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Abstract
Background: The fidelity of DNA replication serves as the nidus for both genetic evolution and genomic instability fostering
disease. Single nucleotide polymorphisms (SNPs) constitute greater than 80% of the genetic variation between individuals. A new
theory regarding DNA replication fidelity has emerged in which selectivity is governed by base-pair geometry through
interactions between the selected nucleotide, the complementary strand, and the polymerase active site. We hypothesize that
specific nucleotide combinations in the flanking regions of SNP fragments are associated with mutation.

Results: We modeled the relationship between DNA sequence and observed polymorphisms using the novel multifactor
dimensionality reduction (MDR) approach. MDR was originally developed to detect synergistic interactions between multiple
SNPs that are predictive of disease susceptibility. We initially assembled data from the Broad Institute as a pilot test for the
hypothesis that flanking region patterns associate with mutagenesis (n = 2194). We then confirmed and expanded our inquiry
with human SNPs within coding regions and their flanking sequences collected from the National Center for Biotechnology
Information (NCBI) database (n = 29967) and a control set of sequences (coding region) not associated with SNP sites randomly
selected from the NCBI database (n = 29967). We discovered seven flanking region pattern associations in the Broad dataset
which reached a minimum significance level of p ≤ 0.05. Significant models (p << 0.001) were detected for each SNP type
examined in the larger NCBI dataset. Importantly, the flanking region models were elongated or truncated depending on the
nucleotide change. Additionally, nucleotide distributions differed significantly at motif sites relative to the type of variation
observed. The MDR approach effectively discerned specific sites within the flanking regions of observed SNPs and their
respective identities, supporting the collective contribution of these sites to SNP genesis.

Conclusion: The present study represents the first use of this computational methodology for modeling nonlinear patterns in
molecular genetics. MDR was able to identify distinct nucleotide patterning around sites of mutations dependent upon the
observed nucleotide change. We discovered one flanking region set that included five nucleotides clustered around a specific
type of SNP site. Based on the strongly associated patterns identified in this study, it may become possible to scan genomic
databases for such clustering of nucleotides in order to predict likely sites of future SNPs, and even the type of polymorphism
most likely to occur.
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Background
The fidelity of DNA replication serves as the nidus for
both genetic evolution and genomic instability fostering
disease. Our knowledge of these processes requires an
understanding of polymerase fidelity and the means by
which genes are faithfully copied, proofread, and main-
tained in the face of environmental factors. Single nucle-
otide polymorphisms (SNPs) constitute greater than 80%
of the genetic variation between individuals with such
alterations observed every 1000 to 2000 nucleotides when
comparing two human gene sequences within the
genome [1]. Initially, Watson and Crick proposed that
hydrogen bonding between complementary bases secured
accurate DNA replication[2]. However, abundant evi-
dence indicates the that free energy differences between
correct and incorrect base pairing is not enough to
account for the observed selectivity of most DNA
polymerases[3]. A new theory has emerged in which selec-
tivity is governed by base-pair geometry through interac-
tions between the selected nucleotide, the complementary
strand, and the polymerase active site[4].

Accurate DNA replication is therefore governed by correct
nucleotide insertion, and in the case of polymerases with
proofreading ability, by the favored extension of correctly
paired complementary strands[5]. Kunkel and others pro-
posed an "induced-fit" model for nucleotide selection
where the incoming nucleotide moves the polymerase
from an open to a closed configuration [3,6-8]. In this
reaction mechanism, DNA polymerase binds DNA form-
ing an "open-state" complex enabling 2'-deoxyribonucle-
oside 5'-triphosphate (dNTP) binding in an open ternary
complex. A conformational change to the "closed-state"
follows dNTP incorporation to the primer 3'-terminus.
The polymerase subsequently returns to an open-state,
releasing pyrophosphate (PPi) [8-10].

The overall structure of DNA polymerases is comparable
to a right hand with palm, finger, and thumb domains
[11]. Structural studies have shown that the templating
strand bends upon exiting the polymerase catalytic site.
This allows the finger domain to interact with the minor
groove of the elongating strands, thereby reading the con-
formation of downstream base-pairing. Also, the templat-
ing strand diverts the next template base from the active
site, fostering correct template reading on the part of the
polymerase[12]. Not surprisingly, polymerase amino acid
side-chain interactions play a critical role in efficiency and
fidelity. In the case of polymerase β (pol β), Wilson and
colleagues found that Asp-276 and Lys-280 form stacking
interactions with the incoming nucleotide and the tem-
plate, with their deletion reducing catalytic efficiency and
accuracy[13]. Earlier work had shown loss of Arg-283
hydrogen bonding and van der Waals interactions with
the minor groove of the templating nucleotide of the nas-

cent base pair decreases catalysis and reduces polymerase
fidelity [14-16].

Other investigators have studied the association of flank-
ing regions on polymerase fidelity. Zhao and Boerwinkle
examined neighboring-nucleotide effects on SNP genesis
in the human genome and found a bias in regard to nucle-
otide identity in the flanking regions[17] Their work
examined the proportion of each nucleotide neighboring
the polymorphic site and found a large bias relative to the
averages found in the human genome. This was particu-
larly the case for positions immediately bordering the pol-
ymorphic site. Importantly, their work identified distinct
bias patterns for differing transition and transversion
types, as well as a bias relative to chromosome number.
Subsequent work by Zhang and Zhao found neighboring-
nucleotide bias in the mouse genome when compared
with human SNPs[18] Our work presented here offers a
more thorough picture of nucleotide bias in the flanking
region of polymorphic sequences. These findings are
novel in that they address synergistic interactions between
nucleotide positions and the polymorphic site, adding
considerable detail regarding the flanking region nucle-
otide patterns associated with specific transitions and
transversions.

To account for the possibility of nonadditive interactions
among sequences, we utilize MDR methodology devel-
oped specifically for detecting nonlinear patterns of dis-
crete attributes predictive of a discrete endpoint. The MDR
method, and associated software, was originally devel-
oped to detect interactions among genetic variations in
population-based studies of disease susceptibility [19-23].
The goal of MDR is to change the representation space of
the data to make nonlinear interactions easier to detect
and characterize. Thus, MDR can be seen in a broader
sense as a data processing step preceding classifica-
tion[23]. At the heart of MDR is an attribute construction
algorithm, pooling levels from multiple discrete factors to
create a new discrete attribute[23].

We hypothesize that certain sequence combinations in
the flanking regions of SNPs predispose toward mutation
due to effects on primer strand geometry within the
polymerase active site and interactions with side-chains
essential for proper catalytic function, possibly altering
solvation dynamics within the active site. The goal of the
present study is to identify nucleotide patterns in SNP
flanking regions that predispose to mutation. To accom-
plish this goal, we employed a novel machine learning
method, multifactor dimensionality reduction (MDR),
capable of identifying nonlinear patterns among discrete
attributes (nucleotides) and discrete endpoints (mutation
type). We found both common and unique nucleotide
patterns in the flanking regions of various polymorphism



BioData Mining 2009, 2:2 http://www.biodatamining.org/content/2/1/2

Page 3 of 9
(page number not for citation purposes)

types and delineated detailed associations indicative of
neighboring-nucleotide effects.

Methods
The goal of this approach is to identify combinations of
nucleotides predictive of mutation type. Defining a new
attribute as a function of two or more other attributes is
referred to as constructive induction, or attribute construc-
tion, and was first described by Michalski et al[24]. Con-
structive induction using MDR is accomplished in the
following way: given a threshold T, a combination of lev-
els from two or more attributes, for example, is considered
'associated' with the class of interest if the ratio of class A
to class B exceeds T; otherwise it is considered "not associ-
ated'. Once multifactor level combinations are labeled
'associated' and 'not associated' a new binary attribute is
created with those two levels. Here, the classes are SNP(+)
and SNP(-), with each attribute representing the nucle-
otide at a specific position in the flanking sequences.

Once an MDR attribute is constructed it can be statistically
evaluated using any classification method such as naïve
Bayes, decision trees, or logistic regression[25]. It is also
possible to add this new attribute back to the original
dataset to be evaluated along with other attributes in a
process called interleaving[25]. Computational methods
such as bootstrapping, cross-validation, and permutation
testing can be employed as wrappers to MDR-based con-
structive induction and classification to facilitate identifi-
cation of a best set of predictors and their model. For the
purposes of this study we change the representation of the
data using MDR with the pairing of positions -6 and +1 as
an example (Figure 1A) for using a naïve Bayes algorithm
for classification. All possible combinations of one, two,
three, and four nucleotides are evaluated for each type of
SNP (Figure 1B). Training and testing accuracies are esti-
mated using 10-fold cross-validation. The model with the
highest testing accuracy is selected as the best model. Sta-
tistical significance was determined using 1000-fold per-
mutation testing, a computationally intensive method of
re-sampling datasets to empirically derive the significance
of observations. The null hypothesis of no association was
rejected when the upper value of the Monte Carlo P value
derived from the permutation test was ≤ 0.05. The combi-
nation of cross-validation and permutation testing helps
control the type I error rate in the presence of multiple
testing. This general analytical approach has been success-
fully used to apply MDR in dozens of population-based
association studies.

To further test our findings we employed chi square (X2)
analysis to each of the datasets. In general, chi square test-
ing demonstrated a robust level of significance (often with
p values below the 0.0001 level) far greater than that
found using the 1000-fold permutation testing approach.

This is not surprising when one considers that 1000-fold
permutation testing examines the predictive power of the
complete flanking region model rather than each nucle-
otide position within that model separately.

Broad Institute Dataset
Sequences were limited to single nucleotide polymor-
phisms (SNPs) from the human genome and were down-

Schematic of flanking regions in 3' and 5' directionFigure 2
Schematic of flanking regions in 3' and 5' direction. 
Each position in the NCBI dataset was evaluated with regard 
to nucleotide identity, and by nucleotide and also purine/pyri-
midine identity in the Broad Institute dataset.

Summary of the general steps involved in implementing the MDR methodFigure 1
Summary of the general steps involved in imple-
menting the MDR method. "High-risk" are labeled G1 and 
"low-risk" are labeled G0 constructing a new one dimensional 
attribute with G0 and G1. This list of attributes includes the 
flanking positions ten nucleotides long in both the 3' and 5' 
direction from the SNP site. Each position has four levels (A, 
C, G, T) or alternatively two levels (purine, pyrimidine) while 
the class has two levels (0, 1) that codes for controls and 
cases. A) illustrates distribution of cases (left bars) and con-
trols (right bars) for each of the four possible classes of 
attributes. The dark shaded cells have been labeled 'high-risk' 
using a threshold of T = 1. The light-shaded cells have been 
labeled 'low-risk'. B) illustrates the distribution of cases and 
controls when the two functional positions are considered 
jointly, it is the distribution of cases and controls for the new 
single attribute constructed using MDR.
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loaded from The Human SNP Database (Broad Institute,
MIT). SNPs sequences were collected for each of the 46
human chromosomes and classified in terms of their tran-
sition or transposition error, i.e. A/C, A/G, A/T, and so
forth. Each sequence was trimmed to include 10 nucle-
otides in both the 3' direction (positions -10 through -1)
and the 5' direction (positions +1 through +10) relative to
the observed polymorphism site (at position 0 in Figure
2) so the resulting DNA polymer would include nucle-
otides interacting directly with the polymerase. To test the
hypothesis that the location of a particular SNP carries a
sequence specificity, each of these twenty attributes was
assigned their nucleotide identity corresponding to the
Broad Institute sequence data, i.e. adenine, cytosine, gua-
nine, and thymine to determine which, if any, positions
might confer a predisposition to replication error.

First, the SNP sequences of a given type (i.e. A or C, A or
G, A or T, etc) were culled from the Broad Institute data.
The 20 attributes, corresponding to 10 nucleotides in the
3' and 5' direction of the mutation site, were further clas-
sified by nucleotide type (A, G, T, or C) (four significant
models are shown in Table 1). Additionally, a separate
analysis was performed where nucleotide type was identi-
fied as being either a purine or a pyrimidine (three signif-
icant models are shown in Table 2). Controls were
randomly selected from the general pool of sequences,
not corresponding to the SNP under consideration using
the MDR impute module, allowing random generation of
the SNP(-) group. Each multifactoral cell in n-dimension
space was labeled either "high association" if the SNP(+)
and SNP(-) ratio met or exceeded a threshold of T = 1, and
labeled "low association" if this threshold was not met. A
model for each SNP(+) and SNP(-) was formed by pool-

ing high association cells into their prospective groups.
This reduced the n-dimension model to a one dimen-
sional model. This was performed both on balanced and
unbalanced datasets where the control group far outnum-
bered the study set. The MDR computational suite 6.1
allows for the use of unbalanced sets allowing greater dis-
crimination against type II errors.

Among all combinations of the two classes, a single
model for the high risk group is constructed with the best
SNP+/SNP- ratio. Single best multifactoral models are
selected for each of the 2n-factor combinations. Then, the
model with the best predictive power, having the lowest
prediction error is selected. The final multifactorial model
is thus selected from the classification errors and predic-
tion errors. Statistical significance was ascertained by com-
paring the average cross-validation consistency of the
SNP(+) sets to the value of consistencies of the SNP(-) sets
(the null groups) derived from 1,000 permutations. The
null hypothesis was rejected when the upper value of the
Monte Carlo P value derived from the permutation test
was = 0.05. MDR computation methods have been used
previously with good success in analyzing epistatic mod-
els of disease where multiple genes interact with one
another in the disease model.

NCBI dataset
The NCBI dataset allowed us to confirm, expand, and
refine the results from the Broad Institute based pilot
study. We assembled 29,967 human SNP sequences into
six potential nucleotide changes (Table 3). MDR analysis
was used again to identify combinations of nucleotides
that predict mutation type. This feature of the MDR soft-
ware package allows for greater sensitivity, particularly

Table 2: Broad Dataset with Flanking Positions Identified as either purine or pyrimidine

SNP Count nucleotide positions Testing accuracy P-value X2

G→A 322 +1 0.571 0.02 0.001
T→C 371 +2 0.536 <0.01 0.001
T→G 87 -2, +2 0.621 0.02 0.001

MDR analysis of SNP flanking regions where upstream 3' to SNP site equals positions -10 through -1 and 5' region from the SNP site extending 
downstream equals position +1 through +10. All positions were evaluated with regard to pyrimidine or purine identity.

Table 1: Broad Dataset with Flanking Positions Identified by A, G, C, and T Character

SNP Count nucleotide positions Testing accuracy. P-value X2

A→G 371 +1 0.558 0.05 0.001
C→A 84 +1 0.613 0.05 0.001
C→G 95 +1 0.521 <0.01 0.001
G→A 322 +1 0.571 0.02 0.001

MDR analysis of SNP flanking regions where upstream 3' to SNP site equals positions -10 through -1 and 5' region from the SNP site extending 
downstream equals position +1 through +10. All positions where evaluated with regard to nucleotide identity, i.e. adenine, cytosine, guanine, and 
thymine.
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when analyzing data with a limited number of cases. Here
adjusting the threshold (T) and applying balanced accu-
racy corrects for the decreased ratio of cases to con-
trols[26]. Statistical significance was determined using
1000-fold permutation testing.

Our NCBI data set was initially composed of 920,181
human sequences with varying SNP character. Sequences
were downloaded as follows: The query, (((("homosapi-
ens" [Organism] AND "true" [Genotype]) AND (("coding
nonsynonymous" [Function class] OR "intron" [Function
class]) OR "coding synonymous" [Function class])) AND
"sequence" [METHODCLASS]) AND "snp" [SnpClass]),
was performed on November 2, 2006 using dbSNP build

126. The resulting 920,181 records were collected in
FASTA format for post-query parsing using a series of in-
house developed Perl scripts. The initial records were later
pruned to 29,967 due to inconsistencies in the original
dataset. The first 20 nucleic acids of each sequence became
an unmatched control sequence, with the requirement
that control strands contain no characters other than A/a,
C/c, T/t, or G/g. The 10 nucleic acids immediately flanking

Distribution of SNP types within the NCBI DatasetFigure 4
Distribution of SNP types within the NCBI Dataset. 
Representation of percent transition, transversion, and multi-
ple variant types in both exons and introns for the NCBI 
dataset.

Table 3: NCBI Dataset Distributions

SNP Model SNP Type Occurrences % of Cases Exons Only % exons Introns Only % introns

M A or C 75838 8.241639417 1981 6.591249 73857 8.297365

R A or G 312882 34.00222348 11324 37.67759 301558 33.87813

W A or T 58562 6.364182699 1008 3.353851 57554 6.465826

S C or G 83070 9.027571749 2621 8.720679 80449 9.037934

Y C or T 312689 33.98124934 11181 37.2018 301508 33.87251

K G or T 76497 8.313255762 1831 6.092164 74666 8.388251

SNP model codes are based on established NCBI nomenclature. SNP type identifies the nucleotides potentially occupying the SNP site in those 
models.

Single Nucleotide Polymorphism dataset collected from NCBIFigure 3
Single Nucleotide Polymorphism dataset collected 
from NCBI. Codes for cases are shown in the included 
table. Sequences were collected for both intronic and exonic 
and their numbers are given in the column marked Occur-
rences. Nucleotide flanking pattern searches were conducted 
for exonic sequences only.
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the identified SNP site were extracted as a case sequence.
Additionally, flanking regions including 20 nucleic acids
in each direction were extracted, but demonstrated no pat-
tern association differences from the 10 nucleic acid
strands. Case and control sequences were collated into
tab-delimited MDR input files, with sequences labeled as
case (1) or control (0), according to MDR system specifi-
cations.

Results and discussion
It has been previously determined that certain replication
errors are influenced by flanking regions adjacent to the
mutation site. Small frameshifts of one-base deletions are
made on undamaged DNA by DNA pol μ, pol λ, pol β,
and Escherichia coli pol IV[27]. One such example is Stre-
isinger slippage, resulting in simple deletions by a process
of looping out of one or more bases as the primer moves
along a strand of reiterated template bases[28]. This
mechanism plays a role in trinucleotide expansion seen in
Huntington disease, Fragile X syndrome, and Myotonic
dystrophy to name a few. Other work regarding HIV
Type1 reverse transcriptase (RT) found that RT side chain
interactions affected polymerase fidelity and specifically
that correct T-dAMP insertion was affected by the 5'-
CTGG primer sequence in the binding pocket[5]. These
studies were performed to evaluate potential independent
effects of sites within the flanking regions as well as syner-
gistic interactions between sites. Therefore, knowledge of
the potential for nucleotide clusters to predispose some

genomic sites to spontaneous mutation offers enormous
benefit in the study of viral and bacterial mutation leading
to drug resistance as well as the identification of potential
pre-cancerous genetic lesions and genomic instability
leading to human developmental diseases. To our knowl-
edge, this is the first instance of MDR methods employed
to evaluate the potential role of flanking regions on muta-
genesis.

We tested the hypothesis that specific types of replication
errors (changes to and from each combination of adenine,
cytosine, guanine, or thymine) would be associated
within distinct flanking region patterns. Sequences were
refined from both the Broad Institute database followed
by the NCBI dBSNP as described in methods. The Broad
dataset, although relatively small, provides directionality
of nucleotide change and would serve as an ideal pilot set
to test the power of MDR. The larger NCBI set could then
used to confirm, expand, and refine the identified models.

Broad Institute Dataset
The Broad Institute dataset represented a small collection
of sequences (n = 2194) compared to the larger NCBI
dataset (n = 29,967) and was chosen as a pilot study to
evaluate the application of MDR methodology to flanking
region pattern associations with single nucleotide poly-
morphisms. Each position in the flanking region was
identified by its specific nucleotide, generating four dis-
tinct models with positions identified as A, G, C, or T.

Table 4: NCBI Transition and Transversion Distributions in Exonic and Intronic Sequences

Exons Exon % Introns Intron % Total % of Total

Transitions 22505 74.87 603066 67.75 625571 67.98

Transversions 7441 24.75 286526 32.18 293991.8 31.94

Multiple Variants 109 0.362 534 0.0599 643.3627 0.06991

Total # Records 30055 890126 920181

The number and percent of transition and transversion mutation types for the NCBI dataset are listed. Multiple variants are used for those SNP 
models that were not clearly a transition or transversion, but rather included both types of errors.

Table 5: NCBI Dataset Motifs

SNP Model * SNP Type Nucleotide Positions Significance X2

M A/C +1, +2 P << 0.001 0.001
S C/G -1, +1, +2 P << 0.001 0.001
W A/T -1, +1, +2 P << 0.001 0.001
K G/T -1, +1, +2 P << 0.001 0.001
R A/G -1, +1, +2, +3 P << 0.001 0.001
Y C/T -2, -1, +1, +2, +3 P << 0.001 0.001

SNP type represents identity of nucleic acid at SNP position. Motif represents positions within templating strand found to have significant 
association with sequences carrying an identified SNP compared to control sequences. Here position -1 is adjacent to the SNP site on the 3' end 
and position +1 is adjacent to the SNP site on the 5' end.
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When analyzing data sets with the nucleotide identity at
each position, we discovered four SNP models that
reached significance (Table 1). As we will shortly describe,
four models in the Broad dataset (Table 1) were con-
firmed in the larger NCBI dataset. Analyzing each position
as purine or pyrimidine, rather than by specific nucleotide
identity, three models reached significance (Table 2).
Where either G or A is observed at the SNP site, position
+1 was again significantly associated with SNP occurrence
(p = 0.02). This was consistent with results for the same
dataset when positions were identified as A, G, C, or T.
The Y model (C or T) showed position +2 to be signifi-
cantly associated with SNP genesis of this type at the p <
0.01 level. And the K model (G or T) demonstrated posi-
tions -2 and +2 to be significantly associated with occur-
rence of the T/G polymorphism, p = 0.02.

To further investigate the possible contribution of flank-
ing regions to SNP mutation sites, we classified each of the
sequence positions with regard to their purine or pyrimi-
dine identity (Table 2). This was done to explore the role
of pyrimidine/purine template strand content previously
found to play a role in the catalytic efficiency and fidelity
of pol β and may play a role in the fidelity rate of other
polymerase[13]. The same data was employed as before,
with the distinction of labeling each of the ten flanking
positions in the 3' and 5' direction as either purine or pyri-

midine and then performing the same MDR methods as
stated above.

When we examined the Broad dataset identifying the posi-
tions in the flanking regions only by their purine or pyri-
midine identity we also discovered an overlapping of
flanking region sets seen previously in the NCBI dataset.
In this instance, the R (A or G) model again indicated sig-
nificance at position +1 (p < 0.02). Nucleotide position +1
was also found to have significant association with the S
(C or G) and K (G or T) polymorphism-type models in the
Broad Institute dataset. The Y (C or T) model favors nucle-
otide position +2 in its motif. In the larger NCBI dataset,
position +2 is included in the motif only for the Y (C or T)
model, but not for the W (A or T) and K (G or T) models.
Also in the Broad dataset, the K (G or T) model includes
nucleotide positions -2 and +2 (p < 0.02), whereas in the

Nucleic Acid Distribution within Each SNP Flanking RegionFigure 5
Nucleic Acid Distribution within Each SNP Flanking 
Region. The nucleotide distribution across all SNPs in our 
final dataset is shown center top. All four potential nucleic 
acids for each position within each motif are shown as bars, 
where a positive association is shown as a positive value on 
the y-axis and a negative association is depicted as a negative 
value on the y-axis. Nucleic acid distributions are shown for 
all identified SNP types.

Table 6: Flanking nucleotide distribution for each SNP-type

SNP Model SNP Nucleotide Positions Nucleotide Identity %

Y C/T -3 C 31
-2 G 26
+1 A 32
+2 G 49
+3 G 31

R A/G -2 C 32
-1 C 49
+1 T 30
+2 X ns

S C/G -2 C 33
-1 X ns
+1 X Ns

W A/T -2 G 29
-1 C 31
+1 G 31

K G/T -2 C 29
-1 C 28
+1 G 31

SNP models are identified by their respective NCBI single letter code 
and by their potential mutation identity. Nucleotide frequency is given 
as percent, with a lack of significance denoted as ns.
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NCBI dataset, only the Y (C or T) and R (A or G) flanking
region sets include positions -2 and +2.

NCBI Dataset
Initially we collected data for both intronic and exonic
sequences (n = 909,364). The data set was then further
refined to exonic sequences (n = 29,967) (Figure 3, Table
3). The dataset distribution of mutational changes was as
follows: transition-type mutations (where a purine is sub-
stituted for a purine or pyrimidine for a pyrimidine) made
up 74.8% of sequences identified as exonic and 67.8% of
sequences identified as intronic (Figure 4, Table 4).
Sequences with multiple variants were minor: 0.362%
exonic, 0.0599% intronic (Figure 3, Table 4), and were
excluded from the final dataset.

For the NCBI dataset, we found a recurring motif in the
analyzed sequences for each mutation-type studied, and
each motif was significant beyond the p << 0.001 thresh-
old (Table 5). Each mutation-type studied had signifi-
cance at positions -1 and +1, the two positions in the
templating strand directly adjacent to the mutation site
(Figure 2). In the S (C or G), W (A or T), and K (G or T)
SNP models the motif was expanded by one position to
include positions -2, -1, and +1. The R (A or G) SNP
model was further expanded by one, covering positions -
2, -1, +1, and +2. The Y (C or T) SNP model demonstrated
the largest motif (-3, -2, -1, +1, +2) where position -1 is
adjacent to the SNP site on the 3' end and position +1 is
adjacent to the SNP site on the 5' end (Table 5).

In order to examine the contribution of nucleic acid pref-
erence within the motif, we analyzed the distribution of
nucleotides at each position within the motif for each SNP
type studied (Figure 5). This analysis shows a preferential
distribution in each motif respective of the SNP type (Fig-
ure 5, Table 6). When examining the positions common
to each SNP type motif (i.e. -1 and +1) we find that the
nucleotide identity varies between SNP types. For exam-
ple, in the Y SNP model position -1 is most commonly a
guanine, whereas in the R, W, and K models position -1 is
commonly occupied by cytosine. Interestingly, the S
model distribution gives no predominant nucleic acid
pattern at positions -1 and +1 (Table 6), perhaps indicat-
ing wobble to be more likely at positions -1 and +1 in the
S model.

In addition to permutation testing for these models we
also performed X2 as an alternative method. All models
demonstrated significance below or at the p = 0.001 level.
This is not surprising given X2 tendency to over predict
synergistic models [24]. Ultimately, MDR takes a more
conservative approach to significance testing due to the
requirement that the models are tested as a unit rather
than as individual contributions to the model.

Conclusion
Our analysis of two datasets has shown the existence of
neighboring nucleotide patterns that persist across identi-
fied single-nucleotide polymorphism (SNP) models.
Importantly, this pattern grows to include additional
nucleotide positions depending on the type of polymor-
phism observed. We have also found that for a given SNP
type, the distribution of nucleotides within the flanking
region shows specificity in association with certain SNP
types. Comparison of the Broad Institute dataset with the
NCBI dataset demonstrated an overlap in flanking region
sets and provided some directionality with regard to SNP
genesis. Such studies will allow for the development of
more powerful and predictive algorithms offering the pos-
sibility of predicting both occurrence and direction of SNP
genesis in vivo.
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