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BASIC AND TRANSLATIONAL—PANCREAS

Deletion of Rb Accelerates Pancreatic Carcinogenesis by Oncogenic
Kras and Impairs Senescence in Premalignant Lesions
CATHERINE CARRIÈRE,*,‡ A. JESSE GORE,*,‡ ALIXANNA M. NORRIS,*,‡ JASON R. GUNN,*,‡ ALISON L. YOUNG,*,‡

DANIEL S. LONGNECKER,§ and MURRAY KORC*,‡

*Department of Medicine, Department of Pharmacology, and Toxicology, and §Department of Pathology, Dartmouth Medical School, Hanover, New Hampshire; and
‡Norris Cotton Comprehensive Cancer Center at Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire

See Covering the Cover synopsis on page 785.

BACKGROUND & AIMS: Rb1 encodes a cell-cycle regu-
lator that is functionally disrupted in most human can-
cers. Pancreatic ductal adenocarcinomas (PDACs) have a
high frequency of mutations in KRAS and INK4A/
CDKN2A that might allow cells to bypass the regulatory
actions of retinoblastoma (RB). To determine the role of
loss of RB function in PDAC progression, we investigated
the effects of Rb disruption during pancreatic malignant
transformation initiated by oncogenic Kras. METHODS:
We generated mice with pancreas-specific disruption of Rb,
in the absence or presence of oncogenic Kras, to examine the
role of RB in pancreatic carcinogenesis. RESULTS: In the
presence of oncogenic Kras, loss of Rb from the pancreatic
epithelium accelerated formation of pancreatic intraepithe-
lial neoplasia (PanIN), increased the frequency of cystic neo-
plasms, and promoted rapid progression toward PDAC.
Early stage cancers were characterized by acute pancreatic
inflammation, associated with up-regulation of proinflam-
matory cytokines within the pancreas. Despite the presence
of markers associated with oncogene-induced senescence,
low-grade PanIN were highly proliferative and expressed
high levels of p53. Pancreatic cancer cell lines derived from
these mice expressed high levels of cytokines, and transcrip-
tional activity of p53 was impaired. CONCLUSIONS: Rb
encodes a tumor suppressor that attenuates progression
of oncogenic Kras-induced carcinogenesis in the pan-
creas by mediating the senescence response and promot-
ing activity of the tumor suppressor p53.

Keywords: Proliferation; Transformation; Signaling; Che-
mokine.

Pancreatic ductal adenocarcinoma (PDAC) is the fourth
leading cause of cancer-related death in the United

States.1 PDAC arises from precursor lesions, predomi-
nantly pancreatic intraepithelial neoplasia (PanIN), which
progress from low grade, PanIN-1A and -1B, to interme-
diate and high-grade PanIN-2 and -3, respectively.2

The biological aggressiveness of PDAC derives from
cancer cells that harbor driver mutations in several key

genes, including the KRAS oncogene (�95%), and the
TP53 (�80%), SMAD4 (�50%), and INK4A/CDKN2A
(�85%) tumor-suppressor genes.3 INK4A/CDKN2A en-
codes p16Ink4a, which activates the tumor-suppressive
functions of retinoblastoma (RB), a nuclear phosphopro-
tein encoded by the RB1 tumor-suppressor gene.4,5 In
PDAC cases in which INK4A/CDKNA is not mutated, it is
silenced epigenetically.3 Thus, there is a near-universal
loss of p16Ink4a in PDAC. PDAC also is associated with
overexpression of multiple tyrosine kinase receptors and
their ligands,6 which, when superimposed on the presence
of oncogenic Kras, loss of p16Ink4a, and high levels of
cyclin D1,7 could impede RB function. These observations
suggest that RB inactivation may be of crucial importance
in PDAC.

PDAC mouse models that recapitulated human disease
originally were generated by targeting a conditionally mu-
tated Kras allele (LSL-KrasG12D) to pancreatic progenitors,
using Pdx1 and Ptf1a promoters.8 In these mice, PanIN
progresses slowly and at a low frequency toward PDAC by
approximately 36 weeks of age. To delineate the role of RB
in PDAC, we used RbLoxP/LoxP (RbL/L) mice9 to generate
compound mutant Pdx1-Cre;LSL-KrasG12D;RbL/L (Rb/K) mice
that carry activated oncogenic Kras and deleted RB in the
pancreas. Although RB deletion alone does not alter pan-
creatic histology, it accelerates the induction of oncogenic
Kras-associated neoplasia, and progression to PDAC. In
early cancer stages, mice show acute pancreatic inflamma-
tion and increased expression of proinflammatory cyto-
kines, produced, in part, by the cancer cells. Low-grade
lesions co-express senescence and proliferation markers
suggesting that oncogene-induced senescence (OIS) is by-
passed. All lesions are highly proliferative and display
high levels of wild-type p53, which we show in vitro is

Abbreviations used in this paper: ADM, acinar-to-ductal metaplasia;
CK19, cytokeratin 19; IL, interleukin; MCN, mucinous cystic neoplasia;
MCP1, monocyte chemotactic protein-1; MDM2, murine double min-
ute-2; OIS, oncogene-induced senescence; PanIN, pancreatic intraepi-
thelial neoplasia; PDAC, pancreatic ductal adenocarcinomas; RB, reti-
noblastoma; SA-�Gal, senescence-associated �-galactosidase; TGF,
transforming growth factor.
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transcriptionally inactive. Thus, loss of RB function in the
context of oncogenic Kras leads to a proinflammatory
pancreatic microenvironment, impaired OIS and en-
hanced cell proliferation, and p53 dysfunction, resulting
in marked acceleration of pancreatic carcinogenesis.

Materials and Methods
Detailed Materials and Methods are described in the

Supplementary Materials and Methods section.

Genetically Modified Mice and Animal Care
Pdx1-Cre and conditional RbL/L and LSL-KrasG12D mice

were described previously.8 –10 Animal experiments were ap-
proved by the Institutional Animal Care and Use Committee at
Dartmouth College.

Immunohistochemistry
Mice were perfused with phosphate-buffered saline and

then 10% formalin; pancreata then was dissected, fixed over-
night, and paraffin-embedded. Immunohistochemistry was per-
formed using standard protocols.

Senescence-Associated �-Galactosidase Staining
Cryosections from K and Rb/K pancreata were prepared

and stained in parallel under exactly the same conditions,11

yielding highly reproducible results.

Immunoblotting
Immunoblotting was performed as described.12

Primary Cell Line Preparation and p53
Mutation Analysis
Primary cell lines were prepared as described.13 RNA was

isolated with the RNeasy Mini kit (Qiagen, Valencia, CA) and
complementary DNA (cDNA) was prepared with the Superscript
III First Strand cDNA Synthesis Kit (Invitrogen, Carlsbad, CA).
Sequencing was performed by the Molecular Biology Core at
Dartmouth College (Hanover, NH).

Rb Recombination and KrasG12D Expression
Rb recombination9 and KrasG12D expression were ana-

lyzed as described.14

Quantitative Reverse-Transcription
Polymerase Chain Reaction
Pancreatic RNA was isolated using the low-temperature

guanidine isothiocyanate method.15,16 TaqMan expression as-
says (Applied Biosystems, Foster City, CA) were performed on
cell line and pancreatic cDNA.

Proliferation Assays
Cell growth was monitored as described.17

Luciferase Assays
Reporter constructs were transfected into murine pri-

mary cell lines using Lipofectamine 2000 (Invitrogen). Luciferase
activity was evaluated using the Dual Luciferase Assay kit (Pro-
mega, Madison, WI) and an LMaxII microplate reader (Molecu-
lar Devices, Sunnyvale, CA).

Results
Rb Deletion Synergizes With Oncogenic Kras
to Accelerate Pancreatic Carcinogenesis
By crossing Pdx1-Cre mice10 with RbL/L mice,9 ani-

mals carrying a deletion of Rb in the pancreatic epithe-
lium, and subsequently in all pancreatic cell types, were
generated. These mice were born at the expected fre-
quency, showing approximately 80% efficiency of Rb re-
combination in the pancreas (Supplementary Figure 1A),
and had an average lifespan. No abnormalities in the
pancreatic cytoarchitecture were observed (Supplemen-
tary Figure 1B). Thus, as in mouse models null for other
pancreatic tumor-suppressor genes,14,18 –21 RB inactivation
per se does not affect pancreatic development or induce
neoplasia.

Although no phenotype was detected at embryonic day
15 and postnatal day 1, as early as postnatal week 1 the
pancreatic Rb deletion concomitant with KrasG12D (Rb/K
mice) activation led to the development of high-grade
PanIN (Figure 1A). By 2 weeks, low and high-grade PanIN
(Figure 1B) were frequent, often occurring in conjunction
with low- and high-grade cystic neoplasms (Figure 1C and
D), and 1 of 5 mice developed PDAC (Figure 1E). Nearly
20% of Rb/K mice died during the first month of life,
displaying severe cachexia and atrophic pancreata. Histo-
logic analysis of 10 such pancreata, collected from mori-
bund mice, showed both low- and high-grade lesions and
large cysts, suggesting that these mice were developing
PDAC and cystic changes. Overall, Rb/K mice had a me-
dian survival of approximately 10 weeks (Figure 1F). Ex-
cluding animals that died during the first month of life
and had no necropsy (12 mice) did not significantly alter
the Kaplan–Meier survival plot (Figure 1F).

In mice expressing oncogenic Kras with Rb haploinsuf-
ficiency (Pdx1-Cre;LSL-KrasG12D;RbL/�, RbL/�/K mice) PanIN
and cystic neoplasms progressed slowly, and median sur-
vival increased to 36 weeks (Figure 1F and Table 1).
Nonetheless, compared with Pdx1-Cre;LSL-KrasG12D mice
(termed K), PanIN progression in RbL/�/K mice was faster,
cyst formation was more common (Supplementary Figure
2), and survival was greatly reduced (Table 1 and Figure
1F).8,14 Although Pdx1-Cre also is expressed in the duode-
num, only low to moderate dysplasia, manifested by the
presence of pseudostratified epithelium and rare luminal
mitosis, was observed in the duodenal mucosa of Rb/K
animals (not shown).

Histologic Characteristics of Pancreatic Lesions
in Rb/K Mice
Akin to human beings,22 PanIN in Rb/K mice de-

veloped in a peripheral location that did not initially
involve the main duct or its large branches. These PanIN
were cytokeratin 19 (CK19)-positive and accumulated mu-
cins as evidenced by Alcian blue staining (Supplementary
Figure 3A and B). Wnt and Notch signaling pathways were
up-regulated, as shown by strong �-catenin and Hes1
immunoreactivity, respectively (Supplementary Figure 3C
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and D), and increased Sonic Hedgehog expression also
was observed (not shown). Rb/K mice frequently devel-
oped pancreatic cystic neoplasms (Table 1). Most of these
cysts displayed mucin-rich and CK19-positive columnar
epithelium (Supplementary Figure 3A and B) with low- to
high-grade dysplasia (Figures 1C and 2A and B), and were
surrounded by an ovarian-like stroma with spindle-
shaped cells expressing progesterone and estrogen recep-
tors (Figure 2C and D). Thus, these cysts were similar to
mucinous cystic neoplasia (MCN) in human beings.23,24

The stroma also harbored activated stellate cells that were
rich in �-smooth muscle actin (Figure 2E). Wnt and
Notch pathways also were activated in these MCN-like

lesions (Supplementary Figure 3C and D) and cyclooxy-
genase 2 was increased (Figure 2F).

Three of 40 mice had a single large cyst (�1.0 cm in
diameter) in the head of the pancreas, in close proximity
to the biliary duct from which it appeared to derive (not
shown). These 3 mice displayed papillary epithelium with
nuclear stratification, minimal to moderate dysplasia (Fig-
ure 1D), and stroma devoid of estrogen and progesterone
receptors (not shown), reminiscent of intraductal papil-
lary mucinous neoplasia in human beings.23 In one case,
the intraductal papillary mucinous neoplasia–like lesion
occurred in conjunction with PanIN-2 and -3, and MCN-
like lesions.

Figure 1. Rb/K animals develop early pancreatic lesions. (A) One-week-old mouse: PanIN-3. (B–E) Two-week-old mice: (B) *low-grade and
high-grade PanIN with microinvasion (arrowhead); (C) MCN-like and (D) intraductal papillary mucinous neoplasia–like cystic neoplasms; and (E)
PDAC. (F) Kaplan–Meier survival curves: Rb/K mice have a shorter lifespan (red line) compared with RbL/�/K (blue line) and K mice (dashed blue line).
Rb/K survival was similar when mice that died within postnatal month 1 without necropsy were excluded (green line). Survival for K mice was derived
from a previous study.8 Scale bars, 50 �m.

Table 1. PDAC Progression in the Absence of 1 or 2 Alleles of Rb

Genotype ADM Cysts PanIN-1 PanIN-2 PanIN-3 PDAC

Pdx1-Cre;LSL-KrasG12D;RbL/L

2–3 wk (n � 5) 5/5 2/5 (1a) 5/5 1/5 1/5 1/5
1 mo (n � 11) 10/11 6/11 (2,a 1b) 7/11 4/11 3/11 1/11
2 mo (n � 10) 9/10 8/10 (7a) 10/10 5/10 3/10 3/10
3 mo (n � 13) 11/13 8/13 (6,a 1b) 12/13 8/13 7/13 6/13
4–5 mo (n � 6) 6/6 3/6 (2,a 1b) 6/6 4/6 4/6 4/6

Pdx1-Cre;LSL-KrasG12D;RbL/�

2–3 mo (n � 7) 6/7 3/7 7/7 2/7 0/7 0/7
4–5 mo (n � 10) 10/10 1b/10 10/10 4/10 0/10 0/10
6–8 mo (n � 5) 5/5 2/5 5/5 4/5 2/5 1/5

Pdx1-Cre;LSL-KrasG12D

2 mo (n � 8) 4/8 0/8 4/8 0/8 0/8 0/8
2–4 mo (n � 16) 12/16 2/16 15/16 2/16 1/16 1/16
4–6 mo (n � 19) 13/19 0/19 19/19 2/19 0/19 0/19
6–10 mo (n � 16) 15/16 3/16 16/16 1/16 1/16 1/16

NOTE. None of the cysts observed in Pdx1-Cre;LSL-KrasG12D mice were MCNs.
aCyst diameter between 1 and 5 mm.
bCyst diameter greater than 5 mm.
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PanIN and MCN-Like Lesions in Rb/K Mice
Rapidly Progress to PDAC
Although normal acinar and ductal cells were not

proliferative, there was a marked increase in proliferation
in all PanIN in Rb/K pancreata: 62.9% � 2% and 76.7% �
4% of cells were Ki67-positive in PanIN-1 (Supplementary
Figure 3E) and PanIN-2/-3, respectively. By contrast, pro-
liferation of low-grade PanIN in K mice was only 16% �
1.8%.8 In another mouse model, MCN-like lesions showed
increased proliferation indices (2%–10%).20 In Rb/K pan-
creata, however, this figure was 57% � 2% (Supplementary
Figure 3E), and foci of acinar-to-ductal metaplasia (ADM)
also were proliferative (22% � 2%). Although RB controls
cell proliferation by inhibiting the G1-S transition,25 these
observations suggest that RB attenuates oncogenic Kras-
activated mitogenic pathways in the pancreas.

In Rb/K mice, invasive PDAC developed with high fre-
quency ranging from 20% (n � 5) at 2 weeks to approx-
imately 70% (n � 6) at 4 –5 months. Microinvasion was
observed in association with both high-grade PanIN and
MCN, as evidenced by basement membrane disruption
(Figures 1B and 2B) and CK19-expressing dysmorphic
cells within the adjacent stroma (Supplementary Figure
4A and B), indicating that both lesions could progress to
cancer. Altogether, 14 of 40 Rb/K mice developed PDAC
(Table 1), which were highly proliferative with a collagen-
rich stroma (Supplementary Figure 4C and D). Thus, aside
from the absence of metastases, PDAC in Rb/K mice
recapitulated many histologic features of human PDAC.
RbL/�/K mice also developed PDAC, but at a very low
frequency (1 of 37 after 12 months).

Rb/K Mice Develop Marked Inflammatory
Infiltrates
Marked inflammatory infiltrates were observed in

1 of 5 pancreata of 1-week-old Rb/K mice (not shown),

and 3 of 5 pancreata of 2-week-old mice, with occasional
foci of ADM (Figure 3A). These pancreata showed marked
edema with separation of lobules, and harbored many
macrophages (Mac3-positive) both near and away from
neoplastic lesions (Figure 3B). T cells (CD3�-positive) and
neutrophils (myeloperoxidase-positive) also were abun-
dant (Figure 3B), but B cells were absent (Pax5-negative,
not shown). Although inflammatory changes were less
frequent by postnatal week 8, some mice still showed
inflammatory infiltrates and, occasionally, gross edema
(Figure 3A). Edematous changes and marked inflamma-
tion were never observed at early stages in K or RbL/�/K
mice (Supplementary Table 1), suggesting that full inac-
tivation of Rb was required to induce the inflammatory
reaction.

Cytokine expression was examined next in 3-week-old
Rb/K pancreata. When compared with littermate controls
(including RbL/L and Pdx1Cre;RbL/L), the messenger RNA
(mRNA) levels for the proinflammatory cytokines inter-
leukin (IL)-6, IL-1�, tumor necrosis factor-�, CXCL1,
CXCL2, and monocyte chemotactic protein-1 (MCP1)
were highly increased (Figure 3C and D). In addition, the
immune-modulating growth factors, transforming
growth factor (TGF)-�1, -�2, and -�3, were up-regulated
in 50%– 60% of Rb/K pancreata (Figure 3E). These cyto-
kines also were increased in K pancreata compared with
their littermate controls (Figure 3C–E), but only at stages
at which low-grade lesions (3 months) and pronounced
ADM-associated inflammation (6 months) are common
(Supplementary Table 1 and Supplementary Figure 2). On
average, cytokine levels were similar in K and Rb/K pan-
creata. However, one-third to one-sixth of the Rb/K mice
showed dramatic increases in IL-6, IL-1�, and CXCL2,
which correlated with the presence of extensive inflamma-
tion histologically (not shown). TGF-�1, -�2, and -�3
levels also were higher in Rb/K pancreata.

Figure 2. Characteristics of epithelial and stromal compartments of MCN-like lesions. (A) Low- to moderate-grade lesions in Rb/K mice display
disorganized epithelia, without clear nuclear atypia, and are surrounded by hypercellular stroma (arrow). (B) High-grade lesions display nuclear atypia
and loss of basement membrane (arrowhead). (C–E) Surrounding stroma expresses (C) progesterone receptor (PR), (D) estrogen receptor (ER), and
(E) �-smooth muscle actin (�-SMA). (F) Lesions overexpress cyclooxygenase 2 (Cox2). Scale bar, 50 �m.
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Figure 3. Rb/K pancreata display acute pancreatic inflammation. (A) Two-month-old mouse (left panel): gross edema. (A and B) Two-week-old
mice: (A) diffuse (middle panel) and focal inflammation around neoplasms and ADM foci (middle and right panels); (B) CD3�-positive T cells,
myeloperoxidase (MPO)-positive neutrophils, and Mac3-positive macrophages adjacent to PanIN, and in normal-appearing pancreas (inset). Scale
bar, 50 �m. (C–E) Proinflammatory cytokines are up-regulated in 3-week-old Rb/K pancreata (open circles), and 3- (K3) and 6- (K6) month-old K mice
(shaded circles) compared with their littermate controls (black circles, Ct(Rb) and Ct(K)). Horizontal bars denote mean expression levels. (F) MCP1,
CXCL1, and TGF-�2 mRNA levels were increased markedly in all Rb/K (solid bars) compared with K cells (open bars).
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To study the possibility that the inflammation was
related directly to RB deletion in the cancer cells, 2 pri-
mary cell lines were established from 2-month-old Rb/K
pancreata (Rb/K338 and 343). Several clones (Rb/K343-1
to -6) were isolated from Rb/K343 cells. As controls, we
generated cell lines from K pancreata (K1 and K2). RB was
absent in all Rb/K cell lines (Supplementary Figure 5A–C)
and KrasG12D expression was confirmed in all cell lines.
Although all cell lines formed tumors in nude mice, ex-
cept for K2 cells, none were derived from grossly visible
tumors, suggesting that they originated from early stage
malignancies. All experiments were performed on early
passage cells (�12)8,14,20,21 to minimize alterations in cul-
ture. In Rb/K cells, CXCL1, MCP1, and TGF-�2 mRNA
levels were increased 4-fold, 5- to 35-fold, and 7-fold,
respectively, compared with K ‘cells (Figure 3F). The levels
of TGF-�1, -�3, and other assayed cytokines were similar
between Rb/K and K cells, whereas IL-6 and IL-1� levels
were very low in all cell lines.

Rb Deletion Leads to a Bypass of KrasG12D-
Induced Senescence
Ras-associated oncogenic stress can lead to OIS,26

a process that causes irreversible cell-cycle arrest. Given
the involvement of RB in senescence,27,28 we next exam-
ined senescence status in Rb/K and K pancreata. Senes-
cence-associated �-galactosidase (SA-�Gal), an early senes-
cence marker, and p16Ink4a, an essential component of
senescence, were detected in PanIN-1 in both Rb/K and K
mice (Figure 4A–C). Not all PanIN displayed SA-�Gal

activity, and adjoining cells were always negative, under-
scoring SA-�Gal staining specificity. Dramatically, in
Rb/K pancreata, SA-�Gal- and p16Ink4a-positive PanIN-1
cells were highly proliferative, as evidenced by frequent
overlap with Ki67 immunoreactivity (Figure 4A and B).
Indeed, the vast majority of SA-�Gal– expressing cells co-
expressed Ki67.

By contrast, in K pancreata only rare proliferating cells
were detected in PanIN-1, and none of them expressed
SA-�Gal (Figure 4C) or p16Ink4a (not shown). Interestingly,
p16Ink4a was increased in all grade PanIN and MCN-like
lesions in Rb/K mice, but was decreased markedly in
proliferating PDAC cells (Supplementary Figure 6A–C),
indicating that p16Ink4a is lost during progression from
PanIN-3 to PDAC.

No consistent increases in the expression of the puta-
tive senescence markers Dec1 and DcR2 were observed in
PanIN-1 in either mouse model, and there were no differ-
ences in trimethylated histone K9 immunoreactivity, a
marker of heterochromatization (not shown). Given these
inconclusive results, microarray studies were performed to
compare the expression of senescence-associated genes in
Rb/K and K cells. There were highly significant, 10-, 7-,
25-, and 5.3-fold, increases in the mRNA levels encoding
p19ARF, insulin-like growth factor binding protein 7,
caveolin-1, and p15, respectively, in proliferating Rb/K
cells, all of which have been associated with cellular se-
nescence (Supplementary Figure 7).29 –32 These observa-
tions suggest that in Rb/K mice, senescence is initiated,

Figure 4. Senescence is bypassed in Rb/K pancreata. (A) SA-�Gal activity (left panel) co-localizes (arrows) with p16Ink4a (center panel) and Ki67
(right panel) in low-grade Rb/K PanIN. (B) Most p16Ink4a-expressing cells (red) co-express (arrows) Ki67 (green) as shown by the overlay (right panel).
(C) In K pancreata, low-grade PanIN display SA-�Gal activity (left panel), but rare bromodeoxyuridine (BrdU) incorporation (center panel), and Ki67
expression (right panel, arrows). Scale bar, 50 �m.
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Figure 5. RB loss together with KrasG12D activation causes p53 accumulation. (A) In Rb/K pancreata, p53 (arrowheads) is abundant in ADM,
PanIN, and MCN-like lesions, but only in ADM foci in K pancreata. (B) Double immunofluorescence reveals that p53-expressing cells (red) are
mainly epithelial (CK19-positive; green), and are highly proliferative (Ki67-positive; green) in low- and high-grade PanIN, and PDAC (arrows
exemplify co-expression). In K pancreata (lower panels), p53 expression (red) is rare and does not overlap (arrows) with Ki67 (green). (C) p21
expression is very low in lesions and rarely overlaps with p53 (arrows). The exposure time for p21 is 3-fold longer than for p53. Scale bar,
25 �m.
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but cells do not arrest and, instead, escape senescence and
show increased proliferation.

Rb Deletion in the Presence of Oncogenic
Kras Leads to Dysregulation of p53 Function
p53 is a crucial mediator of senescence and cell-

cycle arrest that is activated in response to diverse cellular
stresses.33–35 Therefore, we evaluated p53 expression in
Rb/K and K pancreata, and in derived cell lines. Strong
nuclear p53 immunoreactivity was present in all lesions
(Figure 5A) and PDAC (Figure 5B) in Rb/K pancreata,
frequently overlapping with Ki67 (Figure 5B). By contrast,
K pancreata had significantly less p53-positive cells (Sup-
plementary Figure 8A), where it primarily was confined to
nonproliferative ADM foci and stromal cells (Figure 5A
and B). p21CIP1/WAF1 (p21), a key p53 target that elicits
growth inhibition and a senescence response,36 was pres-
ent at very low levels in Rb/K pancreata, infrequently in
neoplastic cells, and, rarely, co-localizing with p53 (Figure
5C), suggesting that the low levels of p21 in Rb/K pan-
creata derived through p53-independent mechanisms.37,38

To further delineate p53 dysregulation in Rb/K pan-
creata, p53 and p21 expression was examined in Rb/K cell
lines. Despite high p53 levels, p21 mRNA levels were
decreased markedly in Rb/K cells (Supplementary Fig-
ure 8B), and p21 protein was evident in only one cell
line (Rb/K343-5; Figure 6A). After DNA damage induc-
tion by �-irradiation, the expected increase in p53 and
p21 was seen in K, but not Rb/K cells (Figure 6A). Low
p21 levels in the face of high p53 suggested that p53
might be transcriptionally inactive. Indeed, with the ex-

ception of Rb/K343-5, all Rb/K cell lines had low basal
p53 transcriptional activity, which failed to increase after
�-irradiation, whereas K1 cells showed increased activity
(Figure 6B). None of the 7 Rb/K cell lines harbored a
mutated p53 gene, as determined by cDNA sequencing.
It was important, therefore, to confirm the loss of p53
transcriptional activity. Accordingly, we assessed the ex-
pression levels of several p53 target genes in Rb/K cells,
including p21, murine double minute-2 (Mdm2), and
pro-apoptotic and pro-survival genes, many of which were
down-regulated significantly (Supplementary Figure 8B–
D).

To determine whether the DNA damage response
pathways that activate p53 were functional, we next
examined �H2AX, phospho-ATM (S1981), and phos-
pho-CHK1 (S345) expression after �-irradiation. After
irradiation all 3 markers were increased in Rb/K and K
cells (Figure 6A and C), in conjunction with increased
phosphorylation of p53 on Ser18 (Figure 6D). Thus, Rb/K
and K cells maintained an intact DNA damage response
upstream of p53.34

We next compared p53 turnover in K and Rb/K cells. In
K cells, activated p53 protein was below the level of de-
tection within 45 minutes of cycloheximide (2 �g/mL)
addition, whereas in Rb/K cells the p53 levels remained
markedly increased even after a 6-hour incubation with 10
�g/mL cycloheximide (not shown), underscoring the
marked p53 stability in Rb/K cells. Because p19ARF is a
major regulator of p53 protein stability, preventing
Mdm2 from targeting p53 for degradation, we next com-
pared the expression of p19ARF and Mdm2 in these cells.
Although Mdm2 levels were similar in Rb/K and K cells at
the protein and RNA levels (Figure 6E and Supplementary
Figure 8B), in congruence with the array results (Supple-
mentary Figure 7), p19ARF was increased in Rb/K cells
(Figure 6A). Thus, given the normal p53 mRNA levels
(Supplementary Figure 8E), p53 accumulation in Rb/K
cells could be explained by p19ARF-mediated sequestration
of Mdm2 and subsequent p53 protein stabilization.

The loss of p53 transcriptional activity suggested that
p53-dependent DNA repair mechanisms also could be
altered in Rb/K cells, potentially leading to chromosomal
instability. Moreover, impaired p53 function has been
reported to lead to chromosomal instability in another
PDAC model.21 All Rb/K cell lines displayed an increased
number of centrosomes and aberrant spindle formation
in mitotic cells whereas none of the K cells showed more
than 2 centrosomes in any mitotic cell (Supplementary
Figure 9A). Abnormal mitotic events also were observed in
advanced PDAC in Rb/K pancreata (Supplementary Fig-
ure 9A). Moreover, spectral karyotyping analysis showed
that Rb/K cells had major chromosomal disruption, in-
cluding amplification and translocation, and the presence
of centric fragments (Supplementary Figure 9B). Thus, in
the presence of oncogenic Kras, RB loss leads to chromo-
somal instability.

Figure 6. p53 is dysfunctional in Rb/K cells. (A) Western blots on Rb/K
and K lysates show that p53 and p19ARF are highly increased in Rb/K
cells, and p21 is not induced by �-irradiation in Rb/K cell lines (except
Rb/K343-5). After �-irradiation, �-H2AX, a DNA damage marker, in-
creases in all cell lines. (B) p53 transcriptional activity is very low in Rb/K
cell lines except Rb/K343-5. (C) DNA damage response pathways are
induced by �-irradiation in K and Rb/K cells. (D) �-irradiation induced
p53 phosphorylation (serine 18). (E) MDM2 levels are similar in all cell
lines.
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Discussion
A crucial feature of neoplastic transformation is

loss of cell-cycle control. Active, hypophosphorylated RB
is a key tumor suppressor that prevents cell-cycle progres-
sion,39,40 and alterations in the RB pathway have been
identified in nearly every human malignancy.41 Multiple
pathways regulate RB phosphorylation and modulate its
activity.42 Although the presence of oncogenic Kras could
inactivate RB and enhance transformation, in some cell
types, ras-induced oncogenic transformation requires
RB.43 Given these divergent possibilities, and the need to
assess the role of RB in PDAC, we examined the conse-
quence of Rb deletion on Kras-induced pancreatic carci-
nogenesis.

In this study, RB inactivation alone did not affect
pancreas development, and it did not induce pancreatic
neoplastic transformation. However, concomitant Kras
activation resulted in rapid development of PanIN and
MCN-like cystic papillary neoplasms, which occurred in
conjunction with marked pancreatic inflammation, pan-
creatic atrophy, rapid progression to PDAC at a high
frequency, and a median survival of 10 weeks. Thus, Rb/K
mice show one of the most lethal phenotypes of all PDAC
mouse models,8,14,18 –21,44 underscoring the tumor-sup-
pressive role of RB in the pancreas. RbL/�/K animals also
displayed accelerated lesion progression and decreased
survival. However, there was rare progression to PDAC,
indicating that loss of both Rb alleles, and therefore full
inactivation, is required to maximally promote Kras-
driven oncogenesis. Signaling pathways that have been
reported as being activated in human PanIN, such as Wnt,
Notch, and Sonic Hedgehog, were up-regulated in PanIN
and MCN-like neoplasms in Rb/K mice, underscoring the
relevance of the Rb/K model to human PDAC. Moreover,
MCN previously was characterized in only 1 mouse
model.19 Thus, Rb/K mice also would allow for improved
studies of the pathobiology of MCN.

The acute inflammation in Rb/K mice was associated
with increased expression of proinflammatory cytokines,
including IL-6, which helps recruit neutrophils and facil-
itates Kras-mediated neoplastic transformation in various
cell types by promoting cell survival,45 and IL-1� and
tumor necrosis factor-�, which contribute to neutrophil
activation.46 These cytokines also were expressed at high
levels in K pancreata, but only in older mice, and they were
never associated with edematous changes, as observed in
1-month-old Rb/K pancreata. Moreover, only Rb/K cells
expressed high levels of CXCL1, TGF-�2, and MCP-1.
CXCL1 and TGF-�s are neutrophil chemoattractants,46

and MCP1, which also is produced by injured acinar cells
during the early stages of acute pancreatitis, is a potent
monocyte chemoattractant.47 Thus, Rb/K cells produce
and potentially release proinflammatory cytokines, a hall-
mark of an SA secretory phenotype.48,49 These findings
suggest that in Rb/K mice, transformed cells produce
high levels of chemokines that recruit inflammatory
cells, and induce a highly proinflammatory microenvi-

ronment, leading to the observed pancreatitis-like
changes and abundant inflammation.

We and others have shown that acute and chronic
pancreatitis promote cancer progression in oncogenic
Kras-driven PDAC mouse models.50 –53 Moreover, inflam-
mation and neoplastic transformation often appeared
concomitantly in Rb/K mice, suggesting that these pro-
cesses were interdependent. Given the importance of in-
flammation in cancer progression, Rb/K mice are an ex-
cellent model for investigating the relationship between
oncogenic Kras, pancreatic inflammation, and PDAC ini-
tiation and progression.

Just as low-grade PanIN in Rb/K pancreata showed
senescence markers (p16Ink4a and SA-�Gal) and enhanced
proliferation, proliferating Rb/K cells displayed activation
of a senescence program, evidenced by increased p19ARF,
insulin-like growth factor binding protein 7, caveolin-1,
and p15 expression. Increased expression of p19Arf most
likely was owing to deregulated E2F activity in the absence
of RB, which could sequester Mdm2 and impede p53
degradation.54 Moreover, in Rb/K cells, p53 was phos-
phorylated on Ser18 in the absence of exogenous stress
and caveolin-1 was overexpressed, and both alterations
disrupt p53:Mdm2 interactions.29,55 These observations
may explain why Rb/K cells showed increased p53 protein
levels but normal p53 RNA levels.

Despite high p53 levels in Rb/K cells, and the absence
of mutations in its coding region, p53 was dysfunctional
and could neither enforce senescence nor suppress prolif-
eration. Several lines of evidence support this conclusion,
and indicate that these perturbations also were present in
Rb/K pancreata. First, p53 did not activate transcription
in a reporter assay, and analysis of a panel of p53 target
genes showed that several classes of these genes were
down-regulated in Rb/K cells. Second, Rb/K cells showed
chromosomal instability, consistent with defective DNA
repair observed in the absence of functional p53. Third,
p21 expression was attenuated markedly in Rb/K lesions
and rarely co-localized with p53, which correlated with
low, uninducible p21 expression in vitro. By contrast, in
fibroblasts, RB loss up-regulates p21, which cooperates
with p16Ink4a to preserve oncogenic ras-induced senes-
cence.28 Silencing of p21 in these cells induces senescence
bypass that is not compensated for by the RB family
members, p107/p130.28 Thus, it is likely that senescence
escape in early PanIN lesions in Rb/K mice is aborted
because of the failure of p53 to up-regulate p21.

It is not clear whether p53 is dysfunctional because of
the failure to bind DNA and recruit transcriptional part-
ners, or because of repressive post-translational modifica-
tions. Nonetheless, despite the absence of RB and dys-
functional p53, p16Ink4a inactivation still was required for
progression to PDAC. Although it generally is assumed
that the main role of p16Ink4a is to regulate RB, these data
argue that p16Ink4a and RB have unique and independent
tumor-suppressor functions.

In summary, our study reveals several previously unap-
preciated functions of RB in PDAC progression. In the
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presence of an activated KrasG12D allele, RB prevents neo-
plastic cells from bypassing senescence and impedes in-
flammatory alterations that occur as a result of SA secre-
tory phenotype. Moreover, RB promotes p53 functions to
attenuate tumor progression. These findings underscore
the importance of devising strategies that target RB path-
way disruptions56 in PDAC, and indicate that the Rb/K
mouse model could be useful for screening drugs de-
signed to activate p53, and/or prevent pancreatic inflam-
mation and cancer progression.

Supplementary Material

Note: To access the supplementary material
accompanying this article, visit the online version of
Gastroenterology at www.gastrojournal.org, and at doi:
10.1053/j.gastro.2011.05.041.
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