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CCR5 Mediates Specific Migration of Toxoplasma
gondii-Primed CD8* Lymphocytes to Inflammatory

Intestinal Epithelial Cells

SOUPHALONE LUANGSAY,* LLOYD H. KASPER,* NICOLAS RACHINEL,* LAURIE A. MINNS,*

FRANCK J. D. MENNECHET,* ALAIN VANDEWALLE," and DOMINIQUE BUZONI-GATELS

*Departments of Microbiology and Immunology and Medicine, Dartmouth Medical School, Lebanon, New Hampshire; FINSERM Unité 478,
Faculté de Médecine Xavier Bichat, Paris, France; and SDépartement de Parasitologie, Institut Pasteur, and Département de Santé Animale,

Institut National de la Recherche Agronomique, Paris, France

Background & Aims: Toxoplasma gondii, an obligate in-
tracellular parasite, can invade intestinal epithelial cells
and elicit a robust Th1 immune response. In this model
of intestinal inflammation, CD8* intraepithelial lym-
phocytes (IELs) secrete transforming growth factor
(TGF)-p, which appears necessary for the maintenance
of homeostasis in the intestine. However, the mecha-
nism responsible for the IEL migration to the inflamed
intestine is still unclear. Methods: An in vitro coculture
cell system was used to quantify the IEL attraction by an
infected intestinal epithelial cell line (m-IC,). We used
CCRb5-deficient mice to determine which chemokine re-
ceptor-chemokine interaction could be responsible for
the recruitment of antigen-specific CD8* IELs to the
small intestine for the promotion of parasite clearance
and host recovery. Results: We observed increased ex-
pression of several chemokine receptors (CCR1, CCR2,
CCR5, CXCR3) in the infected ileum. In particular, CCR5
expression was markedly increased in antigen-primed
CD8* IELs. Experiments using recombinant chemokines
as well as blocking antibodies showed that macrophage
inflammatory protein (MIP)-1a and MIP-1(3 were critical
for their homing. CD8* IELs isolated from CCR5-defi-
cient mice (CCR5—/—), despite their high production of
TGF-3 and overexpression of activation markers, were
impaired in their ability to migrate in vitro to the m-IC,
monolayer or in vivo to the inflamed intestine after
adoptive transfer. Conclusions: Our data emphasize the
biologic role of CCR5 as an important component in the
migration of intraepithelial CD8* T cells and the regula-
tion of the inflammatory response following parasite
infection.

principal biologic function of the intestinal muco-
sal surface is to maintain immunologic homeostasis
in response to foreign antigens. The enterocytes lining
the villus wall of the intestine form a tight barrier
against potentially invasive pathogens. Chemokines se-

creted at the surface of intestinal epithelial cells (IECs)
play a critical role in the initiation and modulation of the
immune response to various pathogens.! In humans,
IECs from inflamed intestines secrete inflammatory cy-
tokines; in mice, intestinal lesions due to invasive patho-
gens are more frequently characterized by acute neutro-
phil infiltrations associated with increased levels of
macrophage inflammatory protein (MIP)-2 produced by
infected IECs.?3 Other chemokines may act as chemoat-
tractants for macrophages/monocytes/neutrophils and/or
lymphocytes.*

Intestinal intraepithelial lymphocytes (IELs), mainly
composed of CD8a™ subsets of lymphocytes (CD8aat™
and CD8aB™ IELs), are present in the gastrointestinal
tract and express chemokine receptors, including CCR2,
CXCR3, CCR5, and CCR9. Some of these receptors are
up-regulated during intestinal inflammation and are per-
haps critical in lymphocyte localization within intestinal
mucosa. Recently, a specialized interaction has been de-
scribed between both CD8™ IELs and CD4™ T cells from
the lamina propria expressing CCR9 and IECs through
the interaction with its ligand, the thymus-expressed
chemokine (CCL25), which appears to be highly ex-
pressed in crypt intestinal cells.>-¢ Such specific chemo-
kine-lymphocyte receptor interaction in the normal gas-
trointestinal tract suggests that the expression of
chemokines by differentiated epithelium represents an

Abbreviations used in this paper: CFSE, 5(6) carboxyfluorescein
diacetate, succinimidyl ester; IEC, intestinal epithelial cell; IEL, intra-
epithelial lymphocyte; IL, interleukin; IP-10, interferon y-inducible
10-kilodalton protein; MIP, macrophage inflammatory protein; MCP,
monocyte chemoattractant protein; RANTES, regulated upon activa-
tion, normal T cell expressed and secreted protein; TGF, transforming
growth factor; WT, wild-type.
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important mechanism for specialized immune responses.
This interaction may allow for homeostatic balance in the
normal gut.®’

Toxoplasma gondii, an obligate intracellular parasite
acquired by oral infection and responsible for acute and
lethal ileitis in susceptible C57BL/6 mice, can invade
IECs, eliciting a robust immune response that is associ-
ated with increased production of chemokines.® In T.
gondii—infected and —inflamed intestines, the composi-
tion of infiltrating cells is predominantly represented by
CDS8™" IELs and CD4" lymphocytes, which confer the
main components of protective immunity to 7. gon-
dii.9~"' The CD8" IELs have been shown to promote
host recovery and parasite clearance. When adoptively
transferred, infilerating CD8af3 TCRaf IELs provide
long-term immunity and protect mice against a lethal
parasite challenge in a transforming growth factor
(TGF)-P—dependent manner.81° The preferential re-
cruitment of these cells to infected intestinal sites ap-
pears to be critical for the control of the inflammatory
cellular response.'? Although the o437 and aER7 inte-
grins expressed at the cell surface of lymphocytes may
partially explain IEL trafficking,'? other molecules in-
cluding TEC-expressed chemokines may act as chemoat-
tractants.??

In this study, we show that the secretion of beta
chemokines MIP-1ac (CCL3) and MIP-13 (CCL4) by
enterocytes can orchestrate the recruitment of CD8™
IELs via CCR5 to enhance the immune response against
T. gondii infection. These results show the immunologic
potential of IECs expressing specific chemokines for the
trafficking and control of intestinal IELs in this patho-
gen-driven model of intestinal inflammatory disease.

Materials and Methods
Mice and T. gondii Infection

Six- to 8-week-old female C57BL/6 mice and
B6129F2/J-Cmkbr5StmlKuz (CCRS5—/—) mice were pur-
chased from the Jackson Laboratory (Bar Harbor, ME). CCR1-
deficient mice (CCR1—/—)'> were backcrossed to the
CS7BL/6 background for 6 generations and housed under
approved conditions of the Animal Research Facility at Dart-
mouth Medical School (Lebanon, NH). Age- and sex-matched
B6129PF2/] mice (Jackson Laboratory) were used as control
wild type (WT) for CCR5—/— mice. Mice were infected orally
with 35 cysts from the 76K strain of T. gondii.

Lymphocyte Isolation

Unprimed or primed IELs were isolated from 4-8
naive or day-7 postinfected C57BL/6, WT, CCR5—/—, or
CCR1—/— mice as previously described.!' CD8a*t and
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CDS8B™* IELs were purified by incubation with either anti-
CD8a microbeads (Miltenyi Biotec, Auburn, CA) or anti-
CD8[3 antibody (BD Pharmingen, San Diego, CA) followed by
anti-rat immunoglobulin G microbeads (Miltenyi Biotec) and
separated with a magnetically activated cell sorting column
(Miltenyi Biotec). CDS8at and CD8SB* staining (BD Pharm-
ingen) confirmed 98% pure populations. Surface expression
was assessed with CCR5, aE (CD103), CD25, Ly-6C, and
Ox40 (CD134) (BD Pharmingen).

Culture of m-IC; > Cells and Infection
by T. gondii

IECs from the m-IC,, cell line (C57BL/6, H-2P)!4 were
seeded upside down on collagen I-coated Transwell filters
(5 X 10° cells/filter; ID, 6.5 mm; pore size, 3 pm; Costar
Transwell, Fisher Scientific, Pittsburgh, PA) and cultured for
10 days in a modified defined medium as previously de-
scribed.®? The integrity of the infected monolayer was con-
firmed microscopically before each experiment and infected
with 2:1 parasites cells. For the in vitro infection, tachyzoits
from the RH strain of T. gondiz were used. All experiments
were performed on 3 separate filters for each condition tested
and then repeated in at least 3 different experiments.

In Vitro Migration Assay

Unprimed and primed CD8a*t IELs incubated with a
cell dye 5-chloromethylflurorescein diacetate (10 pmol/L)
(Molecular Probes, Eugene, OR) were added to the upper
chamber of confluent m-IC., cells grown on Transwell as
previously described (5 X 10> IELs/filter; Costar Transwell)
without or with blocking antibodies to MIP-1o and MIP-1f3
(1 and 10 wg/mL) or with their irrelevant control anti-goat
immunoglobulin G (R&D Systems, Minneapolis, MN). m-
IC,, cells and IELs were incubated for 4 hours at 37°C. To
visualize the IELs in the monolayer, filters were stained with
iodide and
Probes) and observed by confocal laser scanning microscopy
(MRC 1024; Bio-Rad, Hercules, CA). Ten fields (481 X 481
m) were examined for each condition. The average number of

propidium rhodamine-phalloidin  (Molecular

5-chloromethylflurorescein diacetate—tagged IELs was quanti-
fied, and all experiments were performed at least 3 times for
each condition tested.

In Vivo Migration Assay

Primed and unprimed CD8a* IELs were incubated
with 5(6)-carboxyflurorescein diacetate, succinimidyl ester
(CFSE) 15 wmol/L (Molecular Probes). Labeled IELs (5 X 10)
were injected intravenously into the tail of WT recipient mice
(3 mice per group) orally challenged 24 hours later by T.
gondii. IELs from recipient mice were purified 48 hours after
challenge, and the percentage of CFSE-labeled IELs was ana-
lyzed by flow cytometry.



August 2003

Chemotaxis Assay

IELs (5 X 10%) were added in the upper chamber of
Transwell filters (ID, 6.5 mm; pore size, 3 m; Costar Trans-
well) without the m-IC,, monolayer. The lower chamber was
filled with conditioned medium from infected m-IC, cells or
with medium supplemented with various concentrations of
RANTES, MIP-1a, and MIP-1f3 (1, 10, or 100 ng/mL) (R&D
Systems). IELs recovered in the lower chamber after 2 hours
were counted by flow cytometry. A known number (2 X 10%)
of beads (Nile red, 10-14 pm size; Spherotech, Libertyville,
IL) was added to each sample before fluorescence-activated cell
sorter counting to determine the absolute number of migrat-
ing cells. The percentage of migrating cells per condition was
calculated as follows: % Migrating IELs = Absolute Number
of Migrating Cells/Total Cells Added to the Upper Chamber;
Migration Index of IELs = % Migrating Cells With Chemo-
kine/% Migrating Cells With Chemokine-free Medium.

Chemokine and Cytokine Expression

TGF-B secretion from 24-hour cultured IEL (10°) su-
pernatants was assessed by enzyme-linked immunosorbent as-
say (R&D Systems) following the manufacturer’s instructions.
Total RNA was isolated using TRIzol reagent according to the
manufacturer’s protocol (Life Technology, Grand Island, NY).
Specific messenger RNA (mRNA) expression from whole
small intestines and isolated IELs was evaluated using a
RiboQuant Multi-Probe Ribonuclease Protection Assay Sys-
tem Kit (BD Pharmingen) as described by the manufacturer. A
total of 10 pg of RNA from intestine or IELs was analyzed.
Bands were quantified by densitometric analysis with NIH
Image (National Institutes of Health, Bethesda, MD) normal-
ized to L32 and glyceraldehyde-3-phosphate dehydrogenase
gene expression.

Histologic Assessment of Intestinal
Inflammation

Intestines (3 per group) were immediately fixed
overnight at 4°C in 10% formalin. Samples were embedded
in paraffin, cut into longitudinal and cross sections, and
stained with H&E for histologic examination. All morpho-
logic observations were from 4 different experiments with
at least 100 villi evaluated per sample. Only specimens
exhibiting longitudinally oriented sections through the
crypts were measured. Histologic inflammatory score rang-
ing from O to 4 as previously described'> was applied in a
blinded fashion to estimate intestinal inflammation: 0, no
inflammation; 1, slight infiltrating cells in lamina propria
with focal acute infiltration; 2, mild infiltrating cells in the
lamina propria with increased blood flow and edema; 3,
diffuse and massive infilcrating cells leading to disturbed
mucosal architecture; 4, crypt abscess and superficial necro-
sis of the intestinal villi.
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Parasite Load

DNA was extracted from small intestine using the
DNeasy Tissue Kit (Qiagen, Valencia, CA). A total of 50 pg
of total DNA from tissues was analyzed using primers specific
for Toxoplasma B1 gene'®'7 (SYBR Green PCR Core Reagents;
PE Biosystems, Warrington, England). A standard curve using
the known parasite number was used to determine actual
parasite burden.

Statistical Analysis

Results are expressed as the mean * SD. Statistical
differences between groups were analyzed using the Student 7
test. A value of P < 0.01 was considered significant.

Results

Chemokine Receptor and Chemokine
Expression in Response to
Toxoplasma gondii Infection

Tachyzoite-infected m-IC, cells secrete a large
array of chemokines.®® To investigate the functional
relevance of this response in the small intestine, the
expression of chemokines and chemokine receptors were
analyzed in naive and day-7 T. gondii—infected mice.
Small intestines from naive C57BL/6 mice (without T.
gondii) displayed no detectable MIP-13, MIP-2, and
monocyte chemoattractant protein (MCP)-1 mRNA ex-
pression and low levels of RANTES, MIP-1a, and inter-
feron gamma—inducible 10-kilodalton protein (IP-10)
mRNA expression (Figure 1A). In contrast, small intes-
tines from infected mice (with T. gondii) displayed a
significant increase in MCP-1 and IP-10 mRNA expres-
sion and, to a lesser extent, MIP-1a,, MIP-1[3, MIP-2,
and RANTES mRNA (Figure 1A). Consistent with the
overproduction of their ligands, parasite infection in the
whole intestine (with T. gondii) resulted in a significant
increase in CCRS expression, the receptor for RANTES,
MIP-1a and MIP-1(3, CCR2, the ligand for MCP-1, and,
to a lesser extent, CCR1, the ligand for RANTES, and
MIP-1a (Figure 1B). CXCR3 mRNA was weakly ex-
pressed in naive and infected mice despite the overex-
pression of its ligand IP-10 (Figure 1A and B). Addi-
tionally, CCR9 and CXCR2 expression were equally
expressed in naive and infected mice (Figure 1B). Nei-
ther CCR9 expression (Figure 1B) nor its ligand TECK
expression in both small intestine and m-IC,, IEC line
(data not shown) were modified after infection.

Chemokine receptor expression in isolated IELs was
also analyzed and compared with the chemokine profile
(Figure 1C). The levels of CCRS5 expression and, to a
lesser extent, CCR2 expression were greater in primed
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Figure 1. Chemokine and chemokine receptor expression in response to T. gondii infection. (A) Chemokine and (B) chemokine receptor
expression was assessed by ribonuclease protection assay in the small intestine of naive (without T. gondii) and day-7 infected (with T. gondii)
C57BL/6 mice or (C) in unprimed (U) and primed (P) IELs. (D) CCR5 expression was analyzed on the surface of unprimed or primed CD8«x* and
CD8B™" IELs. The images are representative illustrations from 3 to 5 separate experiments.

IELs compared with the unprimed IELs (Figure 1C). Flow cytometry was then used to determine which IEL
Expression of CCR1 and CXCR3 were almost unchanged ~ subsets expressed CCRS receptor. Isolated CD8a™ IELs
in response to parasite infection (Figure 1C). were gated for CCRS and CD8B™ expression. In accor-

T. gondii D

P CD8p*

IELs

IELs . .

Figure 2. |EL migration into intestinal epithelial m-C, cells. (A and B) The epithelial monolayer m-Cy, (in red) and the migrating IELs (green-yellow) were
visualized by confocal microscopy and scanned longjtudinally (xz) or laterally (xy). (C) m-IC, epithelial cells were infected (with T. gondii) or not (without T.
gondii) with the parasite before adding the primed (P) or unprimed (U) IELs. (D) CD8«B* IEL migration into infected intestinal epithelial m-IC, cells. Bars show
the mean = SD of migrating cells. *P < 0.01 comparison vs. unprimed CD8B* and primed CD83".
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Figure 3. |ELs isolated from CCR5—/— mice are activated by T. gondii infection but are unable to migrate in vivo. (A) Number of IELs isolated
from naive (unprimed IELs [UIELs]) or day-7 infected (primed IELs [PIELs]) 129B6F2/J (WT) and CCR5—/— mice. *P < 0.01. (B) TGF-B secretion
of unprimed and primed IELs (108) isolated from WT and CCR5—/— mice (CCR5—/—). (C) Surface expression analyzed by flow cytometry of
aEB7, CD25, Ly6C, and Ox40 in unprimed (U) and primed (P) IELs isolated from WT and CCR5—/— mice. (D) Unprimed or primed CFSE-stained
CD8a ™ IELs from WT or CCR5—/— mice were injected intravenously into WT recipient mice respectively (unprimed WT — WT, primed WT — WT,
primed CCR5—/— — WT). The percentage of donor CFSE-tagged IELs within the IEL population of the recipient mice that have migrated to the
intestine was measured by flow cytometry. The results are representative of 2 different experiments.

dance with mRNA analysis, primed IELs (CD8a™") ex-
pressed more CCRS on their surface than unprimed IELs
(35% and 7%, respectively) and showed that this 5-fold
increase in CCR5 was mostly due to the increased ex-
pression of CCR5 in the primed CD8af3 ™ subset (Figure
1D).

Migration of IELs Into IECs

An in vitro coculture system was used to study
the specific chemokine/ligand interactions in the attrac-
tion of IELs within the IEC layer (Figure 2A and B). We
used the mouse m-IC; cell line derived from intestinal
crypt cells.'* m-IC, cells overexpress a variety of che-
mokines (MIP-2, MCP-3, MIP-13, MCP-1, IP-10, and
MIP-1a) in response to tachyzoite infection® and are a
reasonable alternative to study the migration of IELs.
Confluent m-IC; cells were infected through their api-
cal surface with T. gondii tachyzoites, and primed or
unprimed green-tagged 5-chloromethylfluorescein diac-
etate IELs were added in the upper chamber of the
Transwell. As a result, the infiltrating IELs present in the
IEC layer exhibited a yellow-green staining (Figure 2A
and B). As shown in Figure 2C, confocal analyses showed
that the number of “migrating” primed or unprimed
IELs was greater (P < 0.01) in confluent T. gondii—
infected m-IC,, cells (unprimed IELs, 7.5 %= 0.7 cells/
field; primed IELs, 30 = 2.8 cells/field) than in nonin-

fected m-IC,, cells (unprimed IELs, 4 = 1.7 cells/field
[P < 0.01}; primed IELs, 5 = 1.4 cells/field [P < 0.01}).
Furthermore, the number of “migrating” IELs detected
in the infected m-IC, layers was greater (P < 0.01)
using primed than unprimed IELs. Similar experiments
using purified subsets of CD8%-enriched lymphocytes
showed that significantly more primed CD8B" IELs
than unprimed CD8B" or CD8B~ IELs were able to
migrate in infected m-IC., monolayers (P < 0.01) (Fig-
ure 2D).

Role of CCR5 and Its Specific Ligands in
the Chemoattraction of IELs by Infected
IECs

To evaluate the specific role of CCRS in IEL
trafficking, we analyzed the migrating capacities of IELs
isolated from the small intestines of WT and CCR5—/—
mice. The role of CCR5 in IEL trafficking was first
investigated in vivo. The number of primed IELs recov-
ered from infected CCRS5—/— mice (unprimed, 0.47 X
10 + 0.36; primed, 1.41 X 10° * 0.5) was significantly
reduced (P < 0.01) compared with the WT mice
(unprimed, 0.815 X 10° % 0.08; primed, 3.617 X
10° + 0.79) (Figure 3A). Although reduced in number,
the IEL population isolated from the CCR5—/— mice
could still be activated by the infection. TGF-3 produc-
tion by the IEL population is the hallmark of their
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Figure 4. CCR5—/— IEL migration into infected IECs. (A) Quantifica-
tion of the migration in T. gondii-infected m-IC,> monolayer of
unprimed (U) or primed (P) CD8a™ IELs isolated from 129B6F2/)
(WT), CCR5—/—, or CCR1—/— mice. *P < 0.01. (B) Chemokine
receptor expression in primed IELs isolated from day-7 infected
CCR5—/— and CCR1—/— mice (n = 5). The results are representa-
tive of 3 different experiments.

activation after T. gondii infection.® As expected, primed
CCR5—/— IELs produced significantly more TGF-3
than unprimed CCR5—/— IELs and secrete the same
amount of TGF-B as primed WT controls (Figure 3B).
Other activation markers were also examined (Figure 3C)
and showed overexpression of &E integrin, CD25, Ly-6C,
and Ox40 on the surface of the primed CCR5—/— IEL
population, indicating that they are activated following
infection.

The role of CCRS was further investigated in adoptive
transfer experiments. IELs isolated from naive or infected
WT and CCR5—/— mice were injected into WT recip-
ient mice challenged 24 hours later. IELs from the donor
mice were previously stained with CFSE to allow their
detection among the recipient mice IEL population 48
hours after challenge. IELs isolated from the unprimed
WT IEL recipient mice (unprimed WT — WT) showed
very low levels of CFSE IELs (0.1%) compared with the
primed WT IEL recipient mice (primed WT — WT)
(5.4%) (Figure 3D). In contrast, primed CCR5—/— IELs
(primed CCR5—/— — WT) seemed to be absent in the
IEL population of the recipient mice (0.01%). This
shows in vivo that CCRS receptor expressed by primed
IELs might be necessary for trafficking back to the
infected intestine.

To confirm the low ability of primed CCR5—/— IELs
to migrate into the infected enterocyte monolayer, we
used our in vitro model. Unprimed IELs from both WT
and CCRS5—/— mice failed to invade the infected m-
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IC,, monolayer (Figure 4A). As well, the number of
primed CCRS5—/— IELs detected in the m-IC., layer
was significantly lower (P << 0.01) than that of primed
WT IELs (Figure 4A), suggesting that CCRS deter-
mined the subset of IELs that migrate into the intestinal
cell layer. Because CCR1 ligands such as MIP-1o and
RANTES partially overlap with those specific for CCRS,
the ability of IELs isolated from infected CCR1—/—
mice to migrate into m-IC, layers was also assessed as
controls. These primed IELs had a level of CCRS5 expres-
sion similar to primed WT IELs (Figure 4B) and were
activated like the CCRS—/— primed IELs (data not
shown). The number of primed CCR1—/— IELs invad-
ing the infected m-IC., monolayer was reduced (P <
0.01) compared with the primed WT IELs, although
significantly greater (P < 0.01) than that of primed
CCR5—/— IELs (Figure 4A). These results indicated
that the chemokine receptor CCR1 has only a minor
influence in the migration of IELs compared with CCRS5.

The potential attraction of the 3 CCRS ligands, MIP-
la, MIP-1B, and RANTES in this process was then
assessed (Figure 5). Primed CD8a™ IELs expressing
CCR5 were isolated and added in the upper chamber of
non—collagen-coated Transwell filters devoid of IECs.
Increasing concentrations (1, 10, and 100 ng/mL) of
recombinant MIP-1a, MIP-18, or RANTES were
added to the lower chamber of the Transwell. The
migration index of the primed IELs was assessed by
flow cytometry. A dose-dependent chemoattractive ef-
fect of MIP-1a and MIP-1f3 but not of RANTES was
observed (Figure 5A). MIP-1a had a greater chemo-
tactic effect on IELs (P < 0.01) than MIP-1f3 (Figure
5A). Although RANTES had no chemoattractive ef-
fect on IELs, ribonuclease protection assay and en-
zyme-linked immunosorbent assay analysis showed
high level of RANTES mRNA expression among the
primed IEL population (data not shown). As attested
by real-time polymerase chain reaction, m-IC, cells
stimulated with RANTES (100 ng/mL) showed a sig-
nificant increase (P < 0.01) in MIP-1a but not in
MCP-1 mRNA expression (data not shown).

To better assess the chemoattractant role of chemo-
kines secreted by IECs, conditioned media from the
apical or the basal side of infected (6-hour) m-IC, cells
were collected and transferred to the lower chamber of a
Transwell where primed CD8a ™" IELs were added to the
upper chamber. In these experimental conditions, twice
as many IELs were attracted by the conditioned basal
medium than by the apical medium (P < 0.01) (Figure
5B). These results suggested that infected m-IC,, exhib-
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Figure 5. Migration of CD8a ™ IELs to CCR5 ligands. (A) Primed IELs were added to the upper chamber of a Transwell, whereas the lower chamber was
filled with medium supplemented or not with increasing concentrations of RANTES, MIP-1«, and MIP-13 (1, 10, or 100 ng/mL). (B) Apical or basal
secretion from intestinal epithelial m-IC,, cells was added to the lower compartment. The bars represent the migration index to fresh medium (without
m-IC) and conditioned apical or basal medium from T. gondii-infected m-IC¢ocells (with m-IC»). (C) Infected m-IC,; cells and IELs were incubated with
or without blocking antibodies to MIP-1a or MIP-13 (1 and 10 pg/mL) or with an irrelevant antibody. *P < 0.01 represents statistical differences with

the condition using the irrelevant antibody.

ited a preferential polarized basal secretion of chemokines
involved in IEL trafficking. MIP-1aw and MIP-13 were
also blocked, and the migration of primed subsets of
CD8a™ IELs in infected m-IC,, cells was evaluated. The
basal addition of increasing concentrations of anti—
MIP-1f or anti-MIP-1a antibodies inhibited the mi-
gration of IELs when compared with the untreated con-
trol. The blockade of the chemokine secretion with anti—

Figure 6. Histopathology, cyto-
kine expression, and parasite
load following T. gondii infec-
tion in WT or CCR5—/— mice.
(A) Histology score, (B) expres-
sion of cytokines, and (C) par-
asite load assessed by quanti-
tative realtime polymerase
chain reaction were estimated
from small intestines of (a) na-
ive WT, (b) day-7 infected WT,
and (c) CCR5—/— mice (n =
12 per group). The results are
representative of 2 different ex-
periments.

MIP-1f or anti-MIP-1a antibodies was concentration
dependent (Figure 5C). Anti-MCP-1 antibody was also
used in this system to verify the specificity of the block-
ing experiment because CCR2, the ligand of MCP-1, was
also weakly expressed on CCRS5 —/— IELs compared with
WT primed IELs. In this experiment, anti-MCP-1 an-
tibody could not block the IEL migration (data not
shown).
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Consequences of the Lack of CCR5
Receptor Expression on T. gondii
Pathogenesis

IELs via the secretion of TGF-J are critical in
preventing inflammation of the small intestine as well
as necrosis of the villi following parasite infection. We
therefore investigated whether the absence of CCR5S
expression on the IEL surfaces would affect the patho-
physiology of the infection. Consistent with the lower
number of primed IELs, CCRS—/— mice showed in-
creased inflammation and tissue damage (Figure 6A).
The intestinal lesions correlated with a higher produc-
tion of inflammatory cytokines in the gut of
CCR5—/— mice (interleukin {IL}-1, IL-6, IL-18, in-
terferon gamma) (Figure 6B). We previously reported
the role of the IELs in parasite clearance in CBA
mice.''! However, a very low number of IELs (~10%
can account for the parasiticidal effect (personal ob-
servation, July, 2002). Indeed, despite the lower num-
ber of primed IELs, there was no significant difference
between the parasite load of WT and CCRS5S—/—
infected mice (Figure 6C).

These results indicate that CCRS is crucial for the
specific migration of IELs to the site of inflammation
following T. gondii infection, exerting a protective effect
in the control of inflammatory cell infiltration in the
lamina propria.

Discussion

Oral infection with tissue cysts of T. gondii elicits
a lethal inflammatory response in certain strains of
mice. 1819 T, gondii—primed IELs traffic to the infected
intestine and participate in the protective mechanisms
that clear the parasites and also reduce the deleterious
consequences of an excess inflammatory response.!! The
migration of leukocytes into sites of inflammation in-
volves a series of cellular and molecular events and in-
teractions that are still not fully understood. This study
provides in vivo and in vitro evidence of a pivotal role for
CCRS5 in IEL migration into T. gondii—infected IECs. We
also show that MIP-1a and MIP-1(3, secreted by the
infected IECs, are required to elicit the most effective
mobilization of the CD8B™ IEL subset expressing the
appropriate CCRS5 receptor.

The immune system has evolved specialized cellular
and molecular mechanisms for targeting and regulating
immune responses at the epithelial surface. Selective
expression of chemokines by differentiated epithelium
represents an important mechanism for this immune
process. IELs constitutively express CCR9, CXCR3,
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CCR2, and CCR5.%7:2021 In our T. gondii—induced in-
testinal inflammation model, we observe a substantial
increase in CCRS expression by antigen-primed IELs and
show the specific role of CCRS receptor for the CD8*
IEL trafficking in an infectious context. In the small
intestine of C57BL/6 mice, T. gondii infection triggers
expression of both CC and CXC chemokines, including
RANTES (CCLS), MIP-law (CCL3), MIP-1B (CCLA4),
MCP-1 (CCL2), IP-10 (CXCL10), and MIP-2. The ex-
pression of these chemokines by infected intestinal cells
is also consistent with the observed increase of their
receptor counterparts in day-7 T. gondii—infected small
intestines, especially the more selective CCR5 overex-
pression in isolated IELs. A number of studies have
identified the role of CCRS5 and of its corresponding
chemokines in the recruitment of T cells to inflammatory
sites.?2726 CCRS as an important regulator of leukocyte
trafficking is described in other studies showing that
CCR5 deficiency may have deleterious consequences if
associated with the cell trafficking involved in the reg-
ulation of the immune response.?42¢-2 Furthermore,
CCRS5 ligation has been shown to play a key role in
the induction of IL-12 synthesis by dendritic cells and is
also believed to be involved in the establishment of
interferon-dependent resistance to T. gondii. >3

CCRS5 expression on the surface of T. gondii—primed
IELs represents an important factor in the mediation of
IEL trafficking and localization into infected enterocytes.
Primed IELs isolated from CCR5-deficient mice have lost
the ability in vitro to migrate into m-IC, cell layers or
in vivo to traffic back into the inflamed intestine after
adoptive transfer and to display several potential protec-
tive effects. Indeed, after adoptive transfer of primed
IELs, C57BL/6 mice are protected against the develop-
ment of acute ileitis observed after T. gondii oral infec-
tion.'12 The protective mechanism involves TGF-f3 pro-
duction.® T. gondii—primed CCR5—/— IELs produce
TGF-B. However, their
CCR5—/— infected intestine is likely due to a lower

reduced number in the

recruitment at the place of the infection and may account
for the more severe inflammatory damages observed com-
pared with WT mice. An increase number of CD4* T
cells at day 7 in the lamina propria population and a
reduced number of CD8' T cells was also observed in
CCR5—/— mice after treatment with dextran sodium
sulfate,?? suggesting that CD8 T cells can influence the
inflammatory response. Although decreased in number,
IELs are
CCR5—/— mice, indicating the involvement of addi-

still present and activated in infected

tional trafficking mechanisms. IELs are also shown to



August 2003

participate in parasite clearance through cytotoxic mech-
anisms in CBA mice.'’ This effect requires a very low
number of IELs because the adoptive transfer of 107
primed IELs is sufficient to prevent the cerebral infection
of CBA mice. Despite the reduced number of IELs in
CCRS5—/— mice, there is no difference of parasite load
between CCR5—/— and WT mice. The present findings
provide further evidence for a functional role of this
receptor as part of the regulatory mechanism involved in
the migration and trafficking of intraepithelial CD8*
lymphocytes into the inflamed intestine following para-
site infection.

The direct interaction between parasite-infected IECs
and IELs was shown by transmigration assay using m-
IC,, cells grown on permeable filters. This mouse intes-
tinal cell line exhibits a number of important properties
and functions specific of intestinal crypt cells.!%33-34 The
migration of antigen-primed CD8af TCRaf3 IELs
through the intact m-1C, cell layer appears to be po-
larized in a basal-to-apical direction. A similar basolat-
eral secretion of MIP-2 induced by lipopolysaccharide
has already been reported in our model of m-1C; cells,?*
and CD8af3 TCRaf3 IELs have been found to be the
main IEL subset detected in T. gondii—infected intes-
tines.'® The results of the present study also show that
the migration of IELs requires specific CC receptors/
chemokine interactions because anti—-MIP-1a and anti—
MIP- antibodies inhibit the chemoattraction of IELs
induced by infected IECs. Although RANTES has no
chemoattractant effect on primed IELs, it increases the
secretion of MIP-1law by the m-IC, cells as previously
shown.?> We also found that the inhibition of RANTES
by an anti-RANTES antibody totally inhibited the mi-
gration of primed IELs into the m-IC, layer (data not
shown), suggesting that RANTES behaves as an ampli-
fication factor for IEL-mediated MIP-1a and/or MIP-13
chemoattraction.

The sum of data collected from naive and infected WT
and CCR5—/— mice together with the migration assays
using cultured m-IC, cells indicate that the migration
of CDS8B* IELs requires the specialized interaction of
CCRS5 with its ligands. Such interaction appears to be
specific because the expression of other chemokine recep-
tors, such as CCR9 and CXCR3, remains unchanged
following T. gondii infection. A CXCR3/IP-10 interac-
tion has been believed to be involved in the cellular
trafficking for T cells.?® However, CCR5—/— IELs have
lost their migratory capacity despite the same level of
CXCR3 expression as the primed WT IELs. CCR1 may
interfere with IEL attraction, but its expression remains
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low compared with that of CCRS in primed IELs. CCR2
is also potentially interesting in mediating IEL attraction
in response to MCP-1, but its expression on primed IELs
is significantly lower than that of CCR5 and anti—-MCP-1
blocking antibody is inefficient in altering IEL traffick-
ing into the infected IECs.

In conclusion, complementary in vitro and in vivo
studies have shown both an essential and specific inter-
action between CCRS receptor with its corresponding
MIP-1a and MIP-1f3 ligands. This unique interplay of
the epithelial cell chemokine and the CCRS5 receptor
results in the subsequent migration of CD8a3 TCRa3
IELs into the parasite-induced inflamed mucosal intesti-
nal barrier.
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