased risk. However, the middle ground
of variants of moderate risk and moderate frequency is

less well explored. Studies in large complex extended
families and isolated populations with a high rate of spe-
cific phenotypes provide one method for approaching
such phenotypes. Analyses of this sort would benefit
from improved methods for identifying shared chromo-
some segments that rely neither on standard genetic
linkage methods (which in turn rely on a near perfect
understanding of family structure and are computation-
ally very intensive) nor on association analysis (which is
not well suited for identifying less common and more
recent phenotype-influencing variants).

Overview
Alleles that are identical on homologous chromosomes
are said to be IBS (identical by state). IBS alleles are said
to be IBD (identical by descent) if they are IBS by virtue
of having been inherited from a recent common ances-
tor. It is common practice to identify chromosomal seg-
ments as “likely IBD” when a sequence of consecutive
loci is observed to be IBS and is of such a length that
the odds of this event happening by chance is small
compared to the probability of that segment being
inherited IBD. Thus, information about a series of con-
secutive loci informs the likelihood that alleles at any
one of those loci are inherited IBD.
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In the absence of informative parental genotypes at
the loci of interest, the only absolute certainty as to
whether a locus is IBD occurs when two genotyped indi-
viduals share no common alleles (say, one has genotype
AB and the other CD). In this case no pair of autosomes
is IBS, and we can conclude with certainty that the
locus is not IBD. For bi-allelic markers, this can happen
only when each individual is homozygous for a different
allele (i.e., one individual is AA and the other is BB).
Loci where this happens are said to be “incompatible”
(for the pair) and, assuming no genotyping error has
taken place, provide certainty for not being IBS and
therefore not being IBD.
This simple observation provides the foundation for

probabilistic approaches to identify likely IBD segments
in [1] and [2]. These approaches consider regions IBD if
no incompatible loci are observed on a sufficiently long
segment. More intricate approaches using allele frequen-
cies to weigh the evidence brought for IBD by every sin-
gle locus are described in [3,4], and [5]. In [3] and [5] a
Hidden Markov Model (HMM) is used in which there
are two states, corresponding to being IBD and not
being IBD, even though the process generating the
states does not in general satisfy the Markov property.
The model is chosen mainly for its relative simplicity
and consequent computational tractability, as opposed
to other approaches, such as those described in [6] and
[7], which use inheritance vectors as states from which
IBD status can be inferred. This inheritance vector
approach is computationally intractable even for moder-
ately sized pedigrees, but has the property that the
underlying process is Markov.
Markov Chain Monte Carlo (MCMC) methods have

been developed in [8] to deal with complex pedigrees,
but they are not suitable for the common situation
where information about the pedigree is inaccurate,
incomplete, or spans only a few of the most recent
generations.
Pedigree data can be useful for many purposes, but it

does not in general provide a great deal of additional
information for the purpose of IBD detection in situa-
tions in which the genotyping platforms are orders of
magnitude finer than the expected number of recombi-
nation events in the pedigree. This can be the case
when using Affymetrix or Illumina SNP microarrays. It
is in fact possible to detect IBD segments and infer
undetected relationships.
When haplotype (i.e., “phased” genotype) data is avail-

able, it is possible to identify as IBD segments that are
shorter than those identified solely with genotype data.
This is a key observation and we take advantage of this
fact in the method we present below. Several algorithms
use the haplotype to perform IBD detection [9] and
association testing [10]. Note that even if we had the

genome sequence data with base pair resolution, we
would still be in need of a statistical model to infer
haplotypes.
It is for these reasons that the “phasing” of genotype is

important and relevant. Several different techniques
have been used to infer the phase from genotype data in
multiple individuals. Some techniques try to make such
inferences by looking at thousands of individuals and
then applying linkage disequilibrium (LD) to discern
local haplotypes, using principles like maximum parsi-
mony [11], entropy minimization [12], or variable length
Markov chains [13]. These algorithms are fast and effi-
cient. However, they require large sets of samples and
while they tend to perform very well on the local scale,
they perform less well, if at all, over long intervals. As a
consequence, IBD detection algorithms using the
inferred haplotype data end up identifying IBD segments
broken up by short regions due to errors in the phase
[9]. In general, assigning the most likely haplotype to a
given sample without modeling the uncertainty can bias
the results of studies based on haplotype.
An alternative approach to phasing is described in

[14]. This technique uses IBD segments among relatives
to infer the alleles that have been inherited from the
maternal side and those that have been inherited from
the paternal side of each individual. This approach is
more robust than traditional methods and performs
much better over the long range.
In this paper we introduce a new approach to the

detection of IBD segments for a pair of samples. This
approach uses the available phased genotype informa-
tion to increase the accuracy of the detection, but at the
same time is robust to inaccuracies of the phase. The
method we present takes advantage of phase informa-
tion even if this information is incomplete or less than
fully accurate. In addition, we provide a novel method
to improve the given configuration for the phased geno-
type through the identified IBD segments. We have
implemented this algorithm and we detail its perfor-
mance using genetic data in a large family known to be
affected by an inherited form of kidney disease. In this
example, our approach finds an additional 10% (prob-
able) IBD loci as compared to the findings of an analo-
gous method based only on genotype data. The ability
to identify the entire set of regions that are actually IBD
is of clear importance in identifying phenotype-influen-
cing loci. Our algorithm should therefore be useful in a
wide range of genetic studies that rely on the identifica-
tion of shared genetic material.

Results
First we show a typical approach for detecting IBD seg-
ments from unphased genotype data, then we show how
we can improve the detection algorithm by exploiting
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phase information, and finally we show how to use IBD
information to update the phase. Figure 1 shows how
the processes are integrated.

IBD detection using genotype
Naively, a region would be identified as IBD for two
samples if a long streak of loci for which at least one
allele for one sample is IBS to one allele for the other
sample is observed, while if the region is not shared
IBD, we would expect to observe some loci as homo-
zygous for both samples but for different alleles. Our
approach to IBD detection expands on this basic idea

and can be viewed as a descendant of the various
HMM-based approaches. For context it is worth a quick
review of the basic HMM approach. For a clear general
explanation of HMMs see [[15], Chap. 3] and [[16],
Section 3.10].
A typical HMM-based method for detecting IBD seg-

ments in a pair of samples uses a two-state model
along two homologous pairs of autosomes belonging to
two different samples (see e.g., [3]). We call this HMM
for genotype emission. The two states correspond to
the cases in which the two samples share at least one
allele at a given locus (the state “IBD”) and the case in
which they do not share any allele by descent (the
state “NO IBD”). It is possible to add a third state for
the case in which both alleles are shared. It is also pos-
sible to identify seven additional unordered ways to be
IBD between two samples (for a total of nine states),
as described in [[17], Chap. 5] and introduced origin-
ally by [18]. This takes into account the possibility of
more than a pair of segments being IBD among the
four homologous chromosomes for the two samples.
In order to mitigate the computational burden we
decided not to consider this enlarged state space,
although the extension to a greater number of states
would be straightforward.
Because this model does not use phase information,

the possible observed states can be partitioned into six
groups. For bi-allelic markers, we will use the notation
A and B to distinguish the two alleles. Because for every
marker there is one version for each of two homologous
chromosomes, we indicate the three possible (unor-
dered) genotypes as AA, AB, and BB. Part A of Table 1
lists these states, together with the corresponding emis-
sion probabilities which depend on the allele probabil-
ities in the population: p for allele A and q = 1 - p for
allele B. These emission probabilities do not take into
account the probability of genotyping error, which is an

Figure 1 Basic flowchart. From genotyped data a first estimate of
IBD segments is made. The IBD segments can then be used to
estimate phase if this is missing, which in turn can be used to
update (and improve) the estimate of IBD segments. The process
can be repeated until it converges.

Table 1 HMM with genotype/haplotype emissions

A NO IBD IBD levG

{AA, AA} p4 p3 log2(p)

{AA, AB} 4p3q 2p2q 1 + log2(p)

{AA, BB} 2p2q2 0 g
{AB, AB} 4p2q2 pq 2 + log2(pq)

{AB, BB} 4pq3 2pq2 1 + log2(q)

{BB, BB} q4 q3 log2(q)

B NO IBD IBD levH

{A, A} p2 p log2(p)

{A, B} 2pq 0 g
{B, B} q2 q log2(q)

Second and third column display emission probabilities for hidden states NO
IBD and IBD for the HMM with genotype (A) and haplotype (B), with p the
minor allele frequency, and q = 1 - p. The last column shows the log-
evidence.
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important variable to consider, as it is common to
observe incompatible loci even when a pair of segments
is clearly known to be IBD (for example in the case of
small deletions where the apparent homozygous obser-
vation is actually caused by hemizygosity).
Note that while the property of IBD/NO IBD is not

itself Markovian, the HMM framework still makes sense
here: emission probabilities are defined in exactly the
same manner, but initial and transition probabilities
need a new interpretation. One way to proceed is by
assigning these probabilities for each pair so that the
defined Markov process has the correct equilibrium fre-
quencies in accordance with the amount of genome
shared IBD by the pair [3,5,9]. This way the choice of
initial and transition probabilities are guided by the
degree of relationship of the two samples being
compared.
Our approach differs and instead regards the transi-

tion probabilities as costs. The smaller we keep the tran-
sition probabilities, the longer the streaks of compatible
observations are needed to justify transitioning back and
forth between the two states, and therefore the more
likely it will be that we avoid false positive IBD detec-
tion. On the other hand, in doing this, we may incur
false negative IBD detections. We show how to mitigate
this and balance these considerations via the use of
phase information.
For our purpose, the Markov chain is symmetric, with

probability of transitioning between states � = 2-δ, for a
given positive δ, and with probability of remaining in
the same state 1 - �. There is an approximately linear
relation between the variable δ and the length of the
smallest IBD segment that can be detected by the
model. Notice that our use of a single parameter con-
trasts with the approaches followed in [3] and [19],
where the transitions probabilities are estimated in
accordance with the expected number of IBD loci
expected between the two samples and their expected
length. Analogously, define initial probabilities as

P IBD P NOIBD( ) ( )= = − and .1

Standard forward-backward decoding algorithms are
then used to assign probabilities to the hidden variables,
and each locus then is labeled as IBD if the probability
of this event is greater than the probability of the oppo-
site event.
One assumption of this analysis is that the observa-

tions for adjacent loci be independent of each other.
This requires SNPs to be in linkage equilibrium. This is
clearly not the case for SNPs in current genotype arrays,
and relaxing this assumption would require a more
sophisticated analysis. Nevertheless, this approach does
still encode the intuition that haplotype data brings

more evidence to avoid false positives than genotype
data does.
In Appendix A we compare how easier it would be to

detect IBD segments if we had haplotype information as
opposed to genotype information.

IBD detection using phased genotype
If we have the phased genotype information for each
individual, then we could use a more detailed HMM,
with one state representing the case in which no pair of
autosomes is IBD and four different states each corre-
sponding to the pair of autosomes (denoted as either
“L” or “R”) carrying the haplotype shared in the first
and second sample. Following standard usage, when dis-
cussing phased genotype of heterozygous loci, we use
the notation AB to indicate that allele A belongs to the
“left” autosome and BA to indicate that allele A belongs
to the “right” autosome. The definition of left and right
autosome is of course purely arbitrary, but makes sense
in the context of consecutive heterozygous loci. We will
consider a choice for the phase for a group of hetero-
zygous loci to be “correct” if it is consistent with the
haplotypes of the segment containing those loci. In this
situation the cases break down as

• IBD LL - The allele on the left autosome of sample
1 is IBD with the allele of the left autosome of
sample 2,
• IBD LR - The allele on the left autosome of sample
1 is IBD with the allele of the right autosome of
sample 2,
• IBD RL - The allele on the right autosome of
sample 1 is IBD with the allele of the left autosome
of the sample 2,
• IBD RR - The allele on the right autosome of
sample 1 is IBD with the allele of the right autosome
of the sample 2.

Up to ten additional states could be introduced to
account for all possible cases (for a total of fifteen
states), in which more than one pair of chromosomes
are in an IBD state [[17], Chap. 5]. As before, for ease
of exposition as well as computational efficiency we
have chosen not to describe a model with this level of
detail, but it would be straightforward to extend our
techniques in this way.
In the previous section we described how using haplo-

type information enables the identification of shorter
IBD segments. Unfortunately, phased genotype data is
not as easily available and, when it is, it is not always
accurate. In some occasions it becomes clear that there
are inconsistencies. For example we might encounter
situations like the one in Figure 2 where we might
recognize that one whole haplotype is shared, but only
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if the relative phase between the two loci indicated with
the arrows is incorrect. On the other hand, on the level
of genotype, this information would suggest that the
region is IBD.
This suggests that it is of great importance for an IBD

detection algorithm to be able to cope with uncertainty
while at the same time still being able to exploit the
available phase information. In order to account for the
possibility of errors in the phase, the method we present
here modifies the HMM by introducing transition prob-
abilities between the four IBD states every time one of
the observed loci is in a heterozygous state, so as to
allow the tagged IBD segments to switch from one auto-
some to the homologous one.
We will call this new model HMM with phased geno-

type emission. The simple idea is that IBD segments
should be allowed to switch between homologous auto-
somes at every heterozygous locus to allow for the pos-
sibility that the relative phase between two consecutive
loci is incorrect.
To achieve this, one of the four transition diagrams in

Figure 3 (distinguished by the colors of their arrows) is

used according to which genotype is observed next as
shown in Table 2. Notice that if l = μ = 0 then the four
tables are exactly the same, which is equivalent to not
allowing switching.
The constants l and μ are chosen according to how

unlikely we expect that switching should take place. If
the current phase configuration is completely random,
then we would expect switching and not switching to be
equally likely. If we model this by choosing l = μ = 1/2,
then the results are equivalent to those obtained using
the HMM with genotype emission probabilities. We
prove this in Appendix B. The method works well and
does not run the risk of missing IBD segments that
otherwise would be identified with the more simple
HMM with genotype emission.

Phased genotype inference from IBD segments
Once a segment has been labeled as IBD between two
pairs of autosomes, we know that at least one haplotype
is shared. At a given polymorphic locus i, let Ai denote
the more common allele, and Bi the less common allele.
In Figure 4 we see an example in which either haplotype
A1A2A3B4B5 or haplotype A1A2B3B4B5 is shared, but we
cannot infer with certainty which.
However, even if we might not be sure exactly which

haplotype is shared, we can usually rule out some con-
figurations for the phased genotype and therefore we
can still perform some level of inference. In this exam-
ple the two loci indicated with the arrows are hetero-
zygous for one sample and homozygous for the other
sample and no other locus in between has the same
property. In this case we say that the two heterozygous
loci indicated with the arrows are “linked.” The link is
said to be “satisfied” if the phasing is such that the IBD
region between them is consistent on the level of haplo-
type and “unsatisfied” if not (i.e., consistency between
the linked loci is obtained by switching between auto-
somes). Thus the example above shows an “unsatisfied”
link. Were this the original phasing of the genotype
data, this could be remedied by a rearrangement of the
first sample. Since the phased genotype was such that
the two heterozygous loci were both on the left for the
first sample, a possible solution would be to pick a con-
figuration for the phased genotype that would look like
the one in Figure 5.
We record a configuration like the previous one as a

link between the two heterozygous loci. Once a sample
has been compared with all the other available samples
for shared IBD segments, the phased genotype that
satisfies the largest number of links is computed.
At this point it is important to notice that it is unli-

kely that all links could be satisfied, since it is usually
the case that some might be due to genotype errors,
false positive IBD segments, recombination events, or

Figure 2 IBD/haplotype inconsistency. In this example, the two
pairs of columns indicate phased genotype data. The shading
shows a genotype consistency that gives evidence for an IBD
region, and if this is the case, then the phasing of the second
genotype is incorrect.
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overlap of IBD segments on the two homologous chro-
mosomes (as is common for siblings). Therefore we
should aim at satisfying as many links as possible rather
than trying to solve the likely impossible problem of
satisfying them all. A priori, this combinatorial problem
could get quite complicated. For example, consider the
situation in Figure 6 with five samples for which the
one in the middle is identified as IBD with all the other
samples. In checking the different possible configura-
tions, we end up concluding that the only configuration
that is compatible with all the IBD segments detected is
the one in Figure 7.

Because of errors, it will not be possible in general to
find a configuration that is compatible with all IBD seg-
ments detected. Therefore we use a maximum satisfia-
bility approach. For a given sample, target, let t1,....,tm
denote the locations of the heterozygous loci. For every
phasing configuration of the genotype, associate a binary
vector (y1, y2,...,ym) with the convention that if yi = 0,

Figure 3 Transition diagram for hidden states transitions. Blue transitions are allowed only when the next genotype is heterozygous for the
first sample, red transitions when the next genotype is heterozygous for the second sample, and green transitions when they are both
heterozygous.

Table 2 HMM with phased genotype transitions

A NO LL LR RL RR B NO LL LR RL RR

NO  �/4 �/4 �/4 �/4 NO  �/4 �/4 �/4 �/4

LL �  0 0 0 LL �   0 0

LR � 0  0 0 LR �   0 0

RL � 0 0  0 RL � 0 0  
RR � 0 0 0  RR � 0 0  
C NO LL LR RL RR D NO LL LR RL RR

NO  �/4 �/4 �/4 �/4 NO  �/4 �/4 �/4 �/4

LL �  0  0 LL �    
LR � 0  0  LR �    
RL �  0  0 RL �    
RR � 0  0  RR �    
The matrices show the transition probabilites among the five hidden states
when the next genotype is respcectively homozygous for both samples (A),
homozygous for the first sample and heterozygous for the second sample (B),
heterozygous for the first sample and homozygous for the second sample (C),
and heterozygous for both samples (D), with  = 1 - �,  = 1 - l, and  =
1 - μ.

Figure 4 Example of unsatisfied link. The two heterozygous loci
indicated with the arrows are said to be “linked” because they are
contained in an IBD segment for which the other sample is
homozygous and no other locus in between has the same property
and the link is “unsatisfied” because the current phased genotype
requires a switch in the IBD pattern.
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then the phased genotype at locus ti is AB, otherwise if
yi = 1 then the phased genotype is BA. Now, for each
sample target we initialize a sparse square matrix Ltarget.
For each IBD segment sample target shares with another
sample source, we search for all consecutive pairs of loci
(ti, tj) for which sample target is heterozygous at both
loci ti and tj while sample source is homozygous, and no
other locus in between ti and tj has the same property.
For each pair (ti, tj) defined this way, we increment

Ltarget(I, j) by one if for sample source we observe either
A At ti i

and A At tj j or B Bt ti i
and B Bt tj j , and we

decrement Ltarget(i, j) by one if for sample source we
observe either A At ti i

and B Bt tj j or B Bt ti i
and

A At tj j . Pseudocode is given in Algorithm 1 in Appen-
dix C.
Once we update matrix Ltarget using all the IBD seg-

ments shared with other samples, we are then interested
in finding the binary vector (y1, y2,...,ym), for which the
sum

L i j
i j

m
y yi j

,

( , )( )
=

+∑ −
1

1 (1)

is as large as possible. In fact, notice that the expres-
sion in (1) is equal to the number of links satisfied by
the phase configuration given by the binary vector (y1,
y2,...,ym) minus the number of unsatisfied links. More-
over the number of loci (ti, tj) for which Ltarget(i, j) is
not zero is linear in m since the likelihood of finding a
link between loci ti and tj decreases exponentially with
the difference j - i.
The general problem is a special instance of the more

general class of MAX GEN2SAT problems [20]. This a
class of problems which try to find the configuration of
a collection of binary variables with constraints on pairs
of variables so to satisfy as many constraints as possible.
It is known that for such problems it is possible to find
a configuration that satisfies at least 87.856% of the
maximum number of satisfiable links [21] in time poly-
nomial in the number of binary variables.
However, a general algorithm is not so useful for our

particular problem. On average we would expect links
between ti and tj for j - i very small and most of the
time when j - i = 1, as chances for a locus to be hetero-
zygous for both samples are always lower than 50%.
This still makes the two binary coefficients yi and yj
highly dependent on each other, even if j - i is large, as
each IBD segment will establish a chain of dependen-
cies. A better approach would be to consider the relative
binary phase coefficients

z y y i mi i i= ⊕ = … −+1 1 1 for , ,

Figure 5 Example of satisfied link. The two heterozygous loci
indicated with the arrows are said to be “linked” because they are
contained in an IBD segment for which the other sample is
homozygous and no other locus in between has the same property
and the link is “satisfied” because consistent with the IBD segment
detected.

Figure 6 Example of haplotype configuration before phasing.

Figure 7 Example of haplotype configuration after phasing.
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where ⊕ corresponds to the logical xor (the addition
of numbers modulo 2). Using relative binary phase coef-
ficients makes it easier to devise an algorithm that per-
forms an iterative climb in the space of all possible
combinations of binary phase coefficients. Testing with
the FGFM dataset (see the Experiments section below)
proved that very good results are already possible with a
naive approach that will search among all possible con-
figurations of s binary coefficients (zi, zi+1,...,zi+s) for the
one that satisfies the largest number of links for i = 1,...,
m - s - 1. Pseudocode is given in Algorithm 2 in Appen-
dix C. Note that an important conceptual advantage of
this approach is that each link provides information
with respect to the relative phase of two heterozygous
loci, usually close to each other, leading to a simpler
approach to handling conflicting information coming
from multiple IBD segments. In fact, trying to determine
which alleles have been inherited from the maternal
chromosomes and which have been inherited from the
paternal chromosomes (as is done in [14]) might be
more problematic when dealing with information com-
ing from short IBD segments for which the inheritance
pattern is unclear. A straightforward example comes
from phasing the genotype of an individual using the
genotype of a child. All loci will be easily recognized as
IBD although we cannot infer where the recombination
events took place. Nevertheless, only one link per
recombination event would not be satisfied by the true
haplotype. If no other evidence is available there is no
way to infer the correct phase, but if other links are col-
lected around the recombination event from other
sources, it is likely that the true haplotype will be the
one satisfying the maximum number of links. The same
argument can be made for links not satisfiable by the
true haplotype which are due to genotype errors in the
source sample or to false positive IBD segments.

Experiments
We performed two different analyses, the first one
aimed at understanding how much phase information is
concealed in the IBD segments and the second one
aimed at quantifying how much IBD detection with
phased genotype, even if incomplete, can be achieved
and how this outperforms the one with genotype.
To compare how phasing using IBD segments com-

pares with other haplotype phasing methods, we simu-
lated the dynamics of a chromosome segment
reproducing through a small population using a Wright-
Fisher model with recombination events. For a clear
description of this model see [[22], Chap. 3]. The switch
error rate (see [13,23]) measures how often the relative
phase between heterozygous loci has been retrieved cor-
rectly. As an example, suppose that a sample consists of
two haplotypes A1A2A3B4B5A6 and B1A2B3B4A5B6, but

the inferred haplotypes are instead A1A2B3B4A5B6 and
B1A2A3B4B5A6. Then the switch error rate is 33%, since
the relative phase between the first and third locus is
incorrect, while the relative phases between the third
and fifth locus and between the fifth and sixth locus are
correct. The second and fourth loci do not matter since
they are homozygous for the sample.
To indicate how much information is concealed in

pairwise IBD information of a group, we compared the
switch error rate of the haplotype retrieved by our phase
update algorithm using IBD segments (as computed
from the simulation) and how much relative phase was
instead retrieved by the BEAGLE algorithm (see [13]).
We also computed how much phase could be retrieved
correctly by using both BEAGLE and the IBD segments.
To simulate a scenario similar to a large interbred

family, we ran different simulations with a different set
of parameters. We first simulated a population of 2N
haploid haplotypes of genetic length L centimorgans
containing s SNPs for T generations using the Wright-
Fisher model. Then to resemble the dynamics of a small
interbred family we sampled a subset of 2n haplotypes
and we simulate them as a smaller population for t gen-
erations. To avoid having to model how SNPs arise in a
population, we bootstrapped the whole simulation using
haplotypes from the European population in the third
phase of the Hapmap project http://hapmap.ncbi.nlm.
nih.gov/, for which reliable phased data was computed
using trios by a method similar to the one described in
[24]. Results for different values of the parameters are
given in Table 3.
These results are indicative of how much informa-

tion is being missed by the BEAGLE algorithm and
that could have still been retrieved using complete and

Table 3 Comparison of switch error rates

n L IBD BGL BOTH

50 10 3.88% 6.17% 2.41%

100 10 2.99% 4.54% 1.81%

200 10 1.96% 2.23% 1.18%

50 5 3.73% 4.87% 1.83%

100 5 2.13% 2.02% 1.01%

200 5 1.47% 1.01% 0.63%

50 2 3.81% 3.16% 1.57%

100 2 2.70% 1.20% 0.62%

200 2 1.55% 0.55% 0.35%

The table shows results for the switch error rate by, respectively, our phase
update algorithm (see Appendix C for pseudocode) in the IBD column, the
BEAGLE algorithm in the BGL column, and the combined approach in the
BOTH column for a dataset simulated by using N = 10000 as the size of the
original population, T = 100 as the number of generations for which the
population was simulated, n as the size of the family sampled, t = 5 as the
number of generations for which the family was simulated, L as the genetic
length in centimorgans of the haplotypes simulated, and s = 400 as the
number of SNPs in the haplotype.
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correct IBD segment information. It is clear that BEA-
GLE scales very well as the size of the samples
increases. However it is also clear that BEAGLE misses
some of the correct switches which could be correctly
inferred if the information from IBD segments was
correctly exploited. This is true in particular for less
dense SNP arrays. It is likely that while BEAGLE will
perform very well when predicting the phase between
closely linked markers, it might not do so for markers
at larger genetic distance from each other, as could be
the case for markers at opposite sides of a recombina-
tion hotspot.
From an IBD detection point of view, it is important

to stress the fact that a switch error rate smaller than
10% is already very good for locating more IBD seg-
ments than with a pairwise IBD detection model solely
based on genotype. So, when the parameters allow it,
a good strategy is to bootstrap the analysis of IBD seg-
ments by first haplotyping the data using a haplotype
phasing algorithm like BEAGLE. When this is not the
case, for example if the markers are not dense enough
or if not enough samples are available, our phasing
algorithm can come in handy. A good strategy would
be to alternate IBD detection and phase update in the
small dataset, while decreasing the transition probabil-
ities between IBD states at every step. In Table 4 the
last four columns show the percentage of IBD regions
(false negatives) missed by the IBD detection algo-
rithm using only genotype data and the same quantity
using complete haplotype data, together with the per-
centage of regions incorrectly identified as IBD (false
positives) compared to the total amount of IBD
regions, again using only genotype data and complete

haplotype data respectively. Notice that when the size
of the family sampled from the population n increases,
the relative error detection rate increases as well. This
is due to the fact in a larger family the average
amount of IBD among different individuals is smaller,
implying that the relative amount of regions shared
IBD decreases.
The percentages relate to the total amount of loci

pairwise shared by descent from one of the founders
used to bootstrap the simulation. Notice that if two
founders shared a segment IBD, their two haplotypes
would not have been counted as IBD from the simula-
tion, but they might have been detected as IBD by the
IBD detection algorithm if inherited by two different
samples, resulting in a false positive.

FGFM family
We used the algorithm to perform an analysis of geno-
type data obtained from 35 people, collectively identified
as family FGFM, a large family known to be affected by
an inherited form of kidney disease. These 35 indivi-
duals are all members of a large family whose self-
reported pedigree has many uncertainties and missing
links in the details of the relationships. In particular, the
founders, as defined by the known pedigree, share a
large number of IBD segments and as such they lack the
property of genotype independence. Figure 8 shows just
a small subset of this family.
Genetic data was collected from FGFM using the Affy-

metrix 100 k Array Set, with the goal of searching for an
underlying genetic basis to the inherited form of kidney
disease affecting many members of this family. The
complexity of the pedigree, together with the lack of
information for how founders are related, made para-
metric approaches unfeasible and was the motivating
factor for developing an alternative methodology. We
evaluate how the use of phased data improves the per-
formance of our algorithm by first measuring how many
loci are identified as IBD by the HMM with genotype
emission and then using this information to compute
phased genotype data. At this point, we iterate the
HMM with phased genotype emission algorithm to
identify IBD segments and to update the phase a few
times.
For both HMM with genotype emission and with

phased genotyped emission we used parameters δ =
40, g = 8 and for the HMM with phased genotype
emission we use l = μ = 1/4. The average percentage
of IBD detected by the two algorithms between two
samples was, respectively, 14.14% and 16.36%. This
increase, even if (as of yet) still insufficient to identify
the disease-causing mutation in our case, was in fact
dramatic, because it was mainly due to a whole new
set of smaller IBD segments that we were now able to

Table 4 Comparison of IBD detection accuracy

n L FN GT FN HT FP GT FP HT

50 10 30% 9.9% 0.67% 0.29%

100 10 26% 13% 1.5% 0.65%

200 10 32% 28% 3.4% 0.75%

50 5 30% 2.9% 0.83% 0.19%

100 5 15% 5.6% 3.3% 0.85%

200 5 19% 13% 7.1% 1.6%

50 2 29% 2.6% 5.4% 4.8%

100 2 18% 2.4% 16% 14%

200 2 14% 5.5% 39% 34%

A constant size population of N = 10000 diploids of L centimorgans
containing s = 400 SNPs was simulated for T = 100 generations using a
Wright-Fisher model, then a family of size n was sampled and simulated as a
small population for t = 5 generations. The last four columns measure, after
performing IBD detection, the rate of false positives using genotype in the FN
GT column, and using phased genotype in the FN HT column, and the rate of
false positives using genotype in the FP GT column, and using phased
genotype in the FP HT column. Parameter choices when using genotype were
g = 8, δ = 12, and l = μ = 1/2, and when using phased genotype were g = 8,
δ = 32, and l = μ = 1 = 256. Results were averaged over 10 different
simulations per choice of parameters.
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identify. This, was largely due to the fact that we were
able to retrieve a great deal of the phase. In fact, for
every sample, on average more than 90% of the loci
were detected IBD with at least another sample of the
family. This means that a given random consecutive
pair of heterozygous loci has a good chance to encoun-
ter evidence to determine what their relative phase
should be. This is in part due to the close relatedness
of the people in the FGFM family and the high level of
inbreeding.

Discussion and Conclusions
We presented a new algorithm for the detection of
IBD segments in genotype data. This approach uses
the available phased genotype information to increase
the accuracy of the detection, but at the same time is
robust against inaccuracies of the phase. The method
we present takes advantage of phase information even
if this information is incomplete or less than fully
accurate. The key components are (1) a new method
for using phase information for the identification of
IBD segments and (2) a new method for using IBD
segment identification for the determination of phase.
In one exemplary dataset derived from samples in a
complex pedigree of a large complex family with a
high rate of kidney disease (focal segmental glomerulo-
sclerosis), this approach produced approximately 10%
additional likely IBD loci compared with traditional
methods. The ability to detect IBD segments, both
long and short, will become increasingly critical for
human genetic research, particularly in the search for
genetic variants that are relatively rare and shared by
only small subsets of people (as opposed to common
variants that are present in large populations). It is
therefore of paramount importance to be able to use
the (necessarily) limited data available as best as possi-
ble in order to extract the full amount of information
concealed in genotype data. When the fastest exact

approaches [25,26] are not feasible, our algorithm can
be a useful alternative. In fact, most exact algorithms
have a computational burden exponential in the num-
ber of people in the pedigree. By contrast, our algo-
rithm has a computational cost quadratic in the
number of collected samples, requiring only that com-
parisons between all pairs of samples need to be per-
formed. Our algorithm remains linear in the number
of loci for which genotype data is available. It does not
scale to the speed of [9], which is aimed at identifying
short IBD segments with a computational cost that is
linear in the number of people. However, unlike tradi-
tional approaches, our algorithm does not require pre-
cise pedigree information to run nor is it sensitive to
pedigree loops, as are algorithms that perform exact
inference (see [27]). Also, in our approach, there is no
need to assume that the genotypes of the founders are
independent, an assumption that can easily create
significant problems, as can occur when two people
distantly related share a long IBD segment.
This algorithm lends itself very well for iterative

updates. For example, given a database of phased sam-
ples we can use this algorithm to perform phase infer-
ence on new samples using the IBD segments they will
share with the samples already in the database. This
would be very useful for the analysis of large biobanks
of genetic data. The idea of using IBD segments to per-
form long-range phasing on genotype data from bio-
banks was introduced first in [14]. Our approach is
different from this, perhaps conceptually simpler, and
more robust. Most importantly, it is not strongly tied to
the availability of correct pedigree data, which is often
available only on a small scale, that is, only for nuclear
subfamilies in the most recent generations. Moreover, it
can take advantage of smaller IBD segment, in case lar-
ger ones are not available to phase at a given loci. We
anticipate that this is but one of a number of future
applications and venues for extension of this work.

Figure 8 Pedigree for a subset of FGFM family. Dark nodes correspond to genotyped individuals. The complexity of the pedigree, together
with the lack of information for how founders are related, makes parametric approaches for IBD detection unfeasible.
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Appendix A - Analysis of HMM with haplotype
and genotype emission
Given g a pair of observed genotypes for two samples at
the same locus, define the variable

lev g
g NO IBD

g IBDG
P

P
( ) log

( | )
( | )

.=
⎛

⎝
⎜

⎞

⎠
⎟2

The possible values for levG are shown in the last col-
umn of part A of Table 1. Think of levG as the log-evi-
dence in favor of being in state NO IBD.
Approximately, if the overall log-evidence for a segment
is smaller than -2δ, then the model would decode that
segment as IBD, since it would be more likely to have
switched at the beginning and at the end of the two seg-
ment than having remained in the NO IBD state. Notice
that the probability of observing genotypes {AA, BB} is
0 for state IBD, since this state is incompatible with the
locus observed being IBD, and therefore the value levG
({AA, BB}) would be infinite. In practice, this is weighted
by the fact that we might believe that the locus has been
genotyped incorrectly and therefore it is not absolute
evidence to discard the hypothesis that the locus is in
the IBD state. As a consequence, we modify levG({AA,
BB}) to be equal to a fixed constant g.
If we were observing two haplotypes and we were try-

ing to decide if they share an IBD segment, we would
use a simpler model that we call HMM with haplotype
emission and whose log-evidence we denote levH. As
before, given an observed pair of haplotypes for two
samples at the same locus, h, we define

lev h
h NO IBD

h IBDH
P

P
( ) log

( | )
( | )

.=
⎛

⎝
⎜

⎞

⎠
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In part B of Table 1 we show the possible observed
haplotypes together with their emission probabilities
and the values for levH.
Define the following random variables

Σ

Σ
IBD NO IBD G

NO IBD I

P||

||

( ) ( | ),= lev g  with probability g NO IBD

BBD G

IBD NO IBD H

P= −

=

lev g  with probability g IBD

lev h

( ) ( | ),

( )||Ω   with probability h NO IBD

lev h  with p

P

NO IBD IBD H

( | ),

( )||Ω = − rrobability h IBDP( | ),

where g is one of the six observable pair of genotypes
in part A of Table 1, and h is one of the six observable
pair of haplotypes in part B Table 1. The variables
ΣIBD||NO IBD and ΣNO IBD||IBD represent, respectively, the
log evidence pro IBD once the underlying Markov chain

is in NO IBD state, and the log evidence pro NO IBD
while the underlying Markov chain is in IBD state.
The graph in Figure 9A shows expectation variance

for ΣIBD||NO IBD and Figure 9B for ΩIBD||NO IBD as the
minor allele frequency p for the allele at the observed
locus varies between 0 and 1/2 and for g = 8. The effec-
tive risk to fail to tag a segment as IBD when it is IBD
is strictly related to the allele frequencies of the loci in
the segment.
The ratio between expectation and standard deviation

is clearly much smaller for ΩIBD||NO IBD than it is for
ΣIBD||NO IBD, even more so when the minor allele fre-
quency is large. Naively, alleles with large minor allele
frequency are more likely to witness the fact that two
segments are not IBD, even more so if we have available
the haplotype rather than the genotype.
If a short sequence of loci is IBD, the HMM algorithm

will recognize it as such if the collected log-evidence
levG or levH will reach a threshold depending on the
transition probabilities. Consider the HMM with geno-
type emission using the emission probabilities as in part
A of Table 1. Figure 9C shows the expected value of
ΣNO IBD||IBD, with respect to the allele frequency of that
locus, together with the standard deviation. Notice that
for alleles for which the minor allele frequency is very
small, the standard deviation is very high. This is
explained by the paradoxical fact that the log-evidence
levG can be positive, that is, in favor of state NO IBD,
both for state {AA, BB} and one of the states {AA, AB}
or {AB, BB}, despite the fact that either of these states
are compatible with IBD state.
Using the model with the emission probabilities as in

part B of Table 1, we get instead the graph in Figure
9D. The fact that the standard deviation for ΣNO IBD||IBD

and ΩNO IBD||IBD is large when the minor allele fre-
quency is small reflects the fact that the evidence for
IBD might be very small if the allele shared IBD is the
common one and huge if the observed allele is the rare
one, so there is a wide range of possibilities. Again, the
smaller ratio between expectation and standard devia-
tion measures how much more unlikely we are to incur
false negatives in detecting IBD segments when using
haplotype data rather than genotype data. To better
quantify this concept, we show some experimental
results with data generated in silico in the Experiments
section of this paper.

Appendix B - Analysis of HMM with phased
genotype emission
We will show in this appendix that the HMM with geno-
type is a particular case of the HMM with phased
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genotype when l = μ = 1/2. Also, the HMM with haplo-
type is a particular case of the HMM with haplotype
when l = μ = 0, which implies that no transition among
different IBD states is allowed. This shows intuitively
how the HMM with phased genotype is a model which is
at the same time flexible and precise.
Following the notation in [[15], chap. 3], let {π1,...,πT}

and {x1,...,xT} denote respectively the hidden and
observed states for the HMM with phased genotype
emission and {  

∧ ∧…1, , T
} and { x xT

∧ ∧…1, , } the corre-
sponding ones for the HMM with genotype emission, as
shown in Figure 10A-B. Notice that x1,...,xT correspond
to the phased genotype and depend on the particular
phase configuration chosen while x xT

∧ ∧…1, , correspond
to the genotype and are therefore independent of the
phase. Define the function j as the function outputs the
corresponding hidden state for the HMM with genotype
emission given a hidden state for the HMM with phased
genotype emission. For example j(LL) = IBD and j(NO
IBD) = NO.
Lemma 1 If we choose coefficients l = μ = 1/2, then

for any hidden states i and j
∧ , the following holds

P x j i C x P x j it t t t t t t

j

( , | ) ( ) ( , | ( ))

| (

+ + + + += = = = =∧ ∧ ∧ ∧ ∧

1 1 1 1 1    

 jj j)

,

=
∧

∑ (2)

Figure 9 Log-evidence comparison. Expectation and standard deviation of random variable ΣIBD||NO IBD (A), ΩIBD||NO IBD (B), ΣNO IBD||IBD (C), and
ΩNO IBD||IBD (D) as minor allele frequency varies (g = 8).

Figure 10 Notation for HMMs. Shaded nodes represent hidden
states while unshaded nodes represent observed states for HMM
with phased genotype emission (A) and HMM with genotype
emission (B).

Genovese et al. BMC Genetics 2010, 11:58
http://www.biomedcentral.com/1471-2156/11/58

Page 12 of 15



where C xt( )
∧

+1 is chosen according to the following
table.

x x C xt t t+ + +
∧ ∧

1 1 1

1

( )

(AA,AA) {AA,AA}

(AA,AB),(AA,BA),(AB,AA),(BAA,AA) AA,AB

(AA,BB),(BB,AA) AA,BB

(AB,AB),(AB,BA),(BA,A

{ }

{ }

4

2

BB),(BA,BA) AB,AB

(AB,BB),(BA,BB),(BB,AB),(BB,BA) AB,BB

{ }

{ }

4

4

((BB,BB) BB,BB{ } 1

Notice that C xt( )
∧

+1 equals the number of observed
states xt+1 corresponding to the observed state x t

∧
+1
.

Proof Using part A of Table 1 and Table 5, Lemma 1
follows by checking the different cases for hidden states
i, j

∧ , and observed states x t
∧

+1
.

Lemma 2 If we choose coefficients l = μ = 1/2, then
for any hidden states i and j

∧ , the following holds
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Proof To prove the equation (3), we first use Bayes
theorem to get
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Proposition 1 If we choose coefficients l = μ = 1/2,
then for any hidden states i and i
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Proof We prove the proposition by induction.
Suppose the statement (4) is true for t = n. Then
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where the second equation follows from equation (3).
We use induction in the reverse order for the state-

ment in (5). We start by

P x x i P x j i P x x jn T n

j

n n n n T n( , , | ) ( , | ) ( , , | )… = = = = … =− − +∑   1 1 1  

and then assuming the statement true for t = n and
using equation (2),
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Table 5 HMM with phased genotype emissions

Phased genotype NO LL LR RL RR

(AA, AA) p4 p3 p3 p3 p3

(AA, AB) p3q p2q 0 p2q 0

(AA, BA) p3q 0 p2q 0 p2q

(AA, BB) p2q2 0 0 0 0

(AB, AA) p3q p2q p2q 0 0

(AB, AB) p2q2 pq2 0 0 p2q

(AB, BA) p2q2 0 pq2 p2q 0

(AB, BB) pq3 0 0 pq2 pq2

(BA, AA) p3q 0 0 p2q p2q

(BA, AB) p2q2 0 p2q pq2 0

(BA, BA) p2q2 p2q 0 0 pq2

(BA, BB) pq3 pq2 pq2 0 0

(BB, AA) p2q2 0 0 0 0

(BB, AB) pq3 0 pq2 0 pq2

(BB, BA) pq3 pq2 0 pq2 0

(BB, BB) q4 q3 q3 q3 q3

The matrix displays emission probabilities for hidden states NO, LL, LR, RL, RR
for the HMM with genotype emission, with p the minor allele frequency, and
q = 1 - p.
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Theorem 1 If we choose coefficients l = μ = 1/2, then
for any hidden state i
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Proof By applying Bayes theorem and decomposing
the expression on the left hand and using equations (5)
and (4)
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Because of the previous statement, using coefficients
l = μ = 1/2 will give as a result that the probability for
being in one of the four IBD states for the HMM with
phased genotype emission is the same as the probability
for being in IBD state according to the HMM with gen-
otype emission. Therefore it will not increase our ability
to detect IBD segments. Although using coefficients l =
μ = 0 will indeed increase our ability since the costs of
switching back and forth from NO IBD state to one of
the IBD states are about the same for the HMM with
haplotype emission and the HMM with phased genotype
emission, other than for a small factor of 4, but we
would need to have accurate phased genotype data. The
nice property of the HMM with phased genotype emis-
sion is that we can tune the parameters l and μ to
some intermediate values, so that we allow for inaccu-
rate phase but we still take advantage of it to detect
small IBD segments. A choice of l = μ = 1/4 would for
example increase the ability to detect smaller IBD seg-
ments and still be very robust against errors in the
phase.

Appendix C - Link and phase update pseudocode
Algorithm 1 - Link update algorithm
Given a set of phased genotypes, this algorithm creates a
matrix of links for each phased genotype that will be
later used to perform phase update. The algorithm will
identify all IBD segments among each pair of samples
and for each individual it will update a sparse upper tri-
angular matrix with the links generated by each detected
IBD segment.
Input: Phased genotype {G1, G2,...,Gn} from n samples.
for all pair of samples do

Identify IBD segments in between the two samples
using the HMM with phased genotype.

for all IBD segments detected do

Define one sample as the source and one sample
as the target.

Identify loci t1 < ... <tm for which the target geno-
type is heterozygous.

Identify indexes i1 < ... <ik for which the source
phased genotype at loci t i j is homozygous AA or BB
and the target phased genotype is heterozygous AB or
BA for j = 1,...,k.

for j := 1 to k - 1 - do
if Gsource( t i j ) = Gsource( t i j+1 ) then
Ltarget(ij, ij+1) := Ltarget(ij, ij+1) + 1

else
Ltarget(ij, ij+1) := Ltarget(ij, ij+1) - 1

end if
end for
Swap target and source and repeat once.

end for
end for
return Sparse matrices {L1, L2,...,Ln}.

Algorithm 2 - Phase update algorithm
Given a phased genotype with m heterozygous loci and
phase choice represented by an m × 1 binary vector, an
m × m sparse matrix of links L, this algorithm generates
a new choice for the phase. The idea is to identify first
for every consecutive heterozygous loci which links are
affected by modifying the relative phase in between the
two. Then, for every sliding window of a given length s,
all possible combinations of phases are tested to identify
which one satisfies the maximum number of links. Coef-
ficients zi represent the present relative phase between
the i-th and i + 1-th heterozygous locus. For every non-
zero entry in L the sparse matrix B keeps track of all
the relative phase coefficients which determine if the
corresponding links are satisfied or not while the vector
S keeps track of the amount of links for each nonzero
entry of L. In the second part of the algorithm, using a
sliding window of length s all possible configurations for
the relative phase coefficients withing that sliding win-
dow are tested and the one which maximizes the
amount of links is chosen. Whenever a change is made,
a flag variable is raised, and the process reiterates until
no flag variable is raised, that is, no further changes
within a sliding window of length s can increase the
amount of satisfied links.
Input: Current m × 1 phase binary vector Y = (y1,

y2,...,ym).
Input: Sparse m × m matrix L with link coefficients

collected from IBD segments.
Input: Window length s.
Initialize r × m binary sparse matrix B with r the num-

ber of nonzero entries of L, r × 1 vector S, and k := 1.
Compute coefficients zi := yi ⊕ yi+1 for i = 1,...,m - 1.
for all nonzero entries in L at position i,j do
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for l := i to j - 1 do
B(k, l) := 1.

end for
if yi = yj then
S(k) := L(i, j).

else
S(k) := - L(I, j).

end if
k := k + 1.

end for
Initialize flag := 1.
while flag = 1 do
flag := 0.
for i := 1 to m - 1 do

for all binary vectors (c0, c1, c2,...,cs) with c0 = 1
do

Compute vector w B k ck
s

k= ⊕ =0 (•, )
if S k

k w k
( )

: ( )=∑ <
1

0 then
zi+k := zi+k ⊕ ck for k = 0,...,s
S(k) := - S(k) for k such that w(k) = 1
flag := 1.

end if
end for

end for
end while
Recompute coefficients yi+1 := yi ⊕ zi for i = 1,...,m - 1.
return updated phase binary vector Y = (y1, y2,...,ym).
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