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Enhanced Microbial Utilization of Recalcitrant Cellulose by an
Ex Vivo Cellulosome-Microbe Complex

Chun You,a Xiao-Zhou Zhang,a,b Noppadon Sathitsuksanoh,a,c Lee R. Lynd,d,e and Y.-H. Percival Zhanga,b,c,e

Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USAa; Gate Fuels Inc., Blacksburg, Virginia, USAb;
Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USAc; Thayer School of Engineering,
Dartmouth College, Hanover, New Hampshire, USAd; and DOE BioEnergy Science Center, Oak Ridge, Tennessee, USAe

A cellulosome-microbe complex was assembled ex vivo on the surface of Bacillus subtilis displaying a miniscaffoldin that can
bind with three dockerin-containing cellulase components: the endoglucanase Cel5, the processive endoglucanase Cel9, and the
cellobiohydrolase Cel48. The hydrolysis performances of the synthetic cellulosome bound to living cells, the synthetic cellulo-
some, a noncomplexed cellulase mixture with the same catalytic components, and a commercial fungal enzyme mixture were
investigated on low-accessibility recalcitrant Avicel and high-accessibility regenerated amorphous cellulose (RAC). The cell-
bound cellulosome exhibited 4.5- and 2.3-fold-higher hydrolysis ability than cell-free cellulosome on Avicel and RAC, respec-
tively. The cellulosome-microbe synergy was not completely explained by the removal of hydrolysis products from the bulk fer-
mentation broth by free-living cells and appeared to be due to substrate channeling of long-chain hydrolysis products
assimilated by the adjacent cells located in the boundary layer. Our results implied that long-chain hydrolysis products in the
boundary layer may inhibit cellulosome activity to a greater extent than the short-chain products in bulk phase. The findings
that cell-bound cellulosome expedited the microbial cellulose utilization rate by 2.3- to 4.5-fold would help in the development
of better consolidated bioprocessing microorganisms (e.g., B. subtilis) that can hydrolyze recalcitrant cellulose rapidly at low
secretory cellulase levels.

Biofuels and commodity chemicals produced from cellulosic
biomass are of interest as sustainable substitutes for func-

tionally similar molecules based on petroleum. The primary
obstacle to biological production of such products is cost-
effective technology to overcome the recalcitrance of cellulosic
biomass (19, 22, 37).

Consolidated bioprocessing (CBP), in which saccharolytic en-
zyme production, plant cell wall solubilization, and fermentation
occur in a single step, is widely seen as a promising low-cost pro-
cessing route (18, 22, 24, 37). CBP microorganisms can be devel-
oped according to three strategies: (i) engineering naturally occur-
ring cellulolytic microorganisms for improved product
formation-related properties, such as Clostridium thermocellum
(6), Clostridium cellulovorans (29), and Clostridium phytofermen-
tans ISDg (30); (ii) engineering natural high-yield-product-
forming microorganisms by expressing recombinant cellulases,
such as Saccharomyces cerevisiae (16, 31, 34); and (iii) engineering
one host with both recombinant-product-forming and cellulose-
utilizing abilities, such as Escherichia coli (15) and Bacillus subtilis
(2, 26, 37).

Nature has evolved two distinctive cellulase systems for de-
grading cellulosic material: noncomplexed cellulase mixtures and
complexed cellulases, called cellulosomes. Aerobic fungi (e.g.,
Trichoderma reesei) usually secrete high levels (e.g., �1 to 10 g
protein/liter) of several different functionally distinct cellulase
components. In contrast, some anaerobic bacteria, such as C. ther-
mocellum and C. cellulovorans, produce low levels of cellulosomes
(i.e., �0.1 g/liter), in which many glycoside hydrolases are linked
together by nonhydrolytic scaffoldins through the high-affinity
interaction between cohesins in scaffoldins and enzyme-borne
dockerins (3, 7–10). C. thermocellum exhibits among the highest
growth rates on cellulose among described microbes (24), al-
though it produces less cellulase per cell mass than aerobic micro-

organisms. This observation raises an interesting question: how
anaerobic cellulolytic microorganisms can hydrolyze cellulose
rapidly and effectively without the production of ample secretory
cellulase, where the biosynthesis of cellulase means a large bioen-
ergetic burden for anaerobic cellulolytic bacteria. Recently, in vitro
evidence pertaining to designer cellulosomes suggests that de-
signer cellulosomes exhibit a higher hydrolysis rate than their
noncomplexed counterparts due to an enzyme proximity synergy
(25, 32, 41). Zverlov et al. (43) reported that a C. thermocellum
mutant featuring a completely defective scaffoldin protein exhib-
ited a 15-fold reduction in specific cellulase activity on crystalline
cellulose. Furthermore, Lu et al. (21) found that C. thermocellum
along with cell-bound cellulosome exhibited ca. 2.8- to 4.7-fold-
enhanced cellulose hydrolysis rates on Avicel compared to puri-
fied cellulosome in the presence of another soluble sugar-utilizing
microorganism (21). Several recent studies have expressed mini-
cellulosomes on the surfaces of microorganisms, such as B. subtilis
(1, 5) and S. cerevisiae (31, 34), but did not quantitatively evaluate
the enzyme-microbe synergy.

In this study, mini-CipA was displayed on the cell surface of B.
subtilis through a cell wall-binding module (CBM) of a B. subtilis
cell wall hydrolase, LytE. A trifunctional minicellulosome was as-
sembled ex vivo on the cell surface of B. subtilis. The hydrolysis
performances of a three-enzyme mixture, a cell-free minicellulo-
some, a cell-bound minicellulosome, and a commercial fungal
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cellulase mixture were compared on low-accessibility Avicel and
high-accessibility regenerated amorphous cellulose (RAC).

MATERIALS AND METHODS
Chemicals. All chemicals were reagent grade or higher and were pur-
chased from Sigma (St. Louis, MO) or Fisher Scientific (Pittsburgh, PA),
unless otherwise noted. Microcrystalline cellulose (Avicel PH105; 20 �m)
was purchased from FMC (Philadelphia, PA). RAC was prepared from
Avicel as previously described (19, 38). The oligonucleotides were synthe-
sized by Integrated DNA Technologies (Coraville, IA). The PCR enzyme
was high-fidelity Phusion DNA polymerase from New England BioLabs
(Ipswich, MA). A commercial Trichoderma cellulase mixture (50013) was
a gift from Novozymes North America (Franklinton, NC). The purified
fungal enzymes of cellobiohydrolase I (CBH I) (Cel7A) and endogluca-
nase II (EG II) (Cel5) from Trichoderma spp. were purchased from Mega-
zyme (Wicklow, Ireland).

Strains and media. The strains and plasmids used in this study are
listed in Table 1. E. coli JM109 was used as a host cell for DNA manipula-
tion. E. coli BL21 Star (DE3) (Invitrogen, Carlsbad, CA) and B. subtilis
WB600 (35) were used as the hosts for recombinant protein expression. B.
subtilis was transformed through a new simple and fast transformation
technology as described elsewhere (38). Luria-Bertani (LB) medium was
used for E. coli cell culture and recombinant protein expression, and 2�
Mal medium was used for B. subtilis recombinant protein expression (38).
The final concentrations of antibiotics for E. coli were 100 mg/liter ampi-
cillin and 25 mg/liter chloramphenicol. The chloramphenicol concentra-
tion for B. subtilis was 5 mg/liter.

Construction of plasmids. The primers used in this study are listed in
Table 2. For constructing pNWP43N-LysM, the DNA sequence encoding
the B. subtilis cell wall hydrolase (LysM, GenBank accession number
U38819, amino acids 25 to 230) was amplified from the genomic DNA of
B. subtilis 168 by a primer pair of LysM_For and LysM_Rev_Flag; the
DNA sequence encoding a vector pNWP43N was amplified from
pNWP43N-BsCel5 (38) by a primer pair of pNWP43N_For and
pNWP43N_Rev. The two PCR products were both digested with NheI/
XhoI and then ligated, yielding pNWP43N-LysM. For constructing
pNWP43N-LysM-mini-CipA (pNWP43N-LMC), the DNA sequence en-
coding LysM was amplified by using a primer pair of LysM_For and
LysM_Rev based on the B. subtilis genomic DNA by PCR, followed by
double digestion by XhoI/EcoRV. The DNA sequence encoding truncated
mini-CipA (GenBank accession number L08665, amino acids 26 to 723)
was amplified from the genomic DNA of C. thermocellum by a primer pair
of MC_For and MC_Rev_Flag, followed by double digestion by EcoRV/
NheI. The two resultant fragments were ligated into the XhoI/NheI-
digested vector pNWP43N to produce pNWP43N-LMC. The DNA se-

quence encoding truncated mini-CipA was amplified from the genomic
DNA of C. thermocellum ATCC 27405 by a primer pair of mini-CipA_For
and mini-CipA_Rev. The PCR product was digested with NdeI/XhoI and
then ligated into the NdeI/XhoI-digested vector pET20b (Novagen, Mad-
ison, WI), yielding pET20b-mini-CipA.

pET20b-Bscel5= was obtained by using overlap extension PCR. The
DNA sequence encoding mature BsCel5 (GenBank accession number
CAA82317) was amplified from genomic DNA of B. subtilis 168 by a
primer pair of BsCel5_For/BsCel5=_Rev. The DNA fragment encoding a
dockerin module (DocK, amino acids 821 to 895) of C. thermocellum CelK
(NCBI reference sequence YP_001036843) was amplified from the
genomic DNA of C. thermocellum by a primer pair of DocK_
For/DocK_Rev. The two resultant fragments were assembled by using a
primer pair of BsCel5_For/DocS_Rev through overlap extension PCR.
These resultant fragments were cloned into NdeI/XhoI-digested pET20b,
generating pET20b-Bscel5=. pET20b-Ctcel9 was obtained by using PCR
amplification and overlap extension PCR. The DNA encoding the mature
C. thermocellum Cel9 (GenBank accession number CAA43035) was am-
plified from the genomic DNA of C. thermocellum by a primer pair of
CtCelF_For/CtCelF_Rev. The PCR product was digested with NdeI/XhoI
and ligated into the corresponding sites of the vector pET20b, yielding
pET20b-Ctcel9. The DNA sequence encoding a mature C. phytofermen-
tans Cel48 (GenBank accession number ABX43721) was amplified from
pP43N-Cpcel48 (39) by a primer pair of CpCel48_For/CpCel48_Rev.
Plasmid pET20b-Cpcel48 was constructed in the same way as pET20b-
Bscel5=. The dockerin of Cpcel48 was DocS of the C. thermocellum Cel48S
(GenBank accession number L06942, amino acids 673 to 741). All plas-
mid sequences were verified by DNA sequencing. The resulting plasmids
are listed in Table 1.

Production of dockerin-containing cellulases in E. coli. The strain E.
coli BL21 Star (DE3) containing the protein expression plasmid was cul-
tivated in LB medium supplemented with 1.2% glycerol at 37°C. Protein
expression and purification were conducted routinely as published else-
where (19, 37, 38).

Removal of the B. subtilis surface proteins by LiCl. B. subtilis cells
harboring pNWP43N-LMC were precultured in LB medium at 37°C until
the A600 reached about 1.2, which remained at a logarithmic growth
phase. Two hundred microliters of the cell culture was inoculated into 50
ml of 2� Mal medium and then grown at 30°C until the A600 reached 3.
Two milliliters of culture of the B. subtilis cells was washed two times in
buffer A (50 mM HEPES buffer [pH 7.5] containing 50 mM NaCl and 10
mM CaCl2). The cell pellets were resuspended in 80 �l of buffer B (50 mM
HEPES buffer [pH 7.5] containing 5 M LiCl, 50 mM NaCl, and 10 mM
CaCl2). After incubation for 20 min on ice followed by centrifugation at
8,000 � g at 4°C for 10 min, a fraction of the supernatant after 10%

TABLE 1 Strains and plasmids in this study

Strain or plasmid Characteristics Reference or source

E. coli strains
JM109 recA1 supE44 endA1 hsdR17 (rK

� mK
�) gyrA96 relA1 thi �(lac-proAB) F=(traD36 proAB�

lacIq lacZ�M15)
BL21 Star (DE3) F� ompT hsdSB (rB

� mB
�) gal dcm rne-131 (DE3) Invitrogen, Carlsbad, CA

B. subtilis WB600 nprE aprA epr bpf mpr nprB 35

Plasmids
pNWP43N Cmr, pNW33N derivate 38
pNWP43N-LysM Cmr, with LysM expression cassette cloned This work
pNWP43N-LysM-mini-CipA Cmr, with LysM-mini-CipA expression cassette cloned This work
pET20b Ampr, overexpression vector containing T7-dependent promoter Novagen, Madison, WI
pET20b-mini-CipA Ampr, with mini-CipA expression cassette cloned This work
pET20b-Bscel5= Ampr, with Bscel5= expression cassette cloned This work
pET20b-Ctcel9 Ampr, with Ctcel9 expression cassette cloned This work
pET20b-Cpcel48 Ampr, with Cpcel48 expression cassette cloned This work
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trichloroacetic acid precipitation was loaded for SDS-PAGE. The other
fraction of the supernatant was diluted 5-fold in buffer A and then mixed
with 50 �g RAC. After centrifugation, the LMC adsorbed by RAC was
examined by SDS-PAGE, as described elsewhere (37, 38). For validation
of the formation of an ex vivo minicellulosome, the resuspended cells with
bound LMC were mixed with 0.05 mg purified dockerin-tagged cellulases
(BsCel5= or cellulase mixture with equimolar BsCel5=, CtCel9, and
CpCel48) at 4°C for 1 h. The cells were washed in buffer A two times. The
cell-bound minicellulosome was eluted by LiCl, adsorbed by RAC, and
examined by SDS-PAGE, as described above.

Confocal immunofluorescence microscopy. B. subtilis cells (200 �l of
cell culture at an A600 of 3.0) having surface-displayed LMC or cell-bound
minicellulosome were washed in ice-cold phosphate-buffered saline
(PBS) (8 g/liter NaCl, 0.2 g/liter KCl, 1.44 g/liter Na2HPO4, and 0.24
g/liter KH2PO4) two times and then mixed with 4% paraformaldehyde at
4°C for 30 min. After being washed in 1 ml of PBS two times, the cells were
resuspended in 250 �l of PBS containing 1 mg/ml of bovine serum albu-
min (BSA) and 0.5 �g of monoclonal anti-Flag M2 (Sigma F1804) or
monoclonal anti-His (Sigma H1029) antibody with occasional mixing for
2 h. The cells were washed in 1 ml of PBS two times, followed by resus-
pension in 250 �l of PBS containing 1 mg/ml BSA and 0.5 �g anti-mouse
IgG conjugated with fluorescein isothiocyanate (FITC) (Sigma F9137).
After incubation for 2 h, cells were washed with 1 ml of PBS two times and
then resuspended in PBS to obtain a cell solution with an A600 of 1. The
cells were examined with a Zeiss LSM 510 confocal laser microscope
(Zeiss, Thornwood, NY).

RAC and Avicel hydrolysis. All cellulose hydrolysis experiments were
conducted in 50-ml serum bottles with a rotary shaking rate of 250 rpm at
37°C. Equimolar amounts of BsCel5=, CtCel9, and CpCel48 were pre-
mixed together, where the molecular weights of BsCel5=, CtCel9, and
CepCel48 were 44,918, 80,108, and 107,184, respectively. An equimolar
amount of mini-CipA was mixed with the three-cellulase mixture for the
formation of a trifunctional minicellulosome. Similarly, the number of

LMC molecules on the surface of B. subtilis was determined as described
elsewhere (4). The cell culture containing an equimolar amount of LMC
was mixed with the three-cellulase mixture for the formation of a cell-
bound cellulosome. For RAC hydrolysis, the LMC-displaying B. subtilis
cells collected from 33.3 ml of the cell culture (A600 � 3.0) were mixed
with 0.1 mg (total) three-cellulase mixture in 10 ml of ice-cold buffer A
containing 0.4% RAC, followed by hydrolysis at 37°C. The LysM-
displaying B. subtilis cells collected from 33.3 ml of the cell culture (A600 �
3.0) were mixed with trifunctional minicellulosome containing 0.1 mg
(total) three-cellulase mixture in 10 ml of ice-cold buffer A containing
0.4% RAC, followed by hydrolysis at 37°C. For Avicel hydrolysis, the
LMC-displaying B. subtilis cells collected from 133.3 ml of the B. subtilis
cell culture (A600 � 3.0) were mixed with 0.4 mg of the three-cellulase
mixture in 10 ml of ice-cold buffer A containing 0.4% Avicel, followed by
hydrolysis at 37°C. The LysM-displaying B. subtilis cells collected from
133.3 ml of the cell culture (A600 � 3.0) were mixed with trifunctional
minicellulosome containing 0.4 mg (total) three-cellulase mixture in 10
ml of the ice-cold buffer A containing 0.4% Avicel, followed by hydrolysis
at 37°C. Cellulose hydrolysis by the same amount of the LMC-displaying
B. subtilis cells or LysM-displaying B. subtilis cells without heterologously
added cellulase was performed as a negative control. The same cellulase
(mass) concentrations of minicellulosome and the three-cellulase mixture
were also used to hydrolyze RAC and Avicel in 10 ml buffer A in the
presence of 60 units of �-glucosidase (Bgl) (Novozymes 188; Sigma) per
gram of cellulose, respectively. A commercial Novozymes cellulase and a
two-enzyme Trichoderma fungal cocktail containing EG II and CBH I at
the same mass concentration as the bacterial three-cellulase mixture were
used to hydrolyze RAC and Avicel at 37°C in 50 mM citrate buffer (pH
5.0) containing 50 mM NaCl and 10 mM CaCl2 in the presence of 60 units
of �-glucosidase per gram of cellulose, respectively. In the two-enzyme
cocktail, the mass amount of EG II was the same as the sum of BsCel5= and
CtCel9 and the mass amount of CBH I was the same as CpCel48. Cellulose
hydrolysis with the same amount of �-glucosidase was performed as a

TABLE 2 Primers used to amplify gene fragments

Gene Template Primer name Sequencea

Restriction
enzyme site

LysM Genomic DNA of B.
subtilis 168 (ATCC
23857)

LysM_For GAGCAGCTCGAGGCACAAAGCATTAAGGTGAAAAAAGG XhoI
LysM_Rev_Flag GCTGCTGCTAGCTTATTATTTGTCATCGTCATCTTTATAATC

GACTAACGCTTTTGCATCAGAAACCAGCTTG
NheI

LysM-mini-CipA Genomic DNA of B.
subtilis 168 (ATCC
23857)

LysM_For GAGCAGCTCGAGGCACAAAGCATTAAGGTGAAAAAAGG XhoI

LysM_Rev GCTGCTGATATCGACTAACGCTTTTGCATCAGAAACC EcoRV

Genomic DNA of C.
thermocellum (ATCC
27405)

MC_For GTAAGTAGATATCGTATCGGCGGCCACAATGACAGTCG EcoRV
MC_Rev_Flag GCAGTAGCTAGCTTATTATTTGTCATCGTCATCTTTATAATC

ATTCGAATCATCTGTCGGTGTTGTTACAGG
NheI

pNWP43N pNWP43N-BsCel5 pNWP43N_For GCCGACGCTAGCTTAAGCTTTTTTTTGGCGGACATCAGTAAC NheI
PNWP43N_Rev GACTATCTCGAGACCTGCAGCTGAGGCATGTGTTACAAAAAC XhoI

Mini-CipA Genome of Clostridium
thermocellum

Mini-CipA_For GTAGTACATATGGTATCGGCGGCCACAATGACAG NdeI
Mini-CipA_Rev GCAGTACTCGAGATTCGAATCATCTGTCGGTGTTG XhoI

BsCel5= Genome of Bacillus subtilis BsCel5_For CCTCAGCATATGGCAGGGACAAAAACGCC NdeI
BsCel5=_Rev CTCCGGTTCTTCTGGGTCTACTCCTCCAGAAATACCATTT

TCCTGTGTGGGTTTATC
Genome of Clostridium

thermocellum
DocK_For GGAGGAGTAGACCCAGAAGAACCGGAGGTTATTTATG
DocK_Rev GCCGCCCTCGAGTTTATGTGGCAATACATCTATC XhoI

CtCel9 Genome of Clostridium
thermocellum

CtCelF_For GCTTCACATATGGCGGATTTCAACTATGGTGAGGCAC NdeI
CtCelF_Rev GGACCATCTCGAGCTGTTCAGCCGGGAATTTTTCAATAAG XhoI

CpCel48 pP43N-Cpcel48 Cpcel48_For CCTCTGCATATGGGTGAAACTGAGCAAGC NdeI
Cpcel48_Rev GTAGAGGACCCACCTCCTCCAGATCCTGGTTCGATACCCC

AATTAAGTTTTCC
Genome of Clostridium

thermocellum
DocS_For GGATCTGGAGGAGGTGGGTCCTCTACTAAATTATACGGCGACGTC
DocS_Rev GCATTACTCGAGGTTCTTGTACGGCAATGTATC XhoI

a Restriction enzyme sites included in primer sequences for cloning purposes are indicated in bold, the Flag tag sequences are indicated by underlining, and the overlapping
sequences are indicated by italics.
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negative control. One milliliter of the reaction sample was withdrawn at
the indicated time intervals. The concentration of soluble sugars in the
supernatant was measured by using the phenol-sulfuric acid method with
glucose as the standard, while the residual cellulose was determined by
quantitative saccharification with glucose as the standard (42). All hydro-
lysis experiments were performed in triplicate.

Other assays. Protein mass concentration was measured by the Bio-
Rad Bradford protein dye reagent method with bovine serum albumin as
a reference. The protein masses, based on the Bradford method, were
calibrated by UV absorbance at 280 nm in 6 M guanidine hydrochloride
(38). The purity of protein samples was examined by SDS-PAGE followed
by Coomassie blue staining. The activities of individual cellulases were
measured as described elsewhere (19).

RESULTS
Functional display of mini-CipA on the B. subtilis cell surface.
Mini-CipA, a fragment of C. thermocellum CipA containing three
cohesins and one family 3b cellulose binding module (CBM3b)
(10, 13), was expressed in B. subtilis using the B. subtilis-E. coli
shuttle vector pNWP43N-LMC. This vector had an expression
cassette containing an NprB signal peptide-encoding sequence, a
B. subtilis cell wall-binding module (LysM) from the Bacillus sub-
tilis cell wall hydrolase LytE (4, 36), a mini-CipA, and a C-terminal
Flag tag, called LMC, under the control of a strong constitutive
P43 promoter (Fig. 1). Because the cell wall hydrolase LytE is
located at cell separation sites and poles of B. subtilis through its
cell wall-binding module (LysM) (4, 36), LMC can be displayed
on the cell wall of B. subtilis. Controls included plasmid
pNWP43N-LysM, which expressed a surface-displayed LysM
with a C-terminal Flag tag, and plasmid pNWP43N, which did not
produce any related surface-displayed protein.

After cell cultivation, B. subtilis cells harboring pNWP43N-
LMC and pNWP43N-LysM produced cell surface-bound LMC
and LysM, respectively. Through LiCl elution, the cell wall protein
solutions containing cell surface-displayed LMC and LysM were
examined by SDS-PAGE (Fig. 2A, lanes 1 and 2). By the addition
of RAC, which binds with high specificity to CBM3b-containing
LMC, the LMC (Fig. 2A, lane 4) was easily separated from other
cell wall proteins. The apparent molecular weights for LMC

(�105,000) and LysM (�30,000) determined by SDS-PAGE were
a little higher than their calculated values (96,711 and 23,215,
respectively) based on their deduced amino acid sequences, per-
haps due to the serine-rich linker sequence in LysM (20). The
LMC concentration was estimated to be 1.2 mg/liter of cell culture
(A600 � 3.0) based on the band intensity in the SDS-PAGE, as
described elsewhere (4). Approximately 20,000 molecules of LMC
were estimated to be displayed on the surface of each B. subtilis
cell.

Expression and purification of cellulases and mini-CipA in E.
coli. Cellulases used for the assembly of the trifunctional minicel-
lulosome were (i) a noncellulosomal B. subtilis family 5 endoglu-
canase (BsCel5), (ii) a cellulosomal C. thermocellum family 9 pro-
cessive endoglucanase (CtCel9), and (iii) a noncellulosomal C.
phytofermentans ISDg family 48 cellobiohydrolase (CpCel48)
(Fig. 1). BsCel5 contains a catalytic module, a dockerin module
from C. thermocellum, and a C-terminal His tag; CtCel9 contains a
catalytic module, CBM3c, a dockerin module, and a C-terminal
His tag; and CpCel48 contains a catalytic module, CBM3b, a dock-
erin module, and a C-terminal His tag. Mini-CipA, a truncated
miniscaffoldin from CipA of C. thermocellum, contains three co-
hesins and one CBM3b. Mini-CipA and three cellulase compo-
nents expressed in E. coli BL21 were purified to a homogeneous
protein (Fig. 2B).

FIG 1 Schematic representation of the recombinant proteins used in this
study.

FIG 2 SDS-PAGE of cell wall proteins eluted from the cell surfaces of B.
subtilis strains (A) and the purified recombinant cellulases and mini-CipA
produced by E. coli (B). (A) Lane 1, LiCl-eluted supernatant from B.
subtilis(pNWP43N-LMC) cells; lane 2, LiCl-eluted supernatant from B.
subtilis(pNWP43N-LysM) cells; lane 3, LiCl-eluted supernatant from
B. subtilis(pNWP43N) cells; lane 4, adsorbed LMC eluted supernatant
from B. subtilis(pNWP43N-LMC) cells by using RAC. (B) Lane 1, mini-
CipA; lane 2, CpCel48; lane 3, CtCel9; lane 4, BsCel5=.
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The cellulases used in this study were the same as those in our
previous work, except for CpCel9 (19). Since the activities of
CBM-free BsCel5 and CBM-containing CpCel48 were higher than
those of CBM-containing BsCel5 and CBM-free CpCel48, respec-
tively (data not shown), CBM-free BsCel5 and CBM-containing
CpCel48 were used. In addition, it was found that CBM-
containing CpCel48 was expressed at a much higher level than its
CBM-free counterpart in E. coli and B. subtilis (data not shown).
In this study, a family 9 cellulase (CtCel9F) from C. thermocellum
was used instead of CpCel9 due to the facts that (i) CtCel9F was
expressed at higher levels than CpCel9, (ii) these two enzymes
exhibited comparable activities at the temperatures tested, and
(iii) CtCel9F contained its own dockerin. BsCel5 had one dock-
erin module from one of the C. thermocellum dockerin-containing
cellulases in its C terminus. CpCel48 had another dockerin mod-
ule in its C terminus. All dockerin modules used had slightly dif-
ferent amino acid sequences because these three cellulases used in
this study will be coexpressed in developing consolidated biopro-
cessing B. subtilis strains (19).

Ex vivo assembly of minicellulosomes on the B. subtilis cell
surface. The LMC-displaying B. subtilis cells were mixed with ex-
cess Cel5= or a three-enzyme cellulase mixture containing
equimolar Cel5=, Cel48, and Cel9. After LiCl elution followed by
RAC-specific adsorption, LMC-Cel5 exhibited only two bands re-
sponsible for LMC and Cel5 at an approximate molar ratio of 1:3,
as examined by SDS-PAGE (Fig. 3, lane 2), indicating that one
LMC molecule can bind with about three Cel5 molecules. When
the cells were mixed with the three-cellulase mixture, LMC bound
with the three cellulase components nearly equally (Fig. 3, lane 3),
indicating that each dockerin-containing cellulase component
was nonselectively bound with three cohesins of LMC. Negative-
control LysM-displaying B. subtilis cells did not bind any
dockerin-containing cellulase (data not shown).

The ex vivo assembly of minicellulosomes on the B. subtilis cell
surface was also examined by confocal immunofluorescence mi-
croscopy. When the primary anti-Flag antibody against the
C-terminal Flag tag in LMC- or LysM-displaying cells was used,
green fluorescence signals were observed on the surface of the cells
displaying LMC and LysM but not on a negative control (B. sub-
tilis WB600/pNWP43N) (Fig. 4A). These results indicated that
LMC and LysM were displayed on the B. subtilis cell surface. LMC-
and LysM-displaying B. subtilis cells were mixed with excess
CtCel9, followed by the primary anti-His antibody that can bind
with the His tag of CtCel9. LMC-displaying B. subtilis cells with
CtCel9 exhibited a strong green fluorescence signal (Fig. 4B), sug-
gesting the ex vivo formation of an LMC-CtCel9 complex. In con-
trast, LysM-displaying B. subtilis cells, as a negative control, did
not present a detectable fluorescence signal (Fig. 4B). It was noted
that the fluorescence signal for LMC-CtCel9 seen in Fig. 4B was
much stronger than that seen in Fig. 4A because three anti-His
antibodies can bind with three CtCel9 molecules linked by one
LMC molecule, while one anti-Flag antibody can bind with one
LMC molecule.

Comparative hydrolysis experiments. Cellulose hydrolysis
activities in the presence of the same mass concentrations of cel-
lulase were compared for the living cell-bound minicellulosome,
the cell-free minicellulosome, and a (bacterial) three-cellulase
mixture with a BsCel5=/CtCel9/CpCel48 molar ratio of 1:1:1 on
two model cellulosic materials, RAC and Avicel. Since the mini-
cellulosome can tightly bind on cellulose, a cellulose-enzyme-
microbe (CEM) complex was formed. The cell-bound minicellu-
losome hydrolyzed RAC more rapidly than the cell-free
minicellulosome and the three-enzyme mixture (Fig. 5A). At 72 h,

FIG 3 SDS-PAGE of RAC affinity pulldown for cell wall proteins eluted from
B. subtilis strains. Lane 1, cell-bound LMC from B. subtilis(pNWP43N-LMC)
cells; lane 2, cell-bound unifunctional minicellulosome from B.
subtilis(pNWP43N-LMC) cells premixed with BsCel5=; lane 3, cell-bound tri-
functional minicellulosome from B. subtilis(pNWP43N-LMC) cells premixed
with BsCel5=, CtCel9, and CpCel48.

FIG 4 Confocal fluorescence microscopy images of LMC, a negative control (blank plasmid), and LysM on the surfaces of B. subtilis cells (A) as well as the
cell-bound minicellulosome on the surfaces of B. subtilis cells relative to a negative control (B). (A) Cells displaying Flag tag LMC and LysM were probed with an
anti-Flag antibody followed by a rabbit anti-mouse IgG conjugated with FITC. (B) The minicellulosome containing LMC and CtCel9 was probed with an
anti-His6 antibody followed by a rabbit anti-mouse IgG conjugated with FITC, where CtCel9 contains a His6 tag.
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a digestibility of 28.4% was achieved by the minicellulosome,
which was about 1.57-fold higher than that of the three-cellulase
mixture. This phenomenon was attributed to the enzyme proxim-
ity effect (25, 32, 41). More notable, the cell-bound minicellulo-
some hydrolyzed RAC at a 2.25-fold-higher digestibility than the
minicellulosome (Fig. 5A). A similar hydrolysis trend of an in-
creasing order of the cellulase mixture, cellulosome, and cell-
bound minicellulosome was observed on Avicel (Fig. 5B). The
cell-bound minicellulosome exhibited 4.54-fold higher digestibil-
ity in Avicel than did the minicellulosome (Fig. 5B). A comparison
of the CEM synergy (Fig. 6) indicated that the cellulosome-
microbe complex increased the cellulose hydrolysis rate more sig-
nificantly on recalcitrant Avicel than on RAC.

To understand why the CEM complex hydrolyzed cellulose
more rapidly than the minicellulosome, two control experiments
were conducted: in the first, minicellulosome-displaying B. subti-
lis cells were made nonactive by the addition of 1 g/liter NaN3 to
inhibit the sugar uptake ability of the cells; in the second, the
minicellulosome with active LysM-displaying B. subtilis cells was
able to assimilate all soluble sugars in the bulk phase. The nonac-
tive cells associated with the cell-bound cellulosome did not hy-
drolyze cellulose as rapidly as active cellulosome-bound cells (Fig.
5) possibly due to accumulated sugars in the supernatant, which

inhibited minicellulosome activity. The minicellulosome plus ac-
tive LysM-displaying B. subtilis cells, where no significant soluble
sugars were accumulated in the supernatant (data not shown),
exhibited less hydrolysis ability than the active cellulosome-bound
cells (Fig. 5).

The hydrolysis performances of the bacterial cellulase systems
were compared to those of a commercial fungal cellulase mixture
and a two-enzyme cocktail made of purified Trichoderma CBH I
and EG II at the same protein mass concentration. The cocktail of
two fungal enzymes hydrolyzed cellulosic materials more effi-
ciently than the cocktail of three bacterial cellulases and the tri-
functional minicellulosome at 72 h, although each bacterial cellu-
lase component exhibited a much higher specific activity during
short reaction time frames (e.g., 10 min to 1 h) (data not shown).
The commercial fungal mixture worked better than the mixture of
two fungal cellulases, possibly due to its optimized enzyme ratio.
Although the noncomplexed mixture of three bacterial cellu-
lases or the bacterial minicellulosome exhibited less ability to
hydrolyze solid cellulosic materials than the commercial fungal
cellulase, the cell-bound cellulosome showed equal hydrolytic
ability on RAC and approximately 30% higher hydrolytic abil-
ity on Avicel (Fig. 6).

DISCUSSION

We assembled an ex vivo trifunctional minicellulosome on the
surface of the Gram-positive B. subtilis through high-affinity in-
teraction between the dockerin modules of cellulase components
and the three cohesin modules of mini-CipA. This enabled the

FIG 5 Hydrolysis of RAC (A) and Avicel (B) by enzyme mixtures supple-
mented with excess �-glucosidase: the bacterial cellulase mixture (‘), the
minicellulosome (�), the Novozymes fungal cellulase mixture (�), the two-
enzyme Trichoderma fungal mixture (EG II and CBH I) (o), the cell-bound
minicellulosome (�), the minicellulosome in the presence of LysM-displaying
B. subtilis cells (�), and the cell-bound minicellulosome in the presence of 1
g/liter NaN3 (Œ).

FIG 6 Comparison of digestibilities of cellulose by the bacterial cellulase mix-
ture, the cell-free minicellulosome, the cell-bound minicellulosome, the com-
mercial fungal cellulase mixture, and the cocktail of two fungal enzymes on
RAC (A) and Avicel (B) at 72 h. The error bars represent the standard devia-
tions from triplicate samples.
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comparison of the rates of cellulose hydrolysis caused by the
cellulose-enzyme-microbe (CEM) complex and by the noncom-
plexed cellulase mixture or cellulosome (Fig. 5). The CEM synergy
was not primarily due to removal of hydrolysis products from the
bulk fermentation broth, as suggested by control experiments
(Fig. 5). For enzymatic hydrolysis occurring on the surface of a
solid cellulosic substrate, the concentration of hydrolysis products
in the boundary layer was thought to be much higher than that in
bulk phase, according to the boundary layer theory (11). Such
high-concentration hydrolysis products, especially for long-chain
cellodextrins, in the boundary layer were expected to inhibit cel-
lulase activity more strongly than glucose and cellobiose in the
bulk phase because beta-glucosidase that does not have a CBM
usually works in the bulk phase. Because the distance between the
cell and minicellulosome through an LMC (i.e., 20 to 50 nm) is
much shorter than the thickness of the boundary layer on the solid
substrate cellulose for cellulolytic microorganisms (e.g., 10 to 100
�m) (33), the adjacent cells located in the boundary layer can
assimilate long-chain hydrolysis products before their diffusion to
the bulk phase so as to effectively eliminate product inhibition to
cellulases and cellulosomes (41). This explanation was partially
supported by the observance of some polycellulosomal protuber-
ance between cellulose and C. thermocellum cell under a transmis-
sion electron microscope (27) and by the fast assimilation of long-
chain cellodextrins by adjacent cellulolytic cells rather than
further hydrolysis to cellobiose and glucose by cellulases in the
bulk phase (41, 42).

The CEM synergy was more significant on the recalcitrant Avi-
cel than on the highly reactive amorphous cellulose (Fig. 6). This
difference may be explained by stronger boundary layer product
inhibition on crystalline cellulose than on amorphous cellulose.
Because cellobiohydrolase is more sensitive to product inhibition
than endoglucanase (i.e., KI,CBH �� KI,EG) and endoglucanase ex-
hibits more hydrolysis ability on amorphous cellulose than on
Avicel (19), the aggregated cellulosome exhibited less product in-
hibition on amorphous cellulose than on recalcitrant Avicel (17).
Displaying the cellulosome on the surface of a microorganism
would be effective in enhancing the cellulolytic host’s ability to
effectively hydrolyze a recalcitrant cellulosic fragment of pre-
treated heterologous biomass.

Both B. subtilis and S. cerevisiae are important industrial mi-
croorganisms. As a potential CBP host, B. subtilis could be better
than S. cerevisiae due to (i) a natural ability to take up long-chain
cellodextrins, (ii) a natural ability to coutilize C5 and C6 sugars,
(iii) an inherent ability to secrete a large amount of proteins, and
(iv) a small cell (0.7 by 2 �m) versus a large cell size for yeast (2.5
to 10 by 4.5 to 21 �m) (i.e., a better mass transfer for a smaller
cell). The first two features have been introduced into recombi-
nant yeasts (12, 28). In spite of intensive efforts, recombinant
cellulose-utilizing yeasts that can produce ample cellulase and hy-
drolyze cellulose to support cell growth and cellulase synthesis
without the help of other soluble organic nutrients are not yet
available (18). In contrast, a recombinant cellulose-utilizing B.
subtilis strain has been created to produce lactate from cellulose
without the addition of exogenous cellulase or any water-soluble
organic nutrients (37). Since anaerobic cellulolytic microorgan-
isms must produce more secretory cellulase than do their aerobic
counterparts based on the weight ratio of cellulase to cellular pro-
tein for supporting their growth on cellulose (23), cellulase syn-
thesis always represents a significant bioenergetic burden for an-

aerobic microorganisms (42). The bacterium C. thermocellum, for
example, produces �10 to 20% (wt/wt) cellulase relative to cellu-
lar proteins for fast cellulose hydrolysis, with nearly all of the cel-
lulosome displayed on its cell surface (40). It appears that cellulo-
lytic, anaerobic bacteria evolved cell-bound cellulosomes so to
increase specific cellulase activity and to decrease their bioener-
getic burden (42). However, this cellulase evolution mechanism is
speculated not to occur in fungi and yeasts because (i) the ATP
supply is much more plentiful and (ii) relatively large cellulolytic
fungi and yeasts may not have enough cell surface to display 10%
to 20% (wt/wt) cellulase relative to cellular protein due to low
surface/volume ratios, where the surface/volume ratio is inversely
proportion to the radius of a cell. Therefore, it is hypothesized that
in nature cellulolytic fungi evolved to secrete a large amount of
cellulases.

For high-yield biofuel production from cellulosic material, it is
vital to increase the carbohydrate allocation of the desired biofuels
by decreasing the carbohydrate allocation to synthesis of cellulase
and cell mass under anaerobic conditions (14, 22). This study
showed that displaying a cellulosome on the surface of a microbe
can enhance the microbial cellulose hydrolysis rate by severalfold
without increasing the cellulase synthesis burden. Since fungal
cellulases exhibited higher hydrolysis ability over a long time
range (19), the coexpression of dockerin-containing fungal cellu-
lases by recombinant cellulolytic B. subtilis strains may be another
worthy direction for study. Another potential direction would be
in vitro assembly of dockerin-containing fungal cellulases pro-
duced by Trichoderma spp. and a recombinant yeast or bacterium
that can produce a cell surface-displayed scaffoldin.
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