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Artificial Intelligence and Amikacin Exposures Predictive of Outcomes
in Multidrug-Resistant Tuberculosis Patients

Chawangwa Modongo,a,b Jotam G. Pasipanodya,c Beki T. Magazi,d Shashikant Srivastava,c Nicola M. Zetola,a,b,e Scott M. Williams,f

Giorgio Sirugo,g Tawanda Gumboc,h

Division of Infectious Diseases, University of Pennsylvania, Philadelphia, Pennsylvania, USAa; Botswana-University of Pennsylvania Partnership, Gaborone, Botswanab;
Center for Infectious Diseases Research & Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USAc; Department of
Medical Microbiology, University of Pretoria, Pretoria, South Africad; Department of Medicine, University of Botswana, Gaborone, Botswanae; Department of Genetics,
Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USAf; Centro di Ricerca, Ospedale San Pietro Fatebenefratelli, Rome, Italyg; Department of
Medicine, University of Cape Town, Observatory, Cape Town, South Africah

Aminoglycosides such as amikacin continue to be part of the backbone of treatment of multidrug-resistant tuberculosis (MDR-
TB). We measured amikacin concentrations in 28 MDR-TB patients in Botswana receiving amikacin therapy together with oral
levofloxacin, ethionamide, cycloserine, and pyrazinamide and calculated areas under the concentration-time curves from 0 to 24
h (AUC0 –24). The patients were followed monthly for sputum culture conversion based on liquid cultures. The median duration
of amikacin therapy was 184 (range, 28 to 866) days, at a median dose of 17.30 (range 11.11 to 19.23) mg/kg. Only 11 (39%) pa-
tients had sputum culture conversion during treatment; the rest failed. We utilized classification and regression tree analyses
(CART) to examine all potential predictors of failure, including clinical and demographic features, comorbidities, and amikacin
peak concentrations (Cmax), AUC0 –24, and trough concentrations. The primary node for failure had two competing variables,
Cmax of <67 mg/liter and AUC0 –24 of <568.30 mg · h/L; weight of >41 kg was a secondary node with a score of 35% relative to
the primary node. The area under the receiver operating characteristic curve for the CART model was an R2 � 0.90 on posttest.
In patients weighing >41 kg, sputum conversion was 3/3 (100%) in those with an amikacin Cmax of >67 mg/liter versus 3/15
(20%) in those with a Cmax of <67 mg/liter (relative risk [RR] � 5.00; 95% confidence interval [CI], 1.82 to 13.76). In all patients
who had both amikacin Cmax and AUC0 –24 below the threshold, 7/7 (100%) failed, compared to 7/15 (47%) of those who had
these parameters above threshold (RR � 2.14; 95% CI, 1.25 to 43.68). These amikacin dose-schedule patterns and exposures are
virtually the same as those identified in the hollow-fiber system model.

Multidrug-resistant tuberculosis (MDR-TB) requires therapy
with second-line antituberculosis drugs such as aminogly-

cosides (1). Together with 8-methoxyquinolones such as moxi-
floxacin, aminoglycosides form the so-called optimized back-
ground regimen backbone upon which newer agents are added for
the treatment of MDR-TB (1–3). Amikacin is among the most
commonly used aminoglycosides. However, the amikacin expo-
sures that could delineate patients who will respond to therapy
and those who will not respond to therapy are unknown. This is
important to know since we have identified amikacin concentra-
tions associated with toxicity: once those associated with optimal
outcomes are known, clinicians and TB programs will have a ther-
apeutic window within which to dose (4). In the meantime, we
have also examined amikacin monotherapy in the hollow-fiber
system model of TB (HFS-TB), described in the accompanying
article, and identified a peak concentration (Cmax)-to-MIC ratio
of 10.13 as being most closely linked to efficacy (r2 � 0.99), which
would translate to a Cmax/MIC ratio of 75 in the serum (5). This
was followed closely by a area under the concentration-time curve
from 0 to 24 h (AUC0 –24)-to-MIC ratio of 102.74 (r2 � 0.98).
While the HFS-TB has demonstrated robust accuracy for clinical
events (6–8), a clinical study was nevertheless still needed to con-
firm the findings and to identify the optimal amikacin exposures
in patients.

A common concern in translating results from the laboratory
to the clinic is that antibiotic exposures associated with optimal
effects in preclinical models of monotherapy may not be the same
as those for the same drug in patients who are treated with com-

bination therapy. Indeed, one commonly expressed opinion is
that since TB is an intracellular disease (which is not even true
about cavitary pneumonia), standard pharmacokinetics/pharma-
codynamics (PK/PD) do not apply. In addition, in HFS-TB
monotherapy studies, optimal exposure is defined as the exposure
mediating 90% of maximal kill (EC90) or sometimes EC80, while
in patients it would be the exposure below which high proportions
of patients fail therapy, often in combination therapy regimens. It
is unclear if the two exposures would be the same. In order to
investigate this crucial question, we measured amikacin concen-
trations in MDR-TB patients in Botswana and utilized these con-
centrations to identify amikacin pharmacokinetic parameters for
each patient. We sought to determine if amikacin concentrations
play a role in microbial outcomes at all and, if so, what the expo-
sures associated with optimal efficacy were. We utilized agnostic
machine learning algorithms to identify significant predictors of
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outcome by searching through all possible clinical predictors in
toto, including various amikacin exposure measures. These artifi-
cial intelligence (AI) methods search for the “needle” in the pro-
verbial “haystack” of clinical factors, determine if each is even
relevant, and, if relevant, automatically calculate the drug expo-
sure threshold predicting the outcome (9–12). These AI methods
are nonparametric, are distribution free, and do not depend on
the investigator prespecifying the importance of a potential pre-
dictor such as drug exposure and thus pressing a thumb on the
scale. However, these methods are not for hypothesis testing, as is
the classic role of frequentist statistics, but rather are for hypoth-
esis generation. Two of these AI methods, classification and re-
gression tree analysis (CART) and multivariate adaptive regres-
sion splines (MARS), have been powerful tools for identifying the
nonlinear and higher-order interactions inherent in relationships
between treatment variables and TB outcome and have outper-
formed standard frequentist statistical inferences (10, 11, 13–15).
Here, we used CART to identify and rank in order of importance
the predictors of good outcome in MDR-TB patients in Botswana.
The CART findings were then used in hypothesis testing to deter-
mine if patients identified by the predictors were more likely to fail
therapy.

MATERIALS AND METHODS
We recently recruited 28 MDR-TB patients in Botswana who were treated
with a standardized amikacin-containing regimen. The patients were re-
cruited for the purpose of identifying amikacin concentrations predictive
of ototoxicity, based on high rates of ototoxicity in Botswana. Thus, the
sample size was adequate for that study. The regulatory and ethical details,
recruitment schedule, audiometry results, and the ototoxicity results have
been published separately (4, 16). The clinical study was approved by the
Human Research Development Committee at the Ministry of Health,
Botswana, and the University of Pennsylvania Institutional Review Board.
Based on the protocol for treatment of MDR-TB patients by the Ministry
of Health in Botswana, all patients received oral levofloxacin, ethio-
namide, cycloserine, and pyrazinamide. Amikacin was administered 5
days per week via the intramuscular route at doses of 15 to 25 mg per kg
(maximum dose of 1,000 mg per day); injections were discontinued 4
months after culture conversion.

Blood was drawn from each patient, and amikacin concentrations
were measured on Cobas Integra systems, as described before (4). Com-
partmental pharmacokinetic analyses were then performed for each pa-
tient, and the pharmacokinetics of amikacin were best described by a
two-compartment model. With these parameters, an AUC0 –24 was calcu-
lated for each patient. In the end, three concentration measures were
available for each patient, i.e., an observed Cmax and an observed trough as
well as the calculated AUC0 –24. Patients were followed closely by the team
for audiometry. These patients were also followed by the same team for
microbial outcomes based on the standard clinical monitoring for
MDR-TB prescribed by the Ministry of Health in Botswana. Patients were
followed monthly for microbial outcomes using the mycobacterial growth
indicator tube (MGIT). For the purposes of this study, we defined sputum
conversion as one negative sputum culture on follow-up in these
MDR-TB patients. Patients were followed for several months until spu-
tum conversion or cessation of therapy.

Classification and regression tree analysis (CART) was used to identify
predictors associated with sputum culture conversion during amikacin
therapy, the nonlinear interaction between the predictors, and their im-
portance ranking. The main outcome examined was sputum conversion.
All the clinical features, including patient demographic and clinical fac-
tors, comorbid conditions such as HIV infection, and treatment, as well as
amikacin concentrations, including Cmax, trough concentrations, AUC0–24,
and dose in milligrams and in milligrams per kilogram, were included as
potential predictors. CART assigns a measure of predictive importance to

each potential predictor, entailing both marginal and interaction effects
involving this variable. Variable importance is a unique tool found with
machine-learning approaches that can be used for ranking and selecting
the most influential predictors in the final model. Because CART uses
recursive partitioning of data into homogenous groups, it is resistant to
collinearity, which is especially helpful for situations in which the number
of predictors is relatively large compared to the number of observations
(as was the case with this clinical study). The detailed steps followed in
CART, including the pruning of trees, and final selection of the model
were as described by us in detail in the past (4, 11, 17–19). We performed
a 10-fold cross validation, an exercise in which the whole data set is ran-
domly split into different smaller test data sets and CART performed, in
order to determine model performance and predictive accuracy in future
independent samples.

Work in the hollow-fiber model of tuberculosis and in MDR-TB pa-
tients treated with amikacin, as well as measures of drug concentration in
combination therapy by Mpagama et al., has demonstrated that MIC af-
fects patient response (5, 10, 20). Indeed, this is a standard tenet of PK/PD
theory (21, 22). We did not have MICs for isolates in our Botswana pa-
tients. However, in order to get an idea of the MIC distribution in the same
geographic locale, we identified amikacin MICs in 62 MDR-TB isolates
from Gauteng Province, which is only 170 km from Gaborone. The MICs
were from clinical samples from MDR-TB patients and were identified in
Gauteng Province using Sensititre plate assays (23).

Finally, since CART is used not for hypothesis testing (24) but for
hypothesis generation, we subjected the CART findings to standard hy-
pothesis testing. We examined outcomes in patients grouped by predic-
tors identified by CART for measures of association such as relative risk
(RR) and 95% confidence intervals (CI). Comparison between patient
group medians were made using the Kruskal-Wallis rank test, while
Fischer’s exact test was used to compare proportions. For MIC distribu-
tion, we tested for normality using the D’Agostino-Pearson normality
test.

RESULTS

The amikacin MIC distribution from MDR-TB patients is shown
in Fig. 1. The figure shows that this was not a normal distribution
and had a D’Agostino normality test P value of �0.0001. The
median MIC was 0.75 mg/liter, the MIC50 was 1.0 mg/liter, and
the MIC90 was 2.0 mg/liter. The MIC range was from 0.125 mg/
liter to �16 mg/liter.

The clinical characteristics of the MDR-TB patients in Bo-
tswana, including doses of amikacin used to treat the patients, are
shown in Table 1. The table shows that the median duration of

FIG 1 Amikacin MIC distribution in 62 MDR-TB isolates. The amikacin
MICs from Gauteng Province, adjacent to Gaborone, Botswana, are shown.
The MICs were not normally distributed; however, those for �50% of all
isolates were within one to two dilutions of 1 mg/liter.
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therapy was 184 (range, 28 to 866) days, and the median dose was
17.30 (range, 11.11 to 19.23) mg/kg/day. The compartmental
pharmacokinetic parameter estimates in the patients have been
published previously. The median peak amikacin concentrations,
AUCs, and trough concentrations are also shown in Table 1. The
relationship between peak and AUC was linear (Pearson’s r �
0.52), as were those for peak versus trough concentration (r �
0.28) and AUC versus trough concentration (r � 0.40). Thus, the
correlation was low.

Of the 28 patients, 11 (39%) had sputum culture conversion
during treatment. First, a comparison between patient sputum
conversion group medians was made using the Kruskal-Wallis
rank test, while the likelihood ratio test was used to compare pro-
portions. The results are shown in Table 1. Only duration of ther-
apy was found to be significantly associated with outcome, with
longer duration of therapy associated with better sputum conver-
sion on the univariate analysis. Amikacin Cmax, AUC, and trough
median concentration were not significantly different between pa-
tients who had sputum conversion and those who did not.

CART identified amikacin Cmax, AUC, and weight as driving
sputum conversion. The primary node was made of two compet-
ing variables, Cmax and AUC0 –24, which had the variable impor-
tance score of 100%; weight was a secondary node with a score of
35% relative to the primary node. The threshold Cmax, AUC0 –24,
and weight were 67 mg/liter, �568.30 mg · h/liter, and �41 kg,
respectively. The trough concentration ranked low and was not an
important predictor of outcome. There was an interaction be-
tween amikacin AUC0 –24 and weight, which means that weight
modified the effect of AUC0 –24 on sputum conversion. The area

under the receiver operating characteristic curve (AUROC) for
the model was an R2 � 0.90 on posttest.

When these CART thresholds were used to compare outcomes
in the patients weighing �41 kg, based on use of the CART trees as
decision trees, sputum conversion in patients with an amikacin
Cmax of �67 mg/liter was 3/3 (100%), versus 3/15 (20%) in those
with a Cmax of �67 mg/liter, a relative risk of 5.00 (95% CI, 1.82 to
13.76; P � 0.025). Sputum conversion in patients weighing �41
kg who had an amikacin AUC of �568.30 mg · h/liter was 7/14
(50%), versus 1/8 (12.5%) in those with an AUC of �568.30 mg ·
h/liter, a relative risk of 4.50 (95% CI, 0.66 to 30.73; P � 0.086). In
patients who had both the amikacin Cmax and AUC below the
threshold, 7/7 (100%) patients did not have sputum conversion,
compared to 7/15 (47%) of patients who had these parameters
above the threshold, a relative risk of 2.14 (95% CI, 1.25 to 43.68;
P � 0.023) for therapy failure. One patient whose weight variable
was missing did not achieve sputum conversion. Only 2/5 patients
who weighed �41 kg had both a low amikacin Cmax and a low
AUC0 –24; they too failed therapy.

DISCUSSION

First, in the HFS-TB, we found concentration-dependent efficacy
with the Cmax/MIC ratio driving amikacin monotherapy efficacy,
closely followed by the AUC0 –24/MIC ratio; trough-based expo-
sures were vanishingly unimportant compared to Cmax/MIC ratio,
with a relative likelihood for the trough/MIC ratio that was �1/
1,000 of that for the Cmax/MIC ratio (5). Here, we show that in
MDR-TB patients, Cmax and AUC0 –24 were the parameters that
drove efficacy of amikacin combination therapy, with Cmax having
a significantly increased risk ratio of failure when it was low.
Trough concentration was unimportant and not ranked. Thus,
the patterns seem to be the same in the HFS-TB monotherapy
studies as for MDR-TB patients on combination therapy. Given
that experimental design is optimized in the HFS-TB, with colin-
earity of exposures broken based on the design, the indices were
identified using linear analyses and Akaike information criteria,
while in the clinic we used AI algorithms that utilize nonlinear
analyses. Linear analyses are characterized by the principle of su-
perimposition: a problem can be broken into its parts, and the
solutions can be added and add to the whole. Thus, even “nonlin-
ear” regression models, such as the inhibitory sigmoid Emax

model, are by this definition linear analyses. On the other hand, in
nonlinear science, there are recognized interactions of predictors
in toto that change when each predictor is separated from the
whole and considered alone. Breaking problems into smaller por-
tions, finding solutions, and then adding them up does not add up
to the observed net response, i.e., does not follow the superposi-
tion principle. Thus, in nonlinear analyses, the behavior of com-
ponents when they are part of the whole (i.e., with all other fac-
tors) is best be characterized by testing all parameters in toto.
Given that physiological systems are nonlinear systems, clinical
data are best analyzed using nonlinear science approaches. As an
example, we found that weight interacted with AUC0 –24 but that
each also affected sputum conversion directly, while the effects of
Cmax above and below the specific weight of 41 kg differed. In
summary, parametric regression models that utilized linear anal-
yses in the HFS-TB identified patterns similar to those in patients
who were analyzed based on nonlinear analyses.

Second, it is self-evident from our results that pharmacokinetic
variability plays an important role in failure of amikacin therapy

TABLE 1 Comparison of clinical factors in patients with and without
culture conversion

Parameter

Valuea for patients with:

P value
No culture conversion
(n � 17)

Culture conversion
(n � 11)

Age, yr 42 (17–81) 42 (16–69) 0.693

Gender
Female 7 (41) 5 (45) 0.823
Male 10 (59) 6 (55)

HIV test
Negative 10 (59) 6 (55) 0.823
Positive 7 (41) 5 (45)

Previous TB
treatment

Yes 5 (29) 5 (45) 0.387
No 12 (71) 6 (55)

Wt, kgb 51.35 (26–64) 52 (39–70) 0.786
Amikacin therapy

duration, days
172.5 (28–320) 207.5 (65–866) 0.041

Amikacin dose, mg/kg 17.44 (13.70–19.23) 17.01 (11.11–19.23) 0.961
Amikacin Cmax,

mg/liter
49.42 (22.02–65.59) 49.42 (25.94–76.95) 0.493

Amikacin AUC0–24,
mg · h/liter

556.91 (241.50–988.71) 599.56 (446.34–766.91) 0.371

Amikacin trough
concn, mg/liter

0.64 (0–11.89) 0 (0–4.92) 0.338

a Values are either number (%) of patients or median (range).
b Data for some patients are missing.
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in the optimized background regimen for MDR-TB. One recent
advance in the treatment of drug-susceptible TB, first identified in
the HFS-TB and computer-aided clinical trial simulations, has
been the effect of pharmacokinetic variability as a major cause of
therapy failure and acquired drug resistance (11, 25–28). This
concept might modify the focus from tuberculosis program fac-
tors such as directly observed therapy to development of clinical
decision-making tools for monitoring drug concentrations and
redosing to optimize outcomes (29). The mechanism by which
this variability drives failure is simply poor microbial kill by sub-
therapeutic drug concentrations in patients on recommended
doses. Since pharmacokinetic variability is encountered for virtu-
ally every antibiotic we have examined, we propose that the same
process will apply to all other second-line anti-TB compounds.

Third, we now have identified the amikacin threshold concen-
trations that predict optimal microbial outcomes in MDR-TB pa-
tients. In the HFS-TB, we identified the Cmax/MIC ratio of 10.13 as
the EC90, based on inhibitory sigmoid Emax model regression (5).
On the other hand, CART is a more agnostic algorithm and essen-
tially found the Cmax for which there is homogeneity for sputum
conversion versus non-sputum conversion. The two definitions
thus describe two different types of response. Using CART, we
identified a Cmax of 67 mg/liter in serum as the threshold. Given
the MIC distribution shown in Fig. 1, described by a median of
0.75 mg/liter, and that half the isolates were within one tube dilu-
tion MIC of 1.0 mg/liter (which is also the MIC50), the serum
Cmax/MIC ratio is expected to be 67 to 89. Furthermore, given the
amikacin serum-to bronchial secretion ratio of 0.135 as well as
negligible protein binding, this calculates to a pulmonary Cmax/
MIC ratio of 9.05 to 12.02 (30). This value is in the same range as
the HFS-TB-derived EC90 Cmax/MIC ratio of 10.13 (30). Similarly,
if one used the CART-identified AUC of �568.30 mg · h/liter in
the serum, this translates to an AUC0 –24/MIC ratio of 76.72 to
102.29 in the lung, which is reasonably close to the HFS-TB de-
rived AUC0 –24/MIC ratio of 102.74 (95% CI, 77.7 to 127.8) (5).
Thus, amikacin exposure thresholds associated with a good re-
sponse in combination therapy in MDR-TB are within the same
range as the EC90 derived in HFS-TB experiments. These amika-
cin exposures are the targets for dosing that tuberculosis pro-
grams should aim to achieve for maximal efficacy. These will
need to be counterbalanced with a dosing strategy that mini-
mizes toxicity (4).

There are some limitations in our study. Different combina-
tion drugs are given for various durations during treatment of
MDR-TB, which could affect generalizability to other settings. In
our case, all patients were treated with same standard combina-
tion regimen. Thus, larger prospective studies will be required to
examine the amikacin thresholds identified in this study in the
context of specific multidrug MDR-TB treatment regimens and
by taking into account drug concentrations of companion drugs.
Closely related is the lack of data on amikacin MICs for each
patient matched to the response; similarly, MICs of companion
drugs would have been informative. These concentrations, how-
ever, were not measured, which could limit the generalizability of
our findings. To partially mitigate this, we examined the most
common MICs that would be encountered in these patients, as
shown in Fig. 1. Moreover, in the hollow-fiber system, we took
into account the Mycobacterium tuberculosis MIC and still identi-
fied an optimal exposure within the same range as in these pa-
tients. This suggests that our results could have meaning beyond

the specific data set. A common critique of these types of studies is
about sample size. However, we reiterate that the AI methods are
there for hypothesis generation. Even with that limitation, never-
theless, when the CART-derived cutoff points were examined in
hypothesis testing for the relative risk of failure, the sample size
was adequate to detect statistically significant differences. Second,
there is often concern about collinearity between the drug concen-
trations, which would make a deliberate dose fractionation design
a better approach. However, in our data set, correlations were
weak, with the highest r being only 0.52. Moreover, we used ex-
perimental design to break collinearity in the HFS-TB and identi-
fied similar dose schedules as best linked to efficacy as in the pa-
tients (5). Furthermore, CART was designed in part, to break
collinearity, which it evidently succeeded in doing. Third, the def-
inition of sputum conversion we used was one negative sputum
liquid culture. Others have used two consecutive cultures; how-
ever, one negative culture has also been used.

In summary, we found that amikacin peak concentration and
AUC, as well as patient weight, were most predictive of sputum
conversion in MDR-TB patients. These are similar to patterns in
the HFS-TB described in the accompanying paper (5). The thresh-
old concentrations should be considered dosing targets for im-
proving sputum conversion in MDR-TB patients on amikacin-
based regimens for TB programs.
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