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Deletion Mutant Library for Investigation of Functional Outputs of
Cyclic Diguanylate Metabolism in Pseudomonas aeruginosa PA14

Dae-Gon Ha,a Megan E. Richman,b George A. O’Toolea

Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, New Hampshire, USAa; Claremont McKenna College, Keck Science
Department, Claremont, California, USAb

We constructed a library of in-frame deletion mutants targeting each gene in Pseudomonas aeruginosa PA14 predicted to partic-
ipate in cyclic di-GMP (c-di-GMP) metabolism (biosynthesis or degradation) to provide a toolkit to assist investigators studying
c-di-GMP-mediated regulation by this microbe. We present phenotypic assessments of each mutant, including biofilm forma-
tion, exopolysaccharide (EPS) production, swimming motility, swarming motility, and twitch motility, as a means to initially
characterize these mutants and to demonstrate the potential utility of this library.

Pseudomonas aeruginosa is a ubiquitous Gram-negative bacte-
rium found in a diverse array of environments, ranging from

soil to the mammalian host. As an opportunistic bacterial patho-
gen, individuals with a compromised immune system, epithelial
damage, or cystic fibrosis (CF) can succumb to its colonization
and infection (1–3). In addition to its arsenal of virulence factors,
including exotoxin A, exoenzyme S, phenazines, rhamnolipids,
and lipopolysaccharides, P. aeruginosa is also capable of switching
its life-style from a planktonic growth mode to a surface-associ-
ated life-style in response to environmental stimuli. Biofilm-asso-
ciated infections have garnered significant attention in the medi-
cal context due to the increased antibiotic tolerance of these
communities (4–6) and their potential as a reservoir of infection
in the host (7, 8).

Cyclic diguanylate (c-di-GMP) is a ubiquitous second-mes-
senger molecule capable of regulating a myriad of cellular func-
tions in bacteria. Studies to date have demonstrated numerous
functions regulated by this cyclic dinucleotide, including, but not
limited to, bacterial physiology (9–14), group behavior (15–21),
and virulence (21, 22). The level of c-di-GMP in the cell is contin-
gent on the activity of two classes of enzymes: diguanylate cyclase
(DGC) and phosphodiesterase (PDE). DGCs, with a canonical
GG(D/E)EF motif, synthesize c-di-GMP from two molecules of
GTP (23, 24), while PDEs, with a canonical E(A/E/V)L motif,
degrade c-di-GMP to pGpG (24). More recently, proteins with an
HD-GYP domain were also shown to demonstrate c-di-GMP
phosphodiesterase activity (25). Current models correlate high
intracellular c-di-GMP levels to a sessile life-style, or a biofilm
state, while low levels of this signal promote motility and/or
planktonic growth. Such a simple model likely underestimates the
complexity of the c-di-GMP signaling network, as implied by 40
DGCs and PDEs encoded in the genome of P. aeruginosa PA14.

A surging interest in c-di-GMP and its functional outputs in P.
aeruginosa has resulted in a large number of publications focused
primarily on forward-genetics approaches (9, 13, 16–18, 26–28).
For many, the emergence of a publicly available, nonredundant
transposon insertion library in P. aeruginosa PA14 (29) proved
very useful in advancing studies of this microbe. For example,
Kulasakara et al. benefited from this library in their genome-wide
analysis of DGC and PDE mutants in P. aeruginosa PA14 (30).
Although useful, drawbacks of transposon insertion mutants are
2-fold: (i) the potential for partial loss of function at the insertion

site and (ii) the possibility of polarity, causing either loss or in-
creased expression of downstream genes.

Here, we constructed a library of in-frame deletion mutants
targeting each gene in P. aeruginosa PA14 predicted to participate
in c-di-GMP synthesis or degradation. We present phenotypic
assessments of each mutant, including biofilm formation, exopo-
lysaccharide (EPS) production, swimming motility, swarming
motility, and twitch motility, as a means to initially characterize
these mutants as well as to demonstrate the potential value of this
library to investigators in the field.

MATERIALS AND METHODS
Bacterial strains, media, and chemicals. Strains, plasmids, and primers
used in this study are listed in Tables S1 to S3 in the supplemental material.
Pseudomonas aeruginosa strain UCBPP-PA14 (abbreviated P. aeruginosa
PA14) was used in this study. P. aeruginosa PA14 and Escherichia coli were
routinely cultured in lysogeny broth (LB) (31) at 37°C and, when appro-
priate, solidified with 1.5% agar and/or supplemented with gentamicin
(Gm) at 10 �g ml�1 (E. coli) and 50 �g ml�1 (P. aeruginosa). Minimal
M63 salts (32) supplemented with MgSO4 (1 mM) plus glucose (0.2%)
and Casamino Acids (0.5%) or supplemented with MgSO4 (1 mM) plus
arginine (0.4%) were used for biofilm assays. Swarming, swimming, and
twitching motility medium contained M8 salts (33) with glucose (0.2%),
Casamino Acids (0.5%), and MgSO4 (1 mM). Congo red (CR) agar (1.5%
agar) medium was the same as that used for swarming, swimming, and
twitching motility assays but further supplemented with Congo red (40
�g ml�1) and Coomassie brilliant blue dye (20 �g ml�1), as reported
previously (34).

Molecular techniques. Plasmids constructed during the course of this
study were prepared by using homologous recombination in Saccharomy-
ces cerevisiae (35). All restriction enzymes were obtained from New Eng-
land BioLabs (Ipswich, MA). Plasmids constructed in yeast were subse-
quently extracted by a modified “smash-and-grab” method (36) and
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electroporated into E. coli S-17 for confirmation by colony PCR (37).
PCR-verified constructs were conjugated into P. aeruginosa PA14, as pre-
viously reported (15), and exconjugants were selected and counterse-
lected by gentamicin and 5% sucrose, respectively. PCR amplification and
subsequent DNA sequencing using primers flanking the site of deletion
were performed to verify all resulting mutant candidates.

Biofilm assays. Biofilm formation assays on polyvinylchloride (PVC)
plates (VWR Scientific, Waltham, MA) were performed as previously re-
ported (38), with the following minor modifications. Bacterial cultures
grown overnight in LB were diluted 1:100 in minimal M63 salts supple-
mented with MgSO4 (1 mM) and either glucose (0.2%) and Casamino
Acids (0.5%) or arginine (0.4%). Plates were incubated overnight at 37°C,
followed by staining with 0.1% crystal violet and subsequent solubiliza-
tion with 30% acetic acid. Solubilized crystal violet was transferred onto a
new polystyrene microtiter dish (VWR Scientific, Waltham, MA) and
quantified by measuring its optical density at 550 nm. The resulting values
were normalized to wild-type (WT) P. aeruginosa strain PA14 (positive
control) biofilm levels to simplify comparisons across numerous strains.

Congo red assays. Congo red assays were performed as previously
described (18, 39). Qualitative assessment of Congo red staining was per-
formed considering coloration (gradation from white to red) compared
to WT P. aeruginosa strain PA14 (positive control) as well as colony mor-
phology (wrinkly versus smooth). Each strain was tested on at least two
different days with 3 to 4 technical replicates per day.

Swimming motility assays. Swimming motility assays were per-
formed as previously reported (40), with the following minor modifica-
tions. Swim agar (0.3%) plates were poured and left to dry at room tem-
perature (�25°C) for �4 h prior to inoculation, with 3 to 4 replicates per
strain. Plates were used on the day that they were poured. Each strain was
tested on at least three separate days. All swim plates were incubated
upright at 37°C for 24 h prior to measurements using ImageJ software
(NIH). Swim zones of a strain, measured as the percentage of plate cov-
erage, were normalized to the WT P. aeruginosa strain PA14 (positive-
control) swim zone on the same plate. The resulting values from each set
of replicates were averaged to yield a final swim zone coverage value for
the particular strain.

Swarming motility assays. Swarming motility assays were performed
as previously reported (40), with the following minor modifications.
Swarm agar (0.5%) plates were poured and left to dry at room tempera-
ture (�25°C) for �4 h prior to inoculation. Five to six replicates per strain
per trial were tested, and all studies were repeated at least twice on differ-
ent days. All swarm plates were incubated upright at 37°C for 16 h, fol-
lowed by 24 h at room temperature. Swarming motility was quantified by
using ImageJ software (NIH). Surface coverage was calculated by dividing
the area of the swarm by the area of the entire plate, and the values from
each replicate were averaged. These values were normalized to values for
WT P. aeruginosa strain PA14 (positive-control) swarm coverage from the
same batch of plates to facilitate comparisons among strains.

It is important to note that even the nonswarming �flgK mutant is
capable of �10% surface coverage, resulting from the colony formed at
the site of inoculation expanding as bacterial cell numbers increase. Thus,
strains with swarm coverage of 10 to 20% may indicate no significant
change from the negative control.

Twitch motility assays. Twitch motility assays were performed as pre-
viously reported (41), with minor modifications, as follows. Twitch mo-
tility agar (1.5%) plates contained minimal M8 salts supplemented with
MgSO4 (1 mM), glucose (0.2%), and Casamino Acids (0.5%). Cells were
stabbed into the bottom of the agar plate by using a toothpick and incu-
bated upright at 37°C overnight, followed by 48 h of incubation at room
temperature (�25°C). Each strain was tested on three separate days. After
incubation, agar was carefully removed, and the basal surface was stained
with 0.1% crystal violet (Sigma, St. Louis, MO) to facilitate visualization
of the twitch zones. Twitch zones were determined by using ImageJ soft-
ware (NIH), by measuring the area covered by the twitch motility zone
(stained with crystal violet) and dividing it by the twitch area of WT P.

aeruginosa PA14 (positive control). The resulting twitch zone values were
averaged to yield a final twitch zone value for the particular strain.

Statistical analysis. The two-tailed Student t test was performed pair-
wise, between the wild type and each strain, by using GraphPad Prism
software (GraphPad, La Jolla, CA).

RESULTS AND DISCUSSION
Complete library of strains carrying diguanylate cyclase and
phosphodiesterase deletion mutations. Analysis of the genome
of P. aeruginosa PA14 revealed 40 genes with predicted GGDEF,
EAL, and HD-GYP domains either singly or in combination (30).
These c-di-GMP metabolism proteins can be divided into four
subclasses: 16 GGDEF-only, 5 EAL-only, 16 dual-domain GGDEF-
EAL, and 3 HD-GYP-only proteins (Fig. 1). It is important to note
that while alignments of primary amino acid sequences have been
largely successful in determining whether a GGDEF/EAL/HD-
GYP domain is either functional or degenerate, definitive conclu-
sions require empirical data. For example, in vitro analyses showed
minimal DGC activity in a seemingly degenerate GDSIF motif in
the PA14_65540 (fimX) gene (13) as well as for the PA14_53140
(rbdA) gene, which has the canonical GGDEF motif (28).

The presence of other domains in proteins carrying GGDEF/
EAL/HD-GYP domains can provide some functional context for a
particular protein. Therefore, we first performed an analysis of all
40 c-di-GMP metabolism proteins for putative domains using the
publicly available SMART algorithm (42, 43). Of the 40 sequences
queried, 19 are predicted to be either exported or membrane
bound based on the presence of either a transmembrane (TM) or
signal domain(s) at the N-terminal region of the protein. These
include 8 GGDEF-only (PA14_20820, PA14_26970, PA14_40570,
PA14_49890, PA14_50060 [roeA], PA14_53310, PA14_56280
[sadC], and PA14_65090), 2 EAL-only (PA14_14530 and
PA14_36260), and 9 dual-domain GGDEF-EAL (PA14_03720,
PA14_07500, PA14_21190, PA14_37690, PA14_42220 [mucR],
PA14_53140 [rbdA], PA14_56790 [bifA], PA14_60870 [morA],
and PA14_71850) proteins (Fig. 1). We are aware of alternative
predictive algorithms, and while such predictions are useful, we
emphasize that they are sometimes inconsistent with experimen-
tal studies. For example, PA14_66320 (dipA) was shown to be an
inner membrane or inner membrane-associated protein (26) de-
spite its lack of obvious transmembrane or signal domains (Fig. 1).

The PAS domain was the most prevalent domain identified in
our analysis. Observed in 12 different proteins, the number of
PAS domains can range from 1 (e.g., PA14_03790) to 4 (e.g.,
PA14_07500) within a single protein. PAS domains are generally
regarded as signal sensors, including signals such as oxygen and
redox potential (44, 45). Moreover, PAS domains can also mediate
protein-protein interactions (46, 47), perhaps allowing these pro-
teins to participate in larger complexes. Each PAS domain was
frequently associated with a downstream PAC domain, with the
few exceptions to this organization including PA14_60870
(morA), PA14_65540 (fimX), and PA14_66320 (dipA) (Fig. 1).
The PAS-PAC organization is thought to provide structural sta-
bility to the PAS domain.

Other domains with putative or known sensor or signal trans-
duction functions are also predicted with high frequency. These
domains include REC, HAMP, and CHASE domains. REC do-
mains, typically found in response regulators in two-component
signaling systems, are predicted in three GGDEF-only proteins
(PA14_16500 [wspR], PA14_57140, and PA14_64050), two EAL-
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FIG 1 Predicted domains in GGDEF-only, EAL-only, HD-GYP-only, and dual-domain GGDEF-EAL proteins. Based on the SMART algorithm, putative
functional domains were identified in each protein (42, 43). Note that the cartoon depiction of each protein is not drawn to scale. The CBS (cystathionine
beta-synthase) domain is predicted to serve as a binding site for adenosine and derivatives, as well as playing a regulatory role in regulating enzyme activity; the
GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) domain is present in cGMP-specific phosphodiesterases, adenylyl and guanylyl cyclases,
and phytochromes as well as FhlA, a regulator of nitrogen fixation in bacteria; the CC (coiled-coil) domain is a structural motif in which �-helices intertwine; the
PSB (periplasmic substrate binding) domain participates in ligand binding; Signal indicates the protein secretion signal; the TM (transmembrane) domain is the
inner membrane transmembrane domain; the CHASE domain (extracellular sensory domain) is a predicted ligand binding domain; the HAMP (histidine
kinases, adenylyl cyclases, methyl binding proteins, phosphatases) domain is a signal transduction domain; HD indicates the HD-GYP domain, a domain found
in c-di-GMP degrading phosphodiesterases; the EAL (phosphodiesterase) domain is found in c-di-GMP-degrading phosphodiesterases; the GGDEF (diguany-
late cyclase) domain is conserved in proteins that produce c-di-GMP from two molecules of GTP; the PAC domain contributes to the PAS domain fold; the PAS
domain is a signal transduction domain; the 7TM (7 transmembrane receptors with diverse intracellular signaling modules) domain is a signal transduction
domain; the REC (receiver) domain is conserved in response regulators; and Repeat indicates repeat sequences.
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only proteins (PA14_12810 [rocR] and PA14_59790 [pvrR]), two
HD-GYP-only proteins (PA14_30830 and PA14_63210), and one
dual-domain GGDEF-EAL protein (PA14_65540 [fimX]). HAMP
and CHASE domains are less common, predicted in three (two
GGDEF-only and one dual-domain GGDEF-EAL) and two (one
GGDEF-only and one dual-domain GGDEF-EAL) proteins, re-
spectively. Another domain, 7TM, is also thought to be involved
in signal transduction. Described as “7 transmembrane receptors
with diverse intracellular signaling modules,” it is predicted in just
one GGDEF-only protein, PA14_65090 (Fig. 1).

The GAF domain (regulatory domain in cyclic GMP-specific
phosphodiesterases, adenylyl cyclases, and FhlA) is predicted in
two dual-domain GGDEF-EAL proteins (PA14_31330 and PA14_
66320 [dipA]). For PA14_66320 (dipA), binding of cyclic AMP
(cAMP) to the GAF domain induced its phosphodiesterase activ-
ity (26). Whether the same function applies to PA14_31330 has
not yet been explored. Other domains, including CBS (cystathio-
nine beta-synthase) and PSB (periplasmic substrate binding) do-
mains, were predicted in the dual-domain GGDEF-EAL proteins
PA14_21870 and PA14_07500, respectively. Functions of CC
(coiled-coil) (PA14_63210 and PA14_60870 [morA]) and repeat
(PA14_02110) domains remain unknown for these proteins
(Fig. 1).

Medium-specific impact of DGCs and PDEs on biofilm for-
mation. Given the known role of c-di-GMP in biofilm formation,
we tested the biofilm formation of each mutant under two growth
conditions used routinely in our laboratory. The first, glucose sup-
plemented with Casamino Acids (glucose�CAA), is the standard
assay medium used in most of our previously reported studies (16,
17), and glucose is a common growth substrate used by many
groups studying biofilm formation (48–51). The second substrate
analyzed is arginine, one of the few carbon sources which P.
aeruginosa can ferment and which we have shown previously
boosts the levels of c-di-GMP by �4-fold compared to growth on
glucose�CAA (52). In all biofilms assays, the wild-type strain and
the biofilm-deficient, hyperswarming �sadC �roeA double mu-
tant (18) served as controls.

Among the mutants in the GGDEF-only subclass, the majority
of mutants formed biofilms at levels �60 to 70% of those of the
wild type, whereas wild-type levels of biofilm formation were ob-
served for strains carrying the �PA14_20820, �PA14_40570,
�PA14_53310, �PA14_57140, and �PA14_65090 mutations.
Apart from �PA14_20820, these phenotypes are in agreement
with previous findings (30). Two mutants, �PA14_50060 (roeA)
and �PA14_56280 (sadC), formed the weakest biofilms among
this group, at roughly 20 to 50% of wild-type levels (Fig. 2A); these
observations are in agreement with previous reports of these two
well-characterized mutants (17, 18).

Most of the PDE mutants, including both EAL-only and HD-
GYP-only subclasses, showed no significant difference from
the wild-type strain when biofilm formation was assessed on
glucose�CAA medium. In fact, the �PA14_30830 and �PA14_
63210 HD-GYP mutants formed significantly reduced biofilms, at
�50% of wild-type levels (Fig. 2A). Based on the currently ac-
cepted model wherein elevated c-di-GMP levels promote biofilm
formation, the fact that we observed reduced biofilm formation
when we mutated genes coding for putative c-di-GMP-degrading
phosphodiesterases is somewhat surprising. The lack of any bio-
film-related phenotype among strains mutated for the production
of EAL-only proteins (30) and the various phenotypes among

strains lacking HD-GYP-only proteins (21) have been reported
previously.

The last subclass, strains mutated for dual-domain GGDEF-
EAL proteins, consisted of strains that were both weaker and
stronger biofilm producers than the wild type. In contrast to P.
aeruginosa PAO1 carrying a �mucR mutation, which formed a
biofilm equivalent to that formed by the wild type (12), the
�PA14_42220 (mucR) mutant formed the weakest biofilm among
mutants in this class, at �60% of wild-type levels. Strains carrying
the �PA14_21190, �PA14_56790 (bifA), and �PA14_66320
(dipA) mutations, as expected (30), were all hyperbiofilm produc-
ers relative to the wild type, ranging from 160 to 300% of wild-type
strain levels (Fig. 2A). Strains carrying �PA14_56790 (bifA) and
�PA14_66320 (dipA) mutations, in particular, were previously
reported to demonstrate enhanced biofilm formation (16, 26) and
thus serve to validate our findings. Interestingly, mutation of the
homolog of the PA14_53140 (rbdA) gene was shown to cause a
hyperbiofilm phenotype in P. aeruginosa PAO1 (28, 30), but mu-
tation of this gene showed wild-type levels of biofilm in the P.
aeruginosa PA14 background (Fig. 2A). Thus, while there are sim-
ilarities between strains PAO1 and PA14 of P. aeruginosa, these
data suggest strain-specific differences in the roles of these pro-
teins in biofilm formation.

As mentioned above, our group has shown that a biofilm me-
dium supplemented with L-arginine (0.4%) promotes c-di-GMP
production and, as a consequence, results in more pronounced
biofilm formation by P. aeruginosa PA14 (52). Under these con-
ditions, L-arginine is utilized as the sole carbon source in the pres-
ence of oxygen. Thus, to facilitate observations of minor changes
in biofilm formation and potential medium-specific effects of the
loss of the DGCs and/or PDEs, we tested the same library of mu-
tants in minimal medium supplemented with arginine.

In general, the GGDEF-only subclass mutants showed negligi-
ble effects on biofilm formation in arginine medium. However,
two mutants, the previously reported �PA14_50060 (roeA) and
�PA14_56280 (sadC) mutants (17, 18), showed impaired bio-
films, at approximately 40 to 50% of wild-type levels, while the
�PA14_04420, �PA14_20820, �PA14_26970, and �PA14_64050
mutants produced hyperbiofilms, reaching 110 to 140% of wild-
type levels (Fig. 2B).

Similarly, most strains carrying mutations in genes coding for
the EAL-only and HD-GYP-only subclasses showed wild-type
phenotypes, as shown by �PA14_36260, �PA14_36990, �PA14_
59790 (pvrR), and �PA14_30830 mutant strains. However, no-
ticeably weaker biofilm (�PA14_12810 [rocR] and �PA14_
10820) and hyperbiofilm (�PA14_14530 and �PA14_63210)
phenotypes were also observed (Fig. 2B).

The mutations in genes with dual GGDEF-EAL domains also
showed various degrees of biofilm formation, with the
�PA14_42220 (mucR) and �PA14_60870 (morA) mutants show-
ing the weakest biofilm formation in this class of mutants, at 50 to
60% of wild-type levels. In contrast, the �PA14_21190, �PA14_
56790 (bifA), �PA14_65540 (fimX), �PA14_66320 (dipA), and
�PA14_71850 mutants produced hyperbiofilms at levels ranging
from 110 to 150% of wild-type levels. Other mutants were not
significantly different from the wild type, with a few showing a
small, but significant, decrease, as seen, for example, with the
�PA14_31330 mutant (Fig. 2B).

In sum, a total of 16 mutants showed medium-specific changes
in biofilm formation. Of these, minimal medium supplemented
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with arginine increased biofilm formation in 14 of the 16 mutants.
The net increase occurred in both hyperbiofilm mutants (e.g.,
�PA14_66320 [dipA]) as well as those with weak biofilms (e.g.,
�PA14_03790 and �PA14_72420), which is consistent with the
previously reported arginine-dependent increase in intracellular
c-di-GMP levels (52). Surprisingly, two mutants (�PA14_60870
[morA] and �PA14_10820) showed an arginine-dependent de-
crease in biofilm formation. It is important to note that the phe-
notypic differences highlighted in this work are unlikely to be
attributed to growth defects, as all strains except the �bifA strain,
which is known to be a hyperbiofilm former, showed no growth
defect in glucose minimal medium (see Fig. S1 in the supplemen-
tal material).

Effects of c-di-GMP on exopolysaccharide production in P.
aeruginosa. Extracellular matrix production is typically associ-
ated with biofilm formation; exopolysaccharides (EPS) are a crit-
ical component of this matrix. In P. aeruginosa PA14, two differ-
ent types of EPS, Pel and alginate, are synthesized, of which Pel has
been reported to be a critical factor for biofilm formation in vitro
(39). Requiring the activities of the PelA to PelG proteins (53, 54),
the level of Pel EPS production is typically positively associated
with the intracellular pool of c-di-GMP (16, 18). Thus, investigat-

ing the impact of mutating genes encoding GGDEF-only, EAL-
only, HD-GYP-only, and dual-domain GGDEF-EAL proteins on
EPS production is of particular interest.

The qualitative assay used here exploits the ability of Congo red
(CR) dye to bind a range of macromolecules, including its high
affinity for cellulose in plants and fungi (55, 56). This dye can also
bind amyloids (57). CR has been used to identify mutants defec-
tive in the production of Pel in the context of pellicle production
and biofilm formation in P. aeruginosa PA14 (16–18, 39). While
acknowledging the potential for CR to stain other macromole-
cules, a Pel-deficient P. aeruginosa PA14 mutant (�pelA) fails to
bind CR (58), resulting in the production of smooth, white colo-
nies, and thus, this mutant serves as a negative control (Fig. 3). In
these assays, all strains are scored on a scale from 0 to 3, with the
WT being scored as 2, the hyper-CR-binding �PA14_56790 (bifA)
mutant being given a score of 3, and the Pel-deficient �pelA mu-
tant being assigned a score of 0. The �wspR mutant, scored as 1,
shows an intermediate phenotype between the wild type and the
�pelA mutant (Fig. 3 and Table 1).

There were four mutants that scored “0” (�PA14_50060
[roeA], �PA14_07500, �PA14_60870 [morA], and �PA14_
10820) across the four mutant subclasses (Table 1). These mutants

FIG 2 Biofilm formation. Shown is an analysis of biofilm formation by P. aeruginosa PA14 strains carrying mutations in genes encoding GGDEF-only, EAL-only,
HD-GYP-only, and dual-domain GGDEF-EAL proteins in glucose�CAA (A)- and arginine (B)-supplemented media. The biomass of the attached cells on PVC
plates was measured after 24 h of static incubation at 37°C. Final values corresponding to each mutant were normalized to the value for wild-type P. aeruginosa
strain PA14, which was set to a value of 1, for ease of comparison. OD550, optical density at 550 nm. �, P � 0.05.

Ha et al.
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failed to bind any CR following overnight incubation at 37°C and
a lengthy incubation (�2 days) at room temperature. The
�PA14_50060 (roeA) mutant was previously reported to show no
CR binding (18). The next class, scored as “1,” included eight
mutants (�PA14_16500 [wspR], �PA14_20820, �PA14_23130,
�PA14_53310, �PA14_36990, �PA14_37690, �PA14_30830,
and �PA14_63210) across the subclasses. In particular, dimin-
ished CR binding of �PA14_16500 (wspR) was expected, given its
role as a DGC in P. aeruginosa (59), and thus, this mutant served as
a representative of this class of mutants. We observed 17 mutants
with the wild-type phenotype and thus scored them as “2.” Finally,
there were 11 mutants that bound CR to a greater extent than the
wild type (generally after overnight incubation at 37°C) and/or
had a wrinkly colony morphology, which we interpret as excessive
EPS production (Table 1). The previously reported �PA14_56790
(bifA) mutant (16) showed strong CR binding and a wrinkly col-
ony morphology and served as the representative of this class of
mutants, scored as “3” (Fig. 3 and Table 1). Similarly, the
�PA14_21190 mutant also formed a wrinkly colony with strong
CR binding. In addition to the CR binding score, mutants dem-
onstrating wrinkly colony morphology are indicated with a “W”
in Table 1.

Despite the strong association between biofilm formation and
EPS production, there was surprisingly little correlation between
these two phenotypes. For example, some mutants with low-level
CR binding (e.g., �PA14_16500 [wspR] and �PA14_07500) dem-
onstrated minor defects in biofilm formation under both medium
conditions (Fig. 2 and Table 1). Conversely, some mutants with
high-level CR binding (e.g., �PA14_31330 and �PA14_69900)
formed wild-type biofilms (Fig. 2 and Table 1). However, some
strains with high-level CR binding and/or wrinkly colony mor-
phology did yield hyperbiofilm phenotypes, for example, the
�PA14_21190, �PA14_56790 (bifA), and �PA14_66320 (dipA)
mutants, as reported previously (16, 26). Thus, EPS production, as
measured by CR binding, may not be indicative of the mutant’s
biofilm formation phenotype.

c-di-GMP impacts flagellar-based swimming motility. The
link between c-di-GMP and motility is well documented (60).
Thus, we analyzed each mutant for its impact on swimming mo-
tility. Motility was assessed by using a standard soft agar (0.3%)
plate assay. It is important to note that plate-based motility assays
also measure bacterial chemotaxis in addition to motility.

Of the 16 GGDEF-only mutants, 4 showed an increase
(�PA14_16500 [wspR], �PA14_23130, �PA14_49890 [yfiN], and

�PA14_56280 [sadC]) and 4 showed a decrease (�PA14_02110
[siaD], �PA14_03790, �PA14_26970, and �PA14_72420) in
swimming motility compared to the wild type. The remaining
mutants showed wild-type swimming motility (e.g., �PA14_
04420) (Fig. 4).

Wild-type swimming phenotypes were dominant among
mutants of the EAL- and HD-GYP-only subclasses (e.g., �PA14_
12810 [rocR] and �PA14_36990). However, two mutants, carry-
ing mutations in the PA14_14530 and PA14_10820 genes, showed
significant decreases (�30% of wild-type levels) and increases
(�140% of wild-type levels) in swimming motility, respectively
(Fig. 4).

TABLE 1 Congo red phenotypes of DGC and PDE mutantsa

Strain
Congo red
binding score

WT 2
�pelA 0
�PA14_02110 (siaD) 3
�PA14_03790 3
�PA14_04420 3
�PA14_16500 (wspR) 1
�PA14_20820 1
�PA14_23130 1
�PA14_26970 3
�PA14_40570 2
�PA14_49890 (yfiN) 2
�PA14_50060 (roeA) 0
�PA14_53310 1
�PA14_56280 (sadC) 3
�PA14_57140 2
�PA14_64050 2
�PA14_65090 2
�PA14_72420 2
�PA14_12810 (rocR) 2
�PA14_14530 3
�PA14_36260 2
�PA14_36990 1
�PA14_59790 (pvrR) 2
�PA14_03720 2
�PA14_07500 0
�PA14_21190 3W

�PA14_21870 2
�PA14_31330 3
�PA14_37690 1
�PA14_42220 (mucR) 2
�PA14_45930 2
�PA14_49160 2
�PA14_53140 2
�PA14_56790 (bifA) 3W

�PA14_60870 (morA) 0
�PA14_65540 (fimX) 2
�PA14_66320 (dipA) 3
�PA14_69900 3
�PA14_71850 2
�PA14_10820 0
�PA14_30830 1
�PA14_63210 1
a The scale ranges from 0 to 3, where 0 is equivalent to the negative control (�pelA
mutant), 1 is represented by the �wspR mutant, 2 is equivalent to the wild type, and 3
represents hyperbinding of Congo red (bifA mutant). Samples of each phenotype are
shown in Fig. 3. A superscript “W” indicates a mutant that showed a wrinkly colony
phenotype.

FIG 3 Congo red assays. Shown are representative images of Congo red bind-
ing assays for P. aeruginosa PA14 and strains carrying mutations in the pelA,
PA14_16500 (wspR), and PA14_56790 (bifA) genes. As cited in text, the �pelA
mutant, the �PA14_16500 (wspR) mutant, P. aeruginosa PA14 (wild type),
and the �PA14_56790 (bifA) mutant are representative of scores of 0, 1, 2, and
3 on the score spectrum, respectively (see Table 1 for a complete list). The
�PA14_56790 (bifA) mutant also forms a wrinkly colony morphology, which
is indicated by “W” in Table 1.
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Finally, 11 of the 16 dual-domain GGDEF-EAL subclass mu-
tants showed reduced swimming motility compared to the wild
type. Of these, the motility of six mutants (�PA14_07500,
�PA14_21190, �PA14_56790 [bifA], �PA14_60870 [morA],
�PA14_66320 [dipA], and �PA14_71850) was significantly re-
duced (�50%) compared to the motility of the wild type. Two
mutants (�PA14_03720 and �PA14_31330) showed �70% of
wild-type levels of motility. In contrast, three mutants (�PA14_
21870, �PA14_42220 [mucR], and �PA14_65540 [fimX]) were
hypermotile, at 110 to 120% of wild-type levels (Fig. 4).

As described above, we observed three mutants with a hyper-
biofilm phenotype (�PA14_21190, �PA14_56790 [bifA], and
�PA14_66320 [dipA]). These same mutants were impaired in
swimming motility (Fig. 4), which is consistent with the general
model that high intracellular c-di-GMP levels favor biofilm for-
mation, while low intracellular c-di-GMP levels favor motility.
Interestingly, there were two other mutants with similarly im-
paired swimming motility (e.g., �PA14_72420 and �PA14_
14530) that showed reduced biofilm formation. The complexity
underlying c-di-GMP-dependent phenotypes and exceptions to
the general model were demonstrated previously (18).

c-di-GMP regulation of swarming motility. P. aeruginosa
PA14 is capable of a second form of flagellum-dependent motility:
swarming. Swarming motility also utilizes rhamnolipid surfac-
tants to move across a semisolid surface and is routinely assayed
on 0.5% agar plates. Swarming has also been linked to c-di-GMP
in P. aeruginosa PA14 (16–18, 61).

Among the 16 GGDEF-only mutants, 5 mutants (�PA14_
02110 [siaD], �PA14_03790, �PA14_04420, �PA14_26970, and
�PA14_72420) swarmed at �50% of wild-type levels (Fig. 5A).
Additionally, two mutants (�PA14_23130 and �PA14_57140)
demonstrated a smaller but significant decrease in swarm cover-
age. In contrast, five other mutants (�PA14_16500 [wspR],
�PA14_20820, �PA14_49890 [yfiN], �PA14_50060 [roeA],
�PA14_53310, and �PA14_64050) were hyperswarmer strains,
showing surface coverages that were 110 to 150% of wild-type
levels (Fig. 5A).

Reduction in swarm coverage was observed for three mutants

(�PA14_14530, �PA14_30830, and �PA14_63210) of the EAL-
only and HD-GYP-only subclasses, with the �PA14_30830 mu-
tant showing the highest level of coverage, at 60% of wild-type
levels. Three mutants of this class were hyperswarmers (�PA14_
12810 [rocR], �PA14_36260, and �PA14_10820), with 110% of
wild-type swarm coverage. The product of the PA14_12810 (rocR)
gene was previously linked to Cup fimbria expression, but its con-
tribution to swarming motility was unknown (62, 63).

Mutants with reduced swarm coverage outnumbered hyper-
swarmers within the dual-domain GGDEF-EAL subclass. In fact,
only two mutants in this group (�PA14_42220 [mucR] and
�PA14_65540 [fimX]) were hyperswarmers, surpassing wild-type
surface coverage at 150%. The hyperswarming phenotype of the
�PA14_42220 (mucR) mutant of P. aeruginosa PA14 is in contrast
to a previous report by Hay et al., wherein �mucR mutant swarm-
ing motility was on par with that of wild-type P. aeruginosa strain
PAO1 (12). Differences in the strains used and/or medium com-
positions may explain this discrepancy. Seven mutants of the
GGDEF-EAL subclass (�PA14_07500, �PA14_21190, �PA14_
53140 [rbdA], �PA14_56790 [bifA], �PA14_60870 [morA], and
�PA14_66320 [dipA]) showed reduced swarming. The decreased
swarming of the �PA14_56790 (bifA) and �PA14_53140 (rbdA)
mutants is in line with previous reports (16, 28).

In general, weak swarmers (e.g., �PA14_02110 [siaD] and
�PA14_07500) are also weak swimmers (Fig. 3). Interestingly, the
hyperswarming phenotype (e.g., �PA14_50060 [roeA] and
�PA14_53310) did not always translate into a hyperswimming
phenotype (Fig. 3). These findings indicate a complex relationship
between swimming and swarming motility.

Impact of mutations on pilus-mediated twitching motility.
P. aeruginosa can also utilize type IV pili (TFP) to move across
hard surfaces (�1% agar) in a process known as twitch motility
(41, 64), which is distinct from the two flagellar-dependent modes
of motility, swimming and swarming, described above. We inves-
tigated the effects of the DGC and PDE mutants on twitching
motility. The �pilA mutant, lacking the type IV pilin (65), served
as the negative control (Fig. 6).

A small subset of GGDEF-only mutants (�PA14_03790,

FIG 4 Swimming motility. Shown is an analysis of swimming motility of wild-type P. aeruginosa strain PA14 as well as strains carrying mutations in genes
encoding GGDEF-only, EAL-only, HD-GYP-only, and dual-domain GGDEF-EAL proteins. The area covered by the swimming motility zone was normalized to
that of the wild-type strain, which was set to a value of 1, for ease of comparison. The nonmotile �flgK mutant served as a negative control. �, P � 0.05.
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�PA14_26970, and �PA14_72420) demonstrated reduced twitch
zones, at �50% of wild-type levels. Six other mutants (�PA14_
04420, �PA14_23130, �PA14_40570, �PA14_56280 [sadC],
�PA14_57140, and �PA14_64050) also showed statistically sig-
nificant decreases in their respective twitch zones but to a lesser
degree than the previous group of mutants. In comparison, only

one mutant (�PA14_20820) had a hypertwitch phenotype, with
its twitch zone being �120% of that of the wild type (Fig. 6).

Several mutations of EAL-only and HD-GYP-only genes con-
ferred a reduction in twitch motility. A total of four mutants
(�PA14_14530, �PA14_36260, �PA14_30830, and �PA14_
63210) showed significant decreases in their respective twitch

FIG 5 Swarming motility. Shown is an analysis of swarming motility of wild-type P. aeruginosa PA14 as well as strains carrying mutations in genes encoding
GGDEF-only, EAL-only, HD-GYP-only, and dual-domain GGDEF-EAL proteins. (A) The area covered by the swarm and its tendrils was measured and
normalized to that of wild-type P. aeruginosa strain PA14, which was set to a value of 1, for ease of comparison. (B) Representative images of swarming motility.
Reduced swarm coverage includes reduced tendrils (�PA14_60870 [morA]) or tendril-less growth of the colony (�PA14_56790 [bifA]). The nonmotile �flgK
mutant served as a negative control. �, P � 0.05.

FIG 6 Twitch motility. Shown is an analysis of twitching motility by wild-type P. aeruginosa strain PA14 as well as strains carrying mutations in genes encoding
GGDEF-only, EAL-only, HD-GYP-only, and dual-domain GGDEF-EAL proteins. Twitch zones were measured and normalized to that of wild-type P. aeruginosa
strain PA14, which was set to a value of 1, for ease of comparison. The �pilA mutant served as a negative control. �, P � 0.05.
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zones compared to the wild type. In particular, �PA14_14530 and
�PA14_63210 showed twitch zones that were �50% of that of the
wild type (Fig. 6).

Of 16 mutants of the dual-domain GGDEF-EAL class, 8 mu-
tants (�PA14_21190, �PA14_21870, �PA14_31330, �PA14_
49160, �PA14_56790 [bifA], �PA14_65540 [fimX], �PA14_
69900, and �PA14_71850) were statistically significantly
impaired for twitch motility, and only 2 (�PA14_03720 and
�PA14_37690) showed larger twitch zones than that of the wild
type (Fig. 6). It is also worth noting that our data reproduced a
twitch-negative phenotype for a strain carrying PA14_65540
(fimX), a known c-di-GMP-dependent regulator of TFP biogene-
sis in P. aeruginosa (13).

Conclusions. Here, we present a library of in-frame deletion
mutations targeting the 40 c-di-GMP metabolism proteins iden-
tified in the genome of P. aeruginosa PA14. Assessment of biofilm
formation, swimming motility, swarming motility, twitch motil-
ity, and EPS production (via CR binding) was performed by using
this mutant library (summarized in Table S4 in the supplemental
material). Analysis of these mutants revealed complex relation-
ships among these phenotypes, consistent with the complex na-
ture of the c-di-GMP signaling system. Going forward, this mu-
tant library should serve as a helpful tool for elucidating the role of
c-di-GMP metabolism proteins and their regulated pathways.
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